A Nanocomposite Sol-Gel Film Based on PbS Quantum Dots Embedded into an Amorphous Host Inorganic Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Film
2.2. Measurements
3. Results and Discussion
3.1. X-ray Diffraction Analysis (XRD)
3.2. Optical Properties
3.2.1. Optical Absorption
3.2.2. Optical Emission
3.3. Raman Spectroscopy
3.4. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray Analysis (FESEM-EDX)
3.5. Transmission Electron Microscopy (TEM)
3.6. Atomic Force Microscopy (AFM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bederak, D.; Dirin, D.N.; Sukharevska, N.; Momand, J.; Kovalenko, M.V.; Loi, M.A. S-Rich PbS Quantum Dots: A Promising p-Type Material for Optoelectronic Devices. Chem. Mater. 2021, 33, 320–326. [Google Scholar] [CrossRef]
- Mishra, A.K.; Saha, S. Structural, electrical, and optoelectrical characterization of PbS nanoparticles. J. Optoelectron. Adv. Mater. 2022, 24, 263–271. [Google Scholar]
- Blachowicz, T.; Ehrmann, A. Recent Developments of Solar Cells from PbS Colloidal Quantum Dots. Appl. Sci. 2020, 10, 1743. [Google Scholar] [CrossRef]
- Nugraha, M.I.; Kumagai, S.; Watanabe, S.; Sytny, M.; Heiss, W.; Loi, M.A.; Takeya, J. Enabling Ambipolar to Heavy n-Type Transport in PbS Quantum Dot Solids through Doping with Organic Molecules. ACS Appl. Mater. Interfaces 2017, 9, 18039–18045. [Google Scholar] [CrossRef] [PubMed]
- Kumnorkaew, P.; Rattanawichai, N.; Ratanatawanate, C.; Yoriya, S.; Lohawet, K.; Zhao, Y.; Vas-Umnuay, P. Influence of PbS Quantum Dots-Doped TiO2 Nanotubes in TiO2 Film as an Electron Transport Layer for Enhanced Perovskite Solar Cell Performance. IEEE J. Photovolt. 2020, 10, 287–295. [Google Scholar] [CrossRef]
- Hu, L.; Huang, S.; Patterson, R.; Halpert, J.E. Enhanced mobility in PbS quantum dot films via PbSe quantum dot mixing for optoelectronic applications. J. Mater. Chem. C 2019, 7, 4497–4502. [Google Scholar] [CrossRef]
- Xia, P.; Davies, D.W.; Patel, B.B.; Qin, M.; Liang, Z.; Graham, K.R.; Diao, Y.; Tang, M.L. Spin.-coated fluorinated PbS QD superlattice thin film with high hole mobility. Nanoscale 2020, 12, 11174–11181. [Google Scholar] [CrossRef] [PubMed]
- Mehrabian, M.; Abdollahian, P. Improving Charge Transport in PbS Quantum Dot to Al:ZnO Layer by Changing the Size of Quantum Dots in Hybrid Solar Cells. Z. Naturforsch. A 2016, 71, 1067–1071. [Google Scholar] [CrossRef]
- Yang, X.; Hu, L.; Deng, H.; Qiao, K.; Hu, C.; Liu, Z.; Yuan, S.; Khan, J.; Li, D.; Tang, J.; et al. Improving the Performance of PbS Quantum Dot Solar Cells by Optimizing ZnO Window Layer. Nano-Micro Lett. 2017, 9, 24. [Google Scholar] [CrossRef]
- Ramiro, I.; Kundu, B.; Dalmases, M.; Özdemir, O.; Pedrosa, M.; Konstantatos, G. Size- and Temperature-Dependent Intraband Optical Properties of Heavily n-Doped PbS Colloidal Quantum Dot Solid-State Films. ACS Nano 2020, 14, 7161–7169. [Google Scholar] [CrossRef]
- Roland, P.J.; Bhandari, K.P.; Ellingson, R.J. Influence of interparticle electronic coupling on the temperature and size dependent optical properties of lead sulfide quantum dot thin films. J. Appl. Phys. 2016, 119, 094307. [Google Scholar] [CrossRef]
- Georgitzikis, E.; Malinowski, P.E.; Hagelsieb, L.M.; Pejovic, V.; Uytterhoeven, G.; Guerrieri, S.; Suss, A.; Cavaco, C.; Chatzinis, K.; Maes, J.; et al. NIR Sensors Based on Photolithographically Patterned PbS QD Photodiodes for CMOS Integration. In Proceedings of the 17th IEEE SENSORS Conference, New Delhi, India, 28–31 October 2018. [Google Scholar] [CrossRef]
- Zaini, M.S.; Kamarudin, M.A.; Chyi, J.L.Y.; Ahmad, S.A.A.; Mohmad, A.R. Temperature and Power Dependence of Photoluminescence in PbS Quantum Dots Nanoparticles. Sains Malays. 2019, 48, 1281–1288. [Google Scholar] [CrossRef]
- Halim, N.D.; Zaini, M.S.; Talib, Z.A.; Liew, J.Y.C.; Kamarudin, M.A. Study of the Electron-Phonon Coupling in PbS/MnTe Quantum Dots Based on Temperature-Dependent Photoluminescence. Micromachines 2022, 13, 443. [Google Scholar] [CrossRef] [PubMed]
- Brites, C.D.S.; Balabhadra, S.; Carlos, L.D. Lanthanide-based thermometers: At the cut-ting-edge of luminescence thermometry. Adv. Opt. Mater. 2019, 7, 1801239. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Huang, F.; Hua, Y.; Tian, Y.; Zhang, X.; Xu, S. Multifunctional optical materials based on transparent inorganic glasses embedded with PbS QDs. J. Alloys Compd. 2023, 942, 169040. [Google Scholar] [CrossRef]
- Nicoara, A.I.; Eftimie, M.; Elisa, M.; Vasiliu, I.C.; Bartha, C.; Enculescu, M.; Filipescu, M.; Elosúa Aguado, C.; Lopez, D.; Sava, B.A.; et al. Nanostructured PbS-doped inorganic film synthesized by sol-gel route. Nanomaterials 2022, 12, 3006. [Google Scholar] [CrossRef] [PubMed]
- Rusu, M.; Stefan, C.; Elisa, M.; Feraru, I.; Vasiliu, I.C.; Bartha, C.; Trusca, R.; Vasile, E.; Peretz, S. CdS/ZnS-doped silico-phosphate films prepared by sol-gel synthesis. J. Non-Cryst. Solids 2018, 481, 435–440. [Google Scholar] [CrossRef]
- Iordanescu, C.R.; Vasiliu, I.C.; Elisa, M.; Feraru, I.D. Structural and optical investigations on CdSe-doped SiO2-P2O5 sol-gel films. Phys. Scrypta 2013, T157, 014015. [Google Scholar] [CrossRef]
- Elisa, M.; Vasiliu, I.C.; Feraru, I.D.; Iordanescu, R.; Rusu, M.I.; Trusca, R.D.; Vasile, E.; Peretz, S. CdSe/ZnS-doped silicophosphate films prepared by sol–gel method. J. Sol-Gel Sci. Technol. 2015, 73, 660–665. [Google Scholar] [CrossRef]
- Elisa, M.; Feraru, I.D.; Vasiliu, I.C.; Iordanescu, R.; Rusu, M.I.; Trusca, R.; Moldovan, A.; Peretz, S. Optical, structural and morphological characterization of CdS-doped sol-gel silico-phosphate films. In Proceedings of the IEEE Nano 2015—15th International Conference on Nanotechnology, Rome, Italy, 27–30 July 2015; ISBN 978-1-4673-8156-7. [Google Scholar]
- PDF-ICDD. Powder Diffraction File (PDF-4+ 2022 Software 4.22.0.2); International Centre for Diffraction Data: Newtown Square, PA, USA, 2011. [Google Scholar]
- Zhao, Y.; Li, W. PbS quantum dots band gap tuning via Eu doping. Mater. Res. Express 2019, 6, 115908. [Google Scholar] [CrossRef]
- Xu, J.X.; Yuan, Y.; Liu, M.; Zou, S.; Chen, O.; Zhang, D. Quantification of the photon absorption, scattering, and on-resonance emission properties of CdSe/CdS core/shell Quantum Dots: Effect of shell geometry and volumes. Anal. Chem. 2020, 92, 5346–5353. [Google Scholar] [CrossRef] [PubMed]
- Li, J.S.; Tang, Y.; Li, Z.T.; Ding, X.R.; Rao, L.S.; Yu, B.H. Effect of Quantum Dot scattering and absorption on the optical performance of White Light-Emitting Diodes. IEEE Trans. Electron. Devices 2018, 65, 2877. [Google Scholar] [CrossRef]
- Li, J.; Tang, Y.; Li, Z.; Ding, X.; Yuan, D.; Yu, B. Study on scattering and absorption properties of quantum-dot-converted elements for light emitting diodes using finite-difference time-domain method. Materials 2017, 10, 1264. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Narsingi, K.Y.; Manasreh, M.O.; Davis, E.A.; Weaver, B.D. Temperature dependence of the band gap of colloidal CdSe∕ZnS core/shell nanocrystals embedded into an ultraviolet curable resin. Appl. Phys. Lett. 2006, 89, 131907. [Google Scholar] [CrossRef]
- Bhowmick, M.; Singh, A.K.; Barik, P.; Xi, H.; Ullrich, B. Impact of PbS quantum dots on GaAs photoluminescence. In Proceedings of the SPIE Optical Components and Materials XVIII Conference, 116820Y, San Diego, CA, USA, 5 March 2021. [Google Scholar] [CrossRef]
- Badawi, A.; Al-Hosiny, N.; Merazga, A.; Albaradi, A.M.; Abdallah, S.; Talaat, H. Study of the back recombination processes of PbS quantum dots sensitized solar cells. Superlattices Microstruct. 2016, 100, 694–702. [Google Scholar] [CrossRef]
- Nanda, K.K.; Kruis, F.E.; Fissan, H.; Behera, S.N. Effective mass approximation for two extreme semiconductors: Band gap of PbS and CuBr nanoparticles. J. Appl. Phys. 2004, 95, 5035–5041. [Google Scholar] [CrossRef]
- Elisa, M.; Iordache, S.-M.; Iordache, A.-M.; Rusu, M.I.; Socol, G.; Filipescu, M.; Bartha, C.; Enculescu, M. Pulsed Laser Deposition Films Based on CdSe-Doped Zinc Aluminophosphate Glass. JOM 2021, 73, 495–503. [Google Scholar] [CrossRef]
- Yadav, S.K.; Jeevanandam, P. Synthesis of PbS–Al2O3 nanocomposites by sol–gel process and studies on their optical properties. Opt. Mater. 2015, 46, 209–215. [Google Scholar] [CrossRef]
- Elisa, M.; Stefan, R.C.; Vasiliu, I.C.; Iordache, S.M.; Iordache, A.-M.; Sava, B.A.; Boroica, L.; Dinca, M.C.; Filip, A.V.; Galca, A.C.; et al. A New Zinc Phosphate-Tellurite Glass for Magneto-Optical Applications. Nanomaterials 2020, 10, 1875. [Google Scholar] [CrossRef]
- Joshi, R.K.; Kanjilal, A.; Sehgal, H. Solution grown PbS nanoparticle films. Appl. Surf. Sci. 2004, 221, 43–47. [Google Scholar] [CrossRef]
- Valenzuela-Jáuregui, J.; Ramírez-Bon, R.; Mendoza-Galván, A.; Sotelo-Lerma, M. Optical properties of PbS thin films chemically deposited at different temperatures. Thin Solid Films 2003, 441, 104–110. [Google Scholar] [CrossRef]
- Su, G.; Liu, C.; Deng, Z.; Zhao, X.; Zhou, X. Size-dependent photoluminescence of PbS QDs embedded in silicate glasses. Opt. Mater. Express 2017, 7, 2194. [Google Scholar] [CrossRef]
- Pugh-Thomas, D.; Walsh, B.M.; Gupta, M.C. CdSe(ZnS) nanocomposite luminescent high temperature sensor. Nanotechnology 2011, 22, 185503. [Google Scholar] [CrossRef]
- Stadelmann, K.; Elizabeth, A.; Sabanés, N.M.; Domke, K.F. The SERS signature of PbS quantum dot oxidation. Vib. Spectrosc. 2017, 91, 157–162. [Google Scholar] [CrossRef]
- Suganya, M.; Balu, A. PbS nanopowder–synthesis, characterization and antimicrobial activity. Mater. Sci. 2017, 35, 322–328. [Google Scholar] [CrossRef]
- Shapter, J.G.; Brooker, M.H.; Skinner, W.M. Observation of the oxidation of galena using Raman spectroscopy. Int. J. Miner. Process. 2000, 60, 199–211. [Google Scholar] [CrossRef]
- White, W.B.; Minser, D.G. Raman spectra and structure of natural glasses. J. Non-Cryst. Solids 1984, 67, 45–59. [Google Scholar] [CrossRef]
- González, P.; Serra, J.; Liste, S.; Chiussi, S.; León, B.; Pérez-Amor, M. Raman spectroscopic study of bioactive silica based glasses. J. Non-Cryst. Solids 2003, 320, 92–99. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, P. A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 2015, 5, 67583–67609. [Google Scholar] [CrossRef]
- Tung, S. High proton conductive glass electrolyte synthesized by an accelerated sol–gel process with water/vapor management. J. Membr. Sci. 2004, 241, 315–323. [Google Scholar] [CrossRef]
Element | Mass (%) | Atomic (%) | Abs. Error (%) |
---|---|---|---|
O | 44.4 | 59.13 | 12.58 |
Si | 30.24 | 22.94 | 3.20 |
S | 0.54 | 0.36 | 0.12 |
Al | 0.97 | 0.76 | 0.19 |
Pb | 2.99 | 0.31 | 0.29 |
Na | 10.81 | 10.02 | 1.76 |
Mg | 3.27 | 2.87 | 0.51 |
Ca | 6.79 | 3.61 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elisa, M.; Sava, B.A.; Eftimie, M.; Nicoara, A.I.; Vasiliu, I.C.; Rusu, M.I.; Bartha, C.; Enculescu, M.; Kuncser, A.C.; Oane, M.; et al. A Nanocomposite Sol-Gel Film Based on PbS Quantum Dots Embedded into an Amorphous Host Inorganic Matrix. Materials 2023, 16, 7105. https://doi.org/10.3390/ma16227105
Elisa M, Sava BA, Eftimie M, Nicoara AI, Vasiliu IC, Rusu MI, Bartha C, Enculescu M, Kuncser AC, Oane M, et al. A Nanocomposite Sol-Gel Film Based on PbS Quantum Dots Embedded into an Amorphous Host Inorganic Matrix. Materials. 2023; 16(22):7105. https://doi.org/10.3390/ma16227105
Chicago/Turabian StyleElisa, Mihail, Bogdan Alexandru Sava, Mihai Eftimie, Adrian Ionut Nicoara, Ileana Cristina Vasiliu, Madalin Ion Rusu, Cristina Bartha, Monica Enculescu, Andrei Cristian Kuncser, Mihai Oane, and et al. 2023. "A Nanocomposite Sol-Gel Film Based on PbS Quantum Dots Embedded into an Amorphous Host Inorganic Matrix" Materials 16, no. 22: 7105. https://doi.org/10.3390/ma16227105
APA StyleElisa, M., Sava, B. A., Eftimie, M., Nicoara, A. I., Vasiliu, I. C., Rusu, M. I., Bartha, C., Enculescu, M., Kuncser, A. C., Oane, M., Aguado, C. E., & López-Torres, D. (2023). A Nanocomposite Sol-Gel Film Based on PbS Quantum Dots Embedded into an Amorphous Host Inorganic Matrix. Materials, 16(22), 7105. https://doi.org/10.3390/ma16227105