Influence of the Change of Phase Composition of (1 − x)ZrO2–xAl2O3 Ceramics on the Resistance to Hydrogen Embrittlement
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Composition Parameterization of Investigated Samples of (1 − x)ZrO2–xAl2O3 Ceramics at Changing Components
3.2. Study of Structural Deformations in (1 − x)ZrO2–xAl2O3 Ceramics Caused by Proton Irradiation
3.3. Investigation of Strength and Thermo-Physical Parameters Changes of (1 − x)ZrO2–xAl2O3 Ceramics in Dependence on Irradiation Fluence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mistarihi, Q.M.; Raj, V.; Kim, J.H.; Ryu, H.J. Thermal conductivity of Mo-reinforced ZrO2 composites fabricated by spark plasma sintering for inert matrix fuels. Mater. Des. 2017, 134, 476–485. [Google Scholar] [CrossRef]
- Cheng, T.; Baney, R.H.; Tulenko, J. The feasibility of using molten carbonate corrosion for separating a nuclear surrogate for plutonium oxide from silicon carbide inert matrix. J. Nucl. Mater. 2010, 405, 126–130. [Google Scholar] [CrossRef]
- Frieß, F.; Liebert, W. Inert-matrix fuel for transmutation: Selected mid-and long-term effects on reprocessing, fuel fabrication and inventory sent to final disposal. Prog. Nucl. Energy 2022, 145, 104106. [Google Scholar] [CrossRef]
- Lombardi, C.; Luzzi, L.; Padovani, E.; Vettraino, F. Thoria and inert matrix fuels for a sustainable nuclear power. Prog. Nucl. Energy 2008, 50, 944–953. [Google Scholar] [CrossRef]
- Holliday, K.; Hartmann, T.; Czerwinski, K. Synthesis and characterization of zirconia–magnesia inert matrix fuel: Ce homolog studies. J. Nucl. Mater. 2009, 392, 487–493. [Google Scholar] [CrossRef]
- Holliday, K.; Hartmann, T.; Mulcahy, S.R.; Czerwinski, K. Synthesis and characterization of zirconia–magnesia inert matrix fuel: Plutonium studies. J. Nucl. Mater. 2010, 402, 81–86. [Google Scholar] [CrossRef]
- Nandi, C.; Grover, V.; Bhandari, K.; Bhattacharya, S.; Mishra, S.; Banerjee, J.; Prakash, A.; Tyagi, A. Exploring YSZ/ZrO2-PuO2 systems: Candidates for inert matrix fuel. J. Nucl. Mater. 2018, 508, 82–91. [Google Scholar] [CrossRef]
- Tracy, C.L.; Pray, J.M.; Lang, M.; Popov, D.; Park, C.; Trautmann, C.; Ewing, R.C. Defect accumulation in ThO2 irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2014, 326, 169–173. [Google Scholar] [CrossRef]
- Chung, C.K.; Shamblin, J.; O’Quinn, E.C.; Shelyug, A.; Gussev, I.; Lang, M.; Navrotsky, A. Thermodynamic and structural evolution of Dy2Ti2O7 pyrochlore after swift heavy ion irradiation. Acta Mater. 2018, 145, 227–234. [Google Scholar] [CrossRef]
- Lang, M.; Devanathan, R.; Toulemonde, M.; Trautmann, C. Advances in understanding of swift heavy-ion tracks in complex ceramics. Curr. Opin. Solid State Mater. Sci. 2015, 19, 39–48. [Google Scholar] [CrossRef]
- Toulemonde, M.; Bouffard, S.; Studer, F. Swift heavy ions in insulating and conducting oxides: Tracks and physical properties. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1994, 91, 108–123. [Google Scholar] [CrossRef]
- Dufour, C.; Audouard, A.; Beuneu, F.; Dural, J.; Girard, J.P.; Hairie, A.; Levalois, M.; Paumier, E.; Toulemonde, M. A high-resistivity phase induced by swift heavy-ion irradiation of Bi: A probe for thermal spike damage? J. Phys. Condens. Matter 1993, 5, 4573–4584. [Google Scholar] [CrossRef]
- Chakravorty, A.; Singh, B.; Jatav, H.; Meena, R.; Kanjilal, D.; Kabiraj, D. Controlled generation of photoemissive defects in 4H-SiC using swift heavy ion irradiation. J. Appl. Phys. 2021, 129, 245905. [Google Scholar] [CrossRef]
- Shabalin, E.; Fedorov, A.; Kulagin, E.; Kulikov, S.; Melikhov, V.; Shabalin, D. Experimental study of swelling of irradiated solid methane during annealing. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2008, 266, 5126–5131. [Google Scholar] [CrossRef]
- Xia, L.; Liu, W.; Liu, H.; Zhang, J.; Chen, H.; Yang, Z.; Zhang, C. Radiation damage in helium ion–irradiated reduced activation ferritic/martensitic steel. Nucl. Eng. Technol. 2017, 50, 132–139. [Google Scholar] [CrossRef]
- Loomis, B.; Chung, H.; Nowicki, L.; Smith, D. Effects of neutron irradiation and hydrogen on ductile-brittle transition temperatures of V-Cr-Ti alloys. J. Nucl. Mater. 1994, 212, 799–803. [Google Scholar] [CrossRef]
- Shen, Z.; Zheng, Z.; Luo, F.; Hu, W.; Zhang, W.; Guo, L.; Ren, Y. Effects of sequential helium and hydrogen ion irradiation on the nucleation and evolution of bubbles in tungsten. Fusion Eng. Des. 2017, 115, 80–84. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, Z. Effect of Annealing on Microstructures and Hardening of Helium-Hydrogen-Implanted Sequentially Vanadium Alloys. Nanoscale Res. Lett. 2018, 13, 72. [Google Scholar] [CrossRef]
- Qin, T.Y.; Zhong, C.W.; Qin, Y.; Zhang, S.R. The Bending Strength and Microwave Properties of xAl2O3+ (1 − x)BaO-Al2O3-B2O3-SiO2-ZnO Glass-Ceramics. Key Eng. Mater. 2020, 842, 186–192. [Google Scholar] [CrossRef]
- Lube, T.; Pascual, J.; Chalvet, F.; de Portu, G. Effective fracture toughness in Al2O3–Al2O3/ZrO2 laminates. J. Eur. Ceram. Soc. 2007, 27, 1449–1453. [Google Scholar] [CrossRef]
- Promakhov, V.; Zhukov, A.; Dubkova, Y.; Zhukov, I.; Kovalchuk, S.; Zhukova, T.; Olisov, A.; Klimenko, V.; Savkina, N. Structure and Properties of ZrO2–20%Al2O3 Ceramic Composites Obtained Using Additive Technologies. Materials 2018, 11, 2361. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wei, H.; Zhang, J.; Tang, C.; Lu, C.; Huang, C.; Ding, S.; Li, Y. Modelling of effective irradiation swelling for inert matrix fuels. Nucl. Eng. Technol. 2021, 53, 2616–2628. [Google Scholar]
- Gong, X.; Ding, S.; Zhao, Y.; Huo, Y.; Zhang, L.; Li, Y. Effects of irradiation hardening and creep on the thermo-mechanical behaviors in inert matrix fuel elements. Mech. Mater. 2013, 65, 110–123. [Google Scholar] [CrossRef]
- Kabir, A.; Meftah, A.; Stoquert, J.P.; Toulemonde, M.; Monnet, I. Amorphization of sapphire induced by swift heavy ions: A two step process. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2008, 266, 2976–2980. [Google Scholar] [CrossRef]
- Newby, P.J.; Canut, B.; Bluet, J.-M.; Gomès, S.; Isaiev, M.; Burbelo, R.; Termentzidis, K.; Chantrenne, P.; Fréchette, L.G.; Lysenko, V. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions. J. Appl. Phys. 2013, 114, 014903. [Google Scholar] [CrossRef]
- Benyagoub, A. Kinetics of the crystalline to crystalline phase transformation induced in pure zirconia by swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 206, 132–138. [Google Scholar] [CrossRef]
- Costantini, J.-M.; Miro, S.; Beuneu, F.; Toulemonde, M. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet. J. Phys. Condens. Matter 2015, 27, 496001. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, W.; Wang, C.; Namavar, F.; Edmondson, P.D.; Zhu, Z.; Gao, F.; Lian, J.; Weber, W.J. Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation. Phys. Rev. B 2010, 82, 184105. [Google Scholar] [CrossRef]
- Meldrum, A.; Boatner, L.A.; Ewing, R.C. Size effects in the irradiation-induced crystalline-to-amorphous transformation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 207, 28–35. [Google Scholar] [CrossRef]
- Lu, F.; Wang, J.; Lang, M.; Toulemonde, M.; Namavar, F.; Trautmann, C.; Zhang, J.; Ewing, R.C.; Lian, J. Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation. Phys. Chem. Chem. Phys. 2012, 14, 12295–12300. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Alin, M.; Borgekov, D.B. Study of Polymorphic Transformation Processes and Their Influence in Polycrystalline ZrO2 Ceramics upon Irradiation with Heavy Ions. Ceramics 2023, 6, 686–706. [Google Scholar] [CrossRef]
- Ivanov, I.A.; Alin, M.; Koloberdin, M.V.; Sapar, A.; Kurakhmedov, A.E.; Kozlovskiy, A.L.; Zdorovets, M.V.; Uglov, V.V. Effect of irradiation with heavy Xe22+ ions with energies of 165–230 MeV on change in optical characteristics of ZrO2 ceramic. Opt. Mater. 2021, 120, 111479. [Google Scholar] [CrossRef]
- Hu, W.; Guo, L.; Chen, J.; Luo, F.; Li, T.; Ren, Y.; Suo, J.; Yang, F. Synergistic effect of helium and hydrogen for bubble swelling in reduced-activation ferritic/martensitic steel under sequential helium and hydrogen irradiation at different temperatures. Fusion Eng. Des. 2014, 89, 324–328. [Google Scholar] [CrossRef]
- Primakov, N.; Rudenko, V.; Kazarnikov, V.; Bespalov, A. Nonuniform swelling and hydrogen redistribution in zirconium hydride under neutron irradiation. Int. J. Hydrogen Energy 1999, 24, 805–811. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenzhina, I.E.; Kozlovskiy, A.L.; Begentayev, M.; Tolenova, A.; Askerbekov, S. Influence of the Change of Phase Composition of (1 − x)ZrO2–xAl2O3 Ceramics on the Resistance to Hydrogen Embrittlement. Materials 2023, 16, 7072. https://doi.org/10.3390/ma16227072
Kenzhina IE, Kozlovskiy AL, Begentayev M, Tolenova A, Askerbekov S. Influence of the Change of Phase Composition of (1 − x)ZrO2–xAl2O3 Ceramics on the Resistance to Hydrogen Embrittlement. Materials. 2023; 16(22):7072. https://doi.org/10.3390/ma16227072
Chicago/Turabian StyleKenzhina, Inesh E., Artem L. Kozlovskiy, Meiram Begentayev, Aktolkyn Tolenova, and Saulet Askerbekov. 2023. "Influence of the Change of Phase Composition of (1 − x)ZrO2–xAl2O3 Ceramics on the Resistance to Hydrogen Embrittlement" Materials 16, no. 22: 7072. https://doi.org/10.3390/ma16227072
APA StyleKenzhina, I. E., Kozlovskiy, A. L., Begentayev, M., Tolenova, A., & Askerbekov, S. (2023). Influence of the Change of Phase Composition of (1 − x)ZrO2–xAl2O3 Ceramics on the Resistance to Hydrogen Embrittlement. Materials, 16(22), 7072. https://doi.org/10.3390/ma16227072