Improved Resistive Switching Characteristics and Synaptic Functions of InZnO/SiO2 Bilayer Device
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, L.; Hsieh, K.; Liu, R. Future challenges of flash memory technologies. Microelectron. Eng. 2009, 86, 283–286. [Google Scholar]
- Kim, S.; Kim, H.; Hwang, S.; Kim, M.; Chang, Y.; Park, B. Analog synaptic behavior of a silicon nitride memristor. ACS Appl. Mater. Interfaces 2017, 9, 40420–40427. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Ko, D.; Ahn, G.; Yu, H.; Junh, H.; Kim, Y.; Yoon, C.; Lee, S.; Park, B.; Choi, S.; et al. Effect of oxygen content of the LaAlO3 layer on the synaptic behavior of Pt/LaAlO3/Nb-doped SrTiO3 memristors for neuromorphic applications. Solid-State Electron. 2018, 140, 139–143. [Google Scholar] [CrossRef]
- Lelmini, D. Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling. Semicond. Sci. Technol. 2016, 31, 063002. [Google Scholar] [CrossRef]
- Bai, S.; Guo, T.; Zhou, G.; Ranjan, S.; Jiao, Y.; Wei, L.; Zhou, Y.N.; Wu, Y.A. Synaptic devices based neuromorphic computing applications in artificial intelligence. Mater. Today Phys. 2021, 18, 100393. [Google Scholar]
- Kim, M.; Lee, J. Short-term plasticity and long-term potentiation in artificial synapse with diffusive dynamics. ACS Nano 2018, 12, 1680–1687. [Google Scholar] [CrossRef] [PubMed]
- Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840. [Google Scholar] [CrossRef]
- Waser, R.; Dittmann, R.; Staikov, G.; Szot, K. Redox-based resistive switching memories–nano ionic mechanisms, prospects, and challenges. Adv. Mater. 2009, 21, 2632–2663. [Google Scholar] [CrossRef]
- Mario, L. A review on resistive switching in high-k dielectrics: A nanoscale point of view using conductive atomic force microscope. Materials 2014, 7, 2155–2182. [Google Scholar]
- Hsu, C.; Po, C.; Yu, C. Resistive switching characteristic of low-temperature top-electrode-free tin-oxide memristor. IEEE Trans. Electron Device 2017, 64, 3951–3954. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Kim, S. Logic-in-memory application of CMOS compatible silicon nitride memristor. Chaos Solitons Fractals 2021, 153, 111540. [Google Scholar] [CrossRef]
- Lin, K.; Hou, T.; Shieh, J.; Lin, J.; Chou, C.; Lee, Y. Electrode dependence of filament formation in HfO2 resistive-switching memory. J. Appl. Phys. 2011, 109, 084104. [Google Scholar] [CrossRef]
- Sun, J.; Tan, J.; Chen, T. Investigation of electrical noise signal triggered resistive switching and its implications. IEEE Trans. Electron Devices 2020, 67, 4178–4184. [Google Scholar] [CrossRef]
- Hu, G.; An, H.; Xi, J.; Lu, J.; Hua, Q.; Peng, Z. A ZnO micro/nanowire-based photonic synapse with piezo-phototronic modulation. Nano Energy 2021, 89, 106282. [Google Scholar] [CrossRef]
- Kamar, S.; Kumbhar, D.D.; Park, J.H.; Kamat, R.K.; Dongale, T.D.; Mukherjee, S. Y2O3-Based Crossbar Array for Analog and Neuromorphic computing. IEEE Trans. Electron Devices 2022, 70, 473–477. [Google Scholar] [CrossRef]
- Choi, H.W.; Song, K.W.; Kim, S.H.; Nguyen, K.T.; Eadi, S.B.; Kwon, H.M.; Lee, H.D. Zinc oxide and indium-gallium-zinc-oxide bi-layer synaptic device with highly linear long-term potentiation and depression characteristics. Sci. Rep. 2022, 12, 1259. [Google Scholar] [CrossRef]
- Kumar, S.; Agarwal, A.; Mukherjee, S. Electrical Performance of Large-Area Y2O3 Memristive Crossbar Array with ultralow C2C variability. IEEE Trans. Electron Devices 2022, 69, 3660–3666. [Google Scholar] [CrossRef]
- Shan, F.; Guo, H.B.; Kim, H.S.; Lee, J.Y.; Sun, H.Z.; Choi, S.G.; Koh, J.H.; Kim, S.J. Enhanced electrical performance of structurally engineered memristor devices with multi-stacked indium zinc oxide films. Phys. Status Solidi A-Appl. Mat. 2020, 217, 1900967. [Google Scholar] [CrossRef]
- Kumar, S.; Das, M.; Htay, M.T.; Sriram, S.; Mukherjee, S. Electroforming-Free Y2O3 Memristive Crossbar Array with Low Variability. ACS Appl. Electron. Mater. 2022, 4, 3080–3087. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Z.; Lin, M.; Qi, X.; Yu, Z.; Wu, L.; Bao, L.; Ling, Y.; Qin, Y.; Cai, Y.; et al. Homogenous 3D Vertical Integration of Parylene-C Based Organic Flexible Resistive Memory on Standard CMOS Platform. Adv. Electron. Mater. 2020, 7, 2000864. [Google Scholar] [CrossRef]
- Yu, S.; Chen, H.; Gao, B.; Kang, J.; Wong, H.P. HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 2013, 7, 2320–2325. [Google Scholar] [CrossRef] [PubMed]
- Haddad, A.A.; Wang, C.; Qi, H.; Grote, F.; Wen, L.; Bernhard, J.; Vellacheri, R.; Tarish, S.; Nabi, G.; Kaiser, U.; et al. Highly-ordered 3D vertical resistive switching memory arrays with ultralow power consumption and ultrahigh density. ACS Appl. Mater. Interfaces 2016, 8, 23348–23355. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Cai, Y.; Wang, Z.; Liu, Y.; Yu, Z.; Pan, Y.; Zhang, Z.; Tan, J.; Yang, X.; Li, M.; et al. Novel vertical 3D structure of TaOx-based RRAM with self-localized switching region by sidewall electrode oxidation. Sci. Rep. 2016, 6, 21020. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Jeon, B.; Park, J.; Kim, S. Memristors with Nociceptor Characteristics Using Threshold Switching of Pt/HfO2/TaOx/TaN Devices. Nanomaterials 2022, 12, 4206. [Google Scholar] [CrossRef]
- Yang, S.; Park, J.; Cho, Y.; Lee, Y.; Kim, S. Enhanced Resistive Switching and Synaptic Characteristics of ALD Deposited AlN-Based RRAM by Positive Soft Breakdown Process. Int. J. Mol. Sci. 2022, 23, 13249. [Google Scholar] [CrossRef]
- Pai, C.; Yu, S. Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. IEEE Trans. Electron Device 2015, 61, 4022–4028. [Google Scholar]
- Zhou, J.; Kim, K.; Lu, W. Crossbar RRAM arrays: Selector device requirements during read operation. IEEE Trans. Electron Device 2014, 61, 1369–1376. [Google Scholar] [CrossRef]
- Lankhorst, M.; Ketelaars, B.; Wolters, R. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 2005, 4, 347–352. [Google Scholar] [CrossRef]
- Russo, U.; Lelmini, D.; Cagli, C.; Lacaita, A.L. Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices. IEEE Trans. Electron Devices 2009, 56, 186–192. [Google Scholar] [CrossRef]
- Sawa, A. Resistive switching in transition metal oxides. Mater. Today 2008, 11, 28–36. [Google Scholar] [CrossRef]
- Arya, L.J.; Kumar, T.N.; Jinesh, K.B. The effect of the top electrode on the switching behavior of bipolar Al2O3/ZnO RRAM. Microelectron. Eng. 2021, 250, 111637. [Google Scholar]
- Li, Y.; Long, S.; Liu, Q.; Lu, H.B.; Liu, S.; Liu, M. An overview of resistive random access memory devices. Chin. Sci. Bull. 2011, 56, 3072–3078. [Google Scholar] [CrossRef]
- Zahoor, F.; Zulkifli, T.; Khanday, F.A. Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett. 2020, 15, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Wang, S.Y.; Lin, Y.S.; Chen, Y.T. Self-rectifying and interface-controlled resistive switching characteristics of molybdenum oxide. J. Alloys Compd. 2019, 779, 609–617. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, C.; Qi, Y.; Xu, W.; Liu, Y.; Mitrovic, I.Z.; Yang, L.; Zhao, C. Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application. Nanomaterials 2020, 10, 1437. [Google Scholar] [CrossRef] [PubMed]
- Jhang, W.C.; Hsu, C.C. Dual-Function Device Fabricated Using One Single SiO2 Resistive Switching Layer. IEEE Electron Device Lett. 2022, 43, 1428–1431. [Google Scholar] [CrossRef]
- Zhou, V.; Jiang, Y.; Zhao, R.; Shi, L.; Yang, Y.; Chong, T.C.; Robertson, J. Improved switching uniformity and low-voltage operation in TaOx-based RRAM using Ge reactive layer. IEEE Electron Device Lett. 2013, 34, 1130–1132. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, B.; Sun, B.; Chen, G.; Zeng, L.; Liu, L.; Liu, X.; Lu, J.; Han, R.; Kang, J.; et al. Ionic doping effect in ZrO2 resistive switching memory. Appl. Phys. Lett. 2010, 96, 123502. [Google Scholar] [CrossRef]
- Cao, X.; Li, X.; Gao, X.; Liu, X.; Yang, C.; Yang, R.; Jin, P. All-ZnO-based transparent resistance random access memory device fully fabricated at room temperature. J. Phys. D-Appl. Phys. 2011, 44, 255104. [Google Scholar] [CrossRef]
- Shi, L.; Shang, D.; Sun, J.; Shen, B. Bipolar resistance switching in fully transparent ZnO: Mg-based devices. Appl. Phys. Express 2009, 2, 101602. [Google Scholar] [CrossRef]
- Chen, K.H.; Chang, K.C.; Chang, T.C.; Tsai, T.M.; Liao, K.H.; Syu, Y.E.; Sze, S.M. Effect of different constant compliance current for hopping conduction distance properties of the Sn: SiOx thin film RRAM devices. Appl. Phys. A Mater. Sci. Process. 2016, 122, 1–6. [Google Scholar] [CrossRef]
- Chang, K.; Tsai, T.; Chang, T.; Syu, Y.; Chuang, S.; Li, C.; Gan, D.; Sze, S.M. The effect of silicon oxide based RRAM with tin doping. Electrochem. Solid. State. Lett. 2011, 15, H65. [Google Scholar] [CrossRef]
- Fang, Y.; Yu, Z.; Wang, Z.; Zhang, T.; Yang, Y.; Cai, Y.; Huang, R. Improvement of HfOx-Based RRAM Device Variation by Inserting ALD TiN Buffer Layer. IEEE Electron Device Lett. 2018, 39, 819–822. [Google Scholar] [CrossRef]
- Wang, Q.; Itoh, Y.; Tsuruoka, T.; Shimizu, T.; Shingubara, S.; Hasegawa, T.; Aono, M. Dynamic moderation of an electric field using a SiO2 switching layer in TaOx-based ReRAM. Phys. Status Solidi-Rapid Res. Lett. 2015, 9, 166–170. [Google Scholar] [CrossRef]
- Park, J.; Ryu, H.; Kim, S. Nonideal resistive and synaptic characteristics in Ag/ZnO/TiN device for neuromorphic system. Sci. Rep. 2021, 11, 16601. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Park, J.; Lim, K.; Kang, S.; Hong, Y.; Yang, J.; Fang, L.; Sung, G.; Kim, H. Transparent flexible resistive random access memory fabricated at room temperature. Appl. Phys. Lett. 2009, 95, 133508. [Google Scholar]
- Bature, U.; Nawi, I.; Khir, M.; Zahoor, F.; Algamili, A.S.; Hashwan, S.; Zakariya, M.A. Statistical Simulation of the Switching Mechanism in ZnO-Based RRAM Devices. Materials 2022, 15, 1205. [Google Scholar] [CrossRef] [PubMed]
- Barquinha, P.; Gonçalves, G.; Pereira, L.; Martins, R.; Fortunato, E. Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs. Thin Solid Film. 2007, 515, 8450–8454. [Google Scholar] [CrossRef]
- Hu, S.; Ning, H.; Lu, K.; Fang, Z.; Tao, R.; Yao, R.; Zou, J.; Xu, M.; Wang, L.; Peng, J. Effect of Al2O3 passivation layer and Cu electrodes on high mobility of amorphous IZO TFT. IEEE J. Electron Devices Soc. 2018, 6, 733–737. [Google Scholar] [CrossRef]
- Lee, D.; Tsai, T.; Tseng, T. Unipolar resistive switching behavior in Pt/HfO2/TiN device with inserting ZrO2 layer and its 1 diode-1 resistor characteristics. Appl. Phys. Lett. 2013, 103, 032905. [Google Scholar] [CrossRef]
- Hjiri, M.; Dhahri, R.; Omri, K.; Mir, L.E.; Leonardi, S.G.; Donato, N.; Neri, G. Effect of indium doping on ZnO based-gas sensor for CO. Mater. Sci. Semicond. Process 2014, 27, 319–325. [Google Scholar] [CrossRef]
- Chang, H.; Tsay, C. Flexible a-IZO thin film transistors fabricated by solution processes. J. Alloys Compd. 2010, 507, L1–L3. [Google Scholar] [CrossRef]
- Park, S.; Cho, K.; Oh, H.; Kim, S. Electrical and mechanical characteristics of fully transparent IZO thin-film transistors on stress-relieving bendable substrates. Appl. Phys. Lett. 2016, 109, 143504. [Google Scholar] [CrossRef]
- Seo, J.; Jeon, J.; Hwang, Y.; Park, H.; Ryu, M.; Park, S.; Bae, B.S. Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci. Rep. 2013, 3, 2085. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.; Hsieh, T. Forming-free, bipolar resistivity switching characteristics of fully transparent resistive random access memory with IZO/α-IGZO/ITO structure. J. Phys. D-Appl. Phys. 2016, 49, 385102. [Google Scholar] [CrossRef]
- Yeom, S.; Shin, S.; Kim, T.; Ha, H.; Lee, Y.; Shim, J.; Ju, B. Transparent resistive switching memory using aluminum oxide on a flexible substrate. Nanotechnology 2016, 27, 07LT01. [Google Scholar] [CrossRef]
- Hsu, C.; Tsao, C.; Chen, Y.; Zhang, X. Bipolar resistive switching characteristics of a sol-gel InZnO oxide semiconductor. Phys. B 2019, 561, 64–69. [Google Scholar] [CrossRef]
- Park, J.; Kwak, M.; Moon, K.; Woo, J.; Lee, D.; Hwang, H. TiOx-based RRAM synapse with 64-levels of conductance and symmetric conductance change by adopting a hybrid pulse scheme for neuromorphic computing. IEEE Electron Device Lett. 2016, 37, 1559–1562. [Google Scholar] [CrossRef]
- Kim, D.; Shin, J.; Kim, S. Implementation of reservoir computing using volatile WOx-based memristor. Appl. Sur. Sci. 2022, 599, 153876. [Google Scholar] [CrossRef]
- Oh, I.; Pyo, J.; Kim, S. Resistive switching and synaptic characteristics in ZnO/TaON-based RRAM for neuromorphic system. Materials 2022, 12, 2185. [Google Scholar] [CrossRef]
- Sueoka, B.; Cheong, K.; Zhao, F. Study of synaptic properties of honey thin film for neuromorphic systems. Matter. Lett. 2022, 308, 131169. [Google Scholar] [CrossRef]
- Yu, T.; Fang, Y.; Chen, X.; Liu, M.; Wang, D.; Liu, S.; Lei, W.; Jiang, H.; Shafie, S.; Mohtar, M.N.; et al. Hybridization state transition-driven carbon quantum dot (CQD)-based resistive switches for bionic synapses. Mater. Horiz. 2023, 10, 2181–2190. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Niu, G.; Roy, S.; Wang, Y.; Zhang, Y.; Zhang, Y.; Wu, H.; Zhai, S.; Bai, W.; Shi, P.; et al. Interface-engineered reliable HfO2-based RRAM for synaptic simulation. J. Mater. Chem. C 2019, 7, 12682–12687. [Google Scholar] [CrossRef]
- Hong, X.; Loy, D.; Dananjaya, P.; Tan, F.; Ng, C.; Lew, W. Oxide-based RRAM materials for neuromorphic computing. J. Mater. Sci. 2018, 53, 8720–8746. [Google Scholar] [CrossRef]
- Huang, P.; Li, Z.; Dong, Z.; Han, R.; Zhou, Z.; Zhu, D.; Liu, L.; Liu, X.; Kang, J. Binary resistive-switching-device-based electronic synapse with Spike-Rate-Dependent plasticity for online learning. ACCS Appl. Electron. Mater. 2019, 1, 845–853. [Google Scholar] [CrossRef]
- Padovani, A.; Larcher, L.; Pirrotta, O.; Vandelli, L.; Bersuker, G. Microscopic modeling of HfOx RRAM operations: From forming to switching. IEEE Trans. Electron Devices 2015, 62, 1998–2006. [Google Scholar] [CrossRef]
- Lin, S.; Wu, C.; Chang, T.; Lien, C.; Yang, C.; Chen, W.; Lin, C.; Huang, W.; Tan, Y.; Wu, P.; et al. Improving Performance by Inserting an Indium Oxide Layer as an Oxygen Ion Storage Layer in HfO2-Based Resistive Random Access Memory. IEEE Trans. Electron Devices 2021, 68, 1037–1040. [Google Scholar] [CrossRef]
- Kim, D.; Lee, H.; Kim, B.; Baang, S.; Ejderha, K.; Bae, J.; Park, J. Investigation on Atomic Bonding Structure of Solution-Processed Indium-Zinc-Oxide Semiconductors according to Doped Indium Content and Its Effects on the Transistor Performance. Materials 2022, 15, 6763. [Google Scholar] [CrossRef]
- Liu, C.; Shih, Y.; Huang, S. Unipolar resistive switching in a transparent ITO/SiOx/ITO sandwich fabricated at room temperature. Solid State Commun. 2013, 159, 13–17. [Google Scholar] [CrossRef]
- Ye, C.; Deng, T.; Zhang, J.; Shen, L.; He, P.; Wei, W.; Wang, H. Enhanced resistive switching performance for bilayer HfO2/TiO2 resistive random access memory. Semicond. Sci. Technol. 2016, 31, 105005. [Google Scholar] [CrossRef]
- Mandal, B.; Khan, M.A.; Mukherjee, S. Effect of surface variations on the performance of yttria based memristive system. IEEE Electron Device Lett. 2018, 39, 1852–1855. [Google Scholar]
- Kranti, A.; Mukherjee, S. Forming-free high-endurance Al/ZnO/Al memristor fabricated by dual ion beam sputtering. Appl. Phys. Lett. 2017, 110, 253509. [Google Scholar]
- Wang, Z.; Yin, M.; Zhang, T.; Cai, Y.; Wang, Y.; Yang, Y.; Huang, R. Engineering incremental resistive swithching in TaOx based memristor for brain-inspired computing. Nanoscale 2016, 8, 14015–14022. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Kumar, A.; Kumar, S.; Mandal, B.; Siddharth, G.; Kumar, P.; Htay, M.T.; Mukherjee, S. Impact of Interfacial SiO2 on Dual Ion Bean Sputtered Y2O3-Based Memristive system. IEEE Trans. Nanotechnol. 2020, 19, 332–337. [Google Scholar] [CrossRef]
- Moon, K.; Lim, S.; Park, J.; Sung, C.; Oh, S.; Woo, J.; Lee, J.; Hwang, H. RRAM-based synapse devices for neuromorphic systems. Faraday Discuss. 2019, 213, 421–451. [Google Scholar] [CrossRef]
- Yoti, J.J.; Sushma, S.; Yadav, S.; Kumar, P.; Pachori, R.B.; Mukherjee, S. Automatic diagnosis of COVID-19 with MCA-inspired TQWT-based classification of chest X-ray images. Comput. Biol. Med. 2023, 152, 106331. [Google Scholar]
- Asifab, M.; Singhab, Y.; Thakre, A.; Singhab, V.N.; Kumar, A. Synaptic plasticity and learning behaviour in multilevel memristive devices. RCS Adv. 2023, 13, 13293–13302. [Google Scholar]
- Yang, B.; Wang, Y.; Hua, Z.; Zhang, J.; Hao, D.; Li, L.; Guo, P.; Xiong, L.; Huang, J. Low-power consumption light-stimulated synaptic transistors based on natural carotene and organic semiconductors. Chem. Commun. 2021, 57, 8300–8303. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, H.; Lv, D.; Yu, R.; Li, E.; He, L.; Chen, Q.; Chen, H.; Guo, T. High-performance organic synaptic transistors with an ultrathin active layer for neuromorphic computing. ACS Appl. Mater. Interfaces 2021, 13, 8672–8681. [Google Scholar] [CrossRef]
- Jang, E.; Park, Y.; Lee, J. Reversible uptake and release of sodium ions in layered SnS2-reduced graphene oxide composites for neuromorphic devices. Nanoscale 2019, 11, 15382–15388. [Google Scholar] [CrossRef]
- Wolters, A.; Sandbrink, F.; Schlottmann, A.; Kunesch, E.; Stefan, K.; Cohen, L.G.; Benecke, R.; Classen, J. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J. Neurophysiol. 2003, 89, 2339–2345. [Google Scholar] [CrossRef]
- Jingrui, W.; Fei, Z. Memristive Synapses for Brain-Inspired Computing. Adv. Mater. Technol. 2019, 4, 1800544. [Google Scholar]
- Ismail, M.; Mahata, C.; Kim, S. Forming-free Pt/Al2O3/HfO2/HfAlOx/TiN memristor with controllable multilevel resistive switching and neuromorphic characteristics for artificial synapse. J. Alloys Compd. 2022, 892, 162141. [Google Scholar] [CrossRef]
- Kim, C.; Lee, Y.; Kim, S.; Kang, M.; Kim, S. Diverse synaptic weight adjustment of bio-inspired ZrOx-based memristors for neuromorphic system. Mater. Sci. Semicond. Process 2023, 157, 107314. [Google Scholar] [CrossRef]
- Milo, V.; Pedretti, G.; Carboni, R.; Calderoni, A.; Ramaswamy, N.; Ambrogio, S.; Lelmini, D. A 4-transistors/1-resistor hybrid synapse based on resistive switching memory (RRAM) capable of spike-rate-dependent plasticity (SRDP). IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 2806–2815. [Google Scholar] [CrossRef]
- Mao, J.; Zhou, L.; Ren, Y.; Yang, J.; Chang, C.; Lin, H.; Chou, H.; Zhang, S.; Zhou, Y.; Han, S. A bio-inspired electronic synapse using solution processable organic small molecule. J. Mater. Chem. C 2019, 7, 1491–1501. [Google Scholar] [CrossRef]
- Ju, D.; Kim, J.; Kim, S. Highly uniform resistive switching characteristics of Ti/TaOx/ITO memristor devices for neuromorphic system. J. Alloys Compd. 2023, 961, 170920. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, D.; Koo, M.; Kim, S. Improved Resistive Switching Characteristics and Synaptic Functions of InZnO/SiO2 Bilayer Device. Materials 2023, 16, 7324. https://doi.org/10.3390/ma16237324
Ju D, Koo M, Kim S. Improved Resistive Switching Characteristics and Synaptic Functions of InZnO/SiO2 Bilayer Device. Materials. 2023; 16(23):7324. https://doi.org/10.3390/ma16237324
Chicago/Turabian StyleJu, Dongyeol, Minsuk Koo, and Sungjun Kim. 2023. "Improved Resistive Switching Characteristics and Synaptic Functions of InZnO/SiO2 Bilayer Device" Materials 16, no. 23: 7324. https://doi.org/10.3390/ma16237324
APA StyleJu, D., Koo, M., & Kim, S. (2023). Improved Resistive Switching Characteristics and Synaptic Functions of InZnO/SiO2 Bilayer Device. Materials, 16(23), 7324. https://doi.org/10.3390/ma16237324