Recent Advances in Organic Dyes for Application in Dye-Sensitized Solar Cells under Indoor Lighting Conditions
Abstract
:1. Introduction
2. Recent Developments in the Design and Synthesis of Organic Sensitizers for Indoor DSSC Applications
2.1. Fluorene-Based Dyes
2.2. Anthracene-Based Dyes
2.3. Benzopyrazine and Thienopyrazine-Based Dyes
2.4. Miscellaneous Dyes
2.5. Novel Organic Sensitizers for Indoor DSSCs: Conclusions
- D-A-π-A structure: despite some exotic configurations that were tested over the years, the most reliable design for DSSC dyes is still the D-A-π-A structure, regardless of whether the energy source is the Sun or artificial light (e.g., dyes CXC22 [61] and GZ152 [66]). This configuration usually ensures intense and broad light absorption bands, well-aligned HOMO/LUMO energy levels, and long-term stability.
- Matching with the light source: in most cases, the DSSCs that show the best PCE values under indoor conditions are those that contain sensitizers featuring either a light absorption spectrum well-matched to the emission spectrum of the light source or a panchromatic absorption in the visible region (e.g., AN21 [59] and YK8 [69]). A careful design of the structure of the dye is mandatory to obtain the desired dye optical properties.
Dye | λabs (nm) ε (M−1/cm−1) | Semi Conductor Layer | Additives | Electrolyte | Counter Electrode | Active Area (cm2) | Lamp Type (a) | Illuminance (Lux) (b) | PCE (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
TKU-1 | 441 (27,400) (THF) | TiO2 10–12 μm (transp) 5 μm scatt. layer | none | I−/I3− (EL 201, Everlight Taiwan) | Platinum | 0.28 (mask) | T5 Fluorescent | 600 | 7.80 | [36] |
Planar White LED | 6.42 | |||||||||
TKU-2 | 463 (27,100) (THF) | T5 Fluorescent | 12.73 | |||||||
Planar White LED | 11.71 | |||||||||
TKU-3 | 441 (30,500) (THF) | T5 Fluorescent | 9.99 | |||||||
Planar White LED | 6.56 | |||||||||
TKU-4 | 470 (32,700) (THF) | T5 Fluorescent | 13.43 | |||||||
Planar White LED | 11.49 | |||||||||
TKU-5 | 432 (22,000) (THF) | T5 Fluorescent | 12.00 | |||||||
Planar White LED | 10.76 | |||||||||
TKU-6 | 480 (33,900) (THF) | T5 Fluorescent | 12.74 | |||||||
Planar White LED | 12.21 | |||||||||
OMS4 | 364 (39,700) THF | TiO2 12 μm (transp.) 6 μm scatt. Layer | CDCA (10 mM) | I−/I3− TBP | Platinum | 0.28 (mask) | D65 | 1000 | 2.48 | [37] |
CWF | 1000 | 7.26 | ||||||||
2200 | 8.12 | |||||||||
600 | 2.40 | |||||||||
TL84 | 1000 | 7.59 | ||||||||
2500 | 8.78 | |||||||||
RY1 | 440 (43,400) CH2Cl2 | TiO2 12 μm (transp.) 6 μm scatt. layer | CDCA (10 mM) | I−/I3− TBP | Platinum | 0.28 (mask) | TL84 (4100 K) | 1000 (0.185) | 16.64 ± 1.38 | [38] |
2500 (0.462) | 17.94 ± 0.91 | |||||||||
CWF (4150 K) | 1000 (0.185) | 14.32 ± 1.36 | ||||||||
2500 (0.462) | 16.06 ± 0.77 | |||||||||
RY2 | 397 (41,700) CH2Cl2 | TL84 (4100 K) | 1000 (0.185) | 8.23 ± 0.62 | ||||||
2500 (0.462) | 9.02 ± 0.40 | |||||||||
RY3 | 450 (45,000) CH2Cl2 | TL84 (4100 K) | 1000 (0.185) | 18.15 ± 1.00 | ||||||
2500 (0.462) | 20.83 ± 0.84 | |||||||||
CWF (4150 K) | 1000 (0.185) | 16.11 ± 1.09 | ||||||||
2500 (0.462) | 17.49 ± 0.79 | |||||||||
RY4 | 410 (37,700) CH2Cl2 | TL84 (4100 K) | 1000 (0.185) | 10.03 ± 0.62 | ||||||
2500 (0.462) | 11.76 ± 0.50 | |||||||||
RY5 | 444 (45,100) CH2Cl2 | TL84 (4100 K) | 1000 (0.185) | 16.94 ± 1.12 | ||||||
2500 (0.462) | 19.74 ± 0.76 | |||||||||
CWF (4150 K) | 1000 (0.185) | 15.93 ± 1.06 | ||||||||
2500 (0.462) | 18.29 ± 0.70 | |||||||||
RY6 | 402 (28,300) CH2Cl2 | TL84 (4100 K) | 1000 (0.185) | 9.36 ± 1.32 | ||||||
2500 (0.462) | 11.74 ± 0.83 | |||||||||
AN-3 | 499 (46,900) THF | TiO2 12 μm (opaque) | none | I−/I3− PMII, TBP | Platinum | 36 | T5 | 200 (0.065) | 3.11 ± 0.332 | [41] |
600 (0.187) | 4.94 ± 0.15 | |||||||||
1000 (0.336) | 5.45 ± 0.09 | |||||||||
T8 | 200 (0.065) | 2.08 ± 0.126 | ||||||||
600 (0.200) | 3.59 ± 0.12 | |||||||||
1000 (0.338) | 4.85 ± 0.09 | |||||||||
LED | 200 (0.065) | 2.14 ± 0.219 | ||||||||
600 (0.186) | 3.59 ± 0.14 | |||||||||
1000 (0.313) | 4.94 ± 0.11 | |||||||||
AN-11 | 528 (46,100) THF | TiO2 9 μm (translucent) 6 μm scatt. layer | none | I−/I3− PMII TBP | Platinum | 0.25 | T5 | 1000 (0.34) | 10.53 ± 0.54 | [43] |
LED | 1000 (0.31) | 10.18 ± 0.46 | ||||||||
26.80 (rigid) | T5 | 200 | 9.08 ± 0.11 | |||||||
600 | 11.17 ± 0.18 | |||||||||
1000 (0.34) | 11.94 ± 0.16 | |||||||||
LED | 200 | 9.68 ± 0.13 | ||||||||
600 | 10.95 ± 0.17 | |||||||||
1000 (0.31) | 11.26 ± 0.21 | |||||||||
19.80 (flexible) | T5 | 200 | 8.15 ± 0.15 | |||||||
600 | 9.26 ± 0.19 | |||||||||
1000 (0.34) | 9.60 ± 0.16 | |||||||||
LED | 200 | 8.08 ± 0.18 | ||||||||
600 | 9.37 ± 0.19 | |||||||||
1000 (0.31) | 9.51 ± 0.25 | |||||||||
AN-12 | 433 (16,800) 515 (19,900) THF | 0.25 | T5 | 1000 (0.34) | 6.08 ± 0.55 | |||||
LED | 1000 (0.31) | 5.33 ± 0.40 | ||||||||
AN-14 | 438 (21,000) 517 (2.34) THF | 0.25 | T5 | 1000 (0.34) | 5.80 ± 0.35 | |||||
LED | 1000 (0.31) | 5.32 ± 0.24 | ||||||||
AN-21 | 316 (42,000) 544 (46,900) THF | TiO2 8 μm (translucent) 2 μm scatt. Layer | none | I−/I3− TBP | Platinum | 9.12 | T5 | 200 | 11.77 ± 0.48 | [44] |
600 | 13.30 ± 0.32 | |||||||||
1000 | 13.48 ± 0.53 | |||||||||
LED | 200 | 9.13 ± 0.40 | ||||||||
600 | 11.29 ± 0.3 | |||||||||
1000 | 12.82 ± 0.18 | |||||||||
TY6 | 419 (25,000) 516 (16,000) THF | TiO2 12 μm (transp.) 6 μm scatt. layer | none | I−/I3− PMII TBP | Platinum | 0.36 (mask) | T5 | 300 (0.085) | 18.76 | [45] |
600 (0.177) | 19.93 | |||||||||
900 (0.348) | 21.85 | |||||||||
1200 (0.517) | 22.80 | |||||||||
2400 (0.703) | 24.06 | |||||||||
3600 (1.05) | 25.03 | |||||||||
4800 (1.40) | 25.68 | |||||||||
6000 (1.74) | 26.19 | |||||||||
CDCA (0.3 mM) | 350 (0.104) | 21.40 | ||||||||
600 (0.177) | 21.88 | |||||||||
900 (0.348) | 23.64 | |||||||||
1200 (0.517) | 24.43 | |||||||||
2400 (0.703) | 25.67 | |||||||||
3600 (1.05) | 26.88 | |||||||||
4800 (1.40) | 27.66 | |||||||||
6000 (1.74) | 28.56 | |||||||||
LED | 350 (0.11) | 13.997 ± 0.388 | ||||||||
600 (0.19) | 15.383 ± 0.361 | |||||||||
900 (0.29) | 16.211 ± 0.344 | |||||||||
1200 (0.38) | 16.966 ± 0.284 | |||||||||
2400 (0.77) | 18.728 ± 0.445 | |||||||||
3600 (1.15) | 19.527 ± 0.475 | |||||||||
4800 (1.54) | 20.208 ± 0.563 | |||||||||
6000 (1.9) | 20.718 ± 0.581 | |||||||||
TY6 | 419 (25,000) 516 (16,000) THF | TiO2 4 μm meso- porous | CDCA (0.3 mM) | Cu(dmp)2 (TFSI)1/2 LiTFSI TBP | poly-N-vinyl-2-pyrrolidone-capped Pt nanoclusters (PVP-Pt) | 0.16 | T5 | 300 (0.095) | 12.26 ± 1.77 | [46] |
600 (0.19) | 14.05 ± 1.22 | |||||||||
900 (0.29) | 15.43 ± 0.89 | |||||||||
1200 (0.39) | 16.17 ± 0.91 | |||||||||
2400 (0.78) | 18.15 ± 0.82 | |||||||||
3600 (1.15) | 19.22 ± 0.66 | |||||||||
4800 (1.55) | 19.81 ± 0.78 | |||||||||
6000 (1.9) | 20.87 ± 0.83 | |||||||||
CXC22 | 487 (37,000) 535 (27,000) THF | 300 (0.095) | 20.89 ± 0.91 | |||||||
600 (0.19) | 23.48 ± 0.64 | |||||||||
900 (0.29) | 24.56 ± 0.62 | |||||||||
1200 (0.39) | 25.65 ± 0.75 | |||||||||
2400 (0.78) | 28.87 ± 0.90 | |||||||||
3600 (1.15) | 31.60 ± 1.11 | |||||||||
4800 (1.55) | 34.21 ± 1.36 | |||||||||
6000 (1.9) | 35.66 ± 1.32 | |||||||||
MD4 | 427 (33,832) 633 (32,231) THF | TiO2 7 μm (transp.) 5 μm scatt. layer | CDCA (1 mM) | I−/I3− DMPII TBP | Platinum | 0.16 | T5 | 300 (0.09) | 6.39 ± 0.13 | [48] |
600 (0.18) | 6.67 ± 0.11 | |||||||||
900 (0.27) | 6.81 ± 0.19 | |||||||||
6000 (1.7) | 8.62 ± 0.16 | |||||||||
MD5 | 356 (41,667) 513 (37,998) THF | 300 (0.09) | 15.1 ± 0.67 | |||||||
600 (0.18) | 16.49 ± 0.4 | |||||||||
900 (0.27) | 17.38 ± 0.38 | |||||||||
6000 (1.7) | 23.17 ± 0.22 | |||||||||
MD6 | 420 (40,188) 642 (33,530) THF | 300 (0.09) | 12.08 ± 0.02 | |||||||
600 (0.18) | 12.79 ± 0.05 | |||||||||
900 (0.27) | 13.24 ± 0.11 | |||||||||
6000 (1.7) | 16.86 ± 0.23 | |||||||||
MD7 | 365 (47,545) 532 (39,360) THF | 300 (0.09) | 18.95 ± 0.69 | |||||||
600 (0.18) | 20.16 ± 1.10 | |||||||||
900 (0.27) | 21.10 ± 1.20 | |||||||||
6000 (1.7) | 27.17 ± 1.44 | |||||||||
MM-1 | 435 (46,300) CH2Cl2 | TiO2 6 μm (transp.) 6 μm scatt. layer | none | I−/I3− TBP | Platinum | 0.28 | TL84 | 600 (0.110) | 4.43 ± 0.41 | [49] |
1000 (0.185) | 7.50 ± 0.97 | |||||||||
2500 (0.462) | 7.72 ± 0.59 | |||||||||
MM-2 | 457 (42,000) CH2Cl2 | 600 (0.110) | 6.71 ± 0.61 | |||||||
1000 (0.185) | 8.52 ± 1.08 | |||||||||
2500 (0.462) | 9.03 ± 0.67 | |||||||||
MM-3 | 427 (80,600) CH2Cl2 | 600 (0.110) | 7.35 ± 0.57 | |||||||
1000 (0.185) | 9.64 ± 0.56 | |||||||||
2500 (0.462) | 9.86 ± 0.64 | |||||||||
MM-4 | 445 (86,200) CH2Cl2 | 600 (0.110) | 10.16 ± 0.67 | |||||||
1000 (0.185) | 11.07 ± 0.35 | |||||||||
2500 (0.462) | 12.14 ± 0.63 | |||||||||
MM-5 | 470 (36,500) CH2Cl2 | 600 (0.110) | 12.38 ± 0.86 | |||||||
1000 (0.185) | 18.99 ± 1.09 | |||||||||
2500 (0.462) | 19.89 ± 1.19 | |||||||||
MM-6 | 484 (35,700) CH2Cl2 | 600 (0.110) | 24.37 ± 1.82 | |||||||
1000 (0.185) | 27.58 ± 1.85 | |||||||||
2500 (0.462) | 27.82 ± 1.22 | |||||||||
MM-6 | 484 (35,700) CH2Cl2 | DCA (10 mM) | 600 (0.110) | 25.42 ± 1.42 | ||||||
1000 (0.185) | 27.40 ± 1.15 | |||||||||
2500 (0.462) | 28.95 ± 0.86 | |||||||||
GZ116 | 363 (58,500) 430 (27,700) 486 (23,300) DMF | TiO2 12 μm (transp.) 2 μm scatt. layer | none | I−/I3− TBP | PVP (Poly(N-vinyl-2-pyrrolidone)—Platinum | 0.16 | T5 | 300 | 16.47 ± 0.38 | [50] |
600 | 18.01 ± 0.28 | |||||||||
900 | 18.59 ± 0.12 | |||||||||
1200 | 19.30 ± 0.11 | |||||||||
2400 | 22.12 ± 0.05 | |||||||||
3600 | 23.04 ± 0.18 | |||||||||
4800 | 24.60 ± 0.21 | |||||||||
6000 | 25.38 ± 1.01 | |||||||||
MA1116 | 346 (49,100) 409 (29,000) 472 (26,900) DMF | 300 | 17.16 ± 0.46 | |||||||
600 | 18.52 ± 0.29 | |||||||||
900 | 18.94 ± 0.36 | |||||||||
1200 | 20.00 ± 0.53 | |||||||||
2400 | 22.57 ± 0.36 | |||||||||
3600 | 23.48 ± 0.37 | |||||||||
4800 | 24.78 ± 0.48 | |||||||||
6000 | 26.81 ± 0.16 | |||||||||
GZ152 | 308 (42,100) 370 (36,600) 541 (40,200) CH2Cl2 | TiO2 12 μm (transp.) 4 μm scatt. layer | none | I−/I3− GuSCN, DMPII, TBP | platinum | - | T5 | 500 | 22.44 ± 0.41 | [51] |
1000 | 24.08 ± 0.57 | |||||||||
2000 | 25.12 ± 0.79 | |||||||||
4000 | 26.45 ± 0.82 | |||||||||
6000 | 28.31 ± 0.65 | |||||||||
SBT-6 | 499 (o-C6H4Cl2) | - | CDCA (10 mM) | I−/I3− | platinum | - | T5 fluorescent lamp | 900 | 17.31 | [50] |
1200 | 17.93 | |||||||||
2400 | 21.17 | |||||||||
3600 | 22.35 | |||||||||
4800 | 23.30 | |||||||||
6000 | 23.57 | |||||||||
L156 | 343 (49,800) 491 (25,200) CH2Cl2 | TiO2 4 µm (transp.) 4 µm scatt. layer | none | Cu(tmby)2 (TFSI)1/2 LiTFSI TBP | PEDOT | 0.16 (mask) | Xenon light source | 200 | 16.8 (c) | [52] |
1000 | 21.9 (c) | |||||||||
200 | 9.76 (d) | |||||||||
1000 | 16.5 (d) | |||||||||
200 | 5.17 (e) | |||||||||
1000 | 10.6 (e) | |||||||||
YK8 | 479 (31,667) CH2Cl2 | TiO2 6 µm (transp.) | none | I−/I3− HPE (GreatCell Solar) | platinum | 0.1256 (mask) | T2 cool daylight fluorescent tube | 700 (0.160) | 22.15 ± 0.42 | [53] |
1000 (0.240) | 28.70 ± 1.14 | |||||||||
1500 (0.360) | 30.24 ± 1.23 | |||||||||
2000 (0.480) | 29.43 ± 0.46 | |||||||||
YK9 | 478 (34,454) CH2Cl2 | 700 (0.160) | 12.49 ± 0.87 | |||||||
1000 (0.240) | 14.21 ± 0.56 | |||||||||
1500 (0.360) | 17.84 ± 1.17 | |||||||||
2000 (0.480) | 20.11 ± 1.96 | |||||||||
TPAA1 | 364 (48,950) 415 (14,470) Toluene | TiO2 12 µm (transp.) 4 µm scatt. layer | none | I−/I3− HPE (GreatCell Solar) | platinum | - | warm white LED | 1000 | 2.50 ± 0.1 | [55] |
TiO2 4µm (transp.) 4 µm scatt. layer | Co(bpy)3 (PF6)2/3 LiTFSI TBP | PEDOT | 0.3 ± 0.06 | |||||||
TPAA8 | 362 (40,300) 470 (14,470) Toluene | TiO2 12 µm (transp.) 4 µm scatt. layer | I−/I3− HPE (GreatCell Solar) | platinum | 8.74 ± 1.3 | |||||
TiO2 4 µm (transp.) 4 µm scatt. layer | Co(bpy)3 (PF6)2/3 LiTFSI TBP | PEDOT | 11.03 ± 1.7 | |||||||
LG-P1 | 298 (40,400) 421 (38,500) 441 (38,200) CH2Cl2 | TiO2 3 µm (transp.) 3 µm scatt. layer | none | I−/I3− HPE (GreatCell Solar) | platinum | daylight LED | 1000 | 10.53 | [58] | |
daylight CFL | 1000 | 6.66 | ||||||||
Cu(dmp)2 (TFSI)1/2 LiTFSI, TBP | PEDOT | daylight LED | 1000 | 0.13 | [56] | |||||
LG-P2 | 325 (40,500) 424 (40,600) 444 (40,100) CH2Cl2 | I−/I3− HPE (GreatCell Solar) | platinum | daylight LED | 1000 | 9.88 | [58] | |||
daylight CFL | 1000 | 9.19 | ||||||||
Cu(dmp)2 (TFSI)1/2 LiTFSI, TBP | PEDOT | daylight LED | 1000 | 1.41 ± 0.019 | [57] | |||||
LG-P3 | 323 (43,800) 413 (42,800) CH2Cl2 | I−/I3− HPE (GreatCell Solar) | platinum | daylight LED | 1000 | 9.26 | [58] | |||
daylight CFL | 1000 | 8.19 | ||||||||
Cu(dmp)2 (TFSI)1/2 LiTFSI, TBP | PEDOT | daylight LED | 1000 | 9.14 | [56] | |||||
LG-P4 | 308 (4.33) 459 (4.08) CH2Cl2 | I−/I3− HPE (GreatCell Solar) | platinum | daylight LED | 1000 | 3.68 | [58] | |||
daylight CFL | 1000 | 4.09 | ||||||||
Cu(dmp)2 (TFSI)1/2 LiTFSI, TBP | PEDOT | daylight LED | 1000 | 0.43 ± 0.03 | [57] | |||||
1a | 455 (26,260) CH2Cl2 | TiO2 13 µm scatt. layer | CDCA (03 mM) | I−/I3− BMII TBP | - | 0.25 | OSRAM 930 lamp | 1000 (0.350) | 3.74 | [59] |
2000 (0.708) | 3.59 | |||||||||
1b | 457 (22,330) CH2Cl2 | 1000 (0.350) | 4.73 | |||||||
2000 (0.708) | 4.81 | |||||||||
2a | 444 (34,400) CH2Cl2 | 1000 (0.350) | 3.93 | |||||||
2000 (0.708) | 3.86 | |||||||||
2b | 462 (23,550) CH2Cl2 | 1000 (0.350) | 5.56 | |||||||
2000 (0.708) | 5.56 | |||||||||
3b | 434 (22,990) CH2Cl2 | 1000 (0.350) | 3.07 | |||||||
2000 (0.708) | 3.18 | |||||||||
TY1 | 475 (25,400) THF | TiO2 10µm 4–5 µm scatt.layer | CDCA (10 mM) | I−/I3− GuSCN DMPII, TBP | Platinum on carbon cloth | 1 | T5 fluorescent lamp | 300 (0.097) | 16.75 ± 0.04 | [60] |
600 (0.194) | 19.53 ± 0.05 | |||||||||
1000 (0.324) | 21.16 ± 0.05 | |||||||||
CCOD-1 | 334 (80,600) 519 (45,200) THF | TiO2 10μm (transp) 4 μm scatt. layer | None | I−/I3− DMPII TBP | Platinum | 0.12 | T5 fluorescent lamp | 1000 (0.32) | 22.1 ± 0.3 | [73] |
1500 (0.48) | 23.5 ± 0.4 | |||||||||
2000 (0.64) | 25.9 ± 0.4 | |||||||||
2500 (0.80) | 26.9 ± 0.3 | |||||||||
1 | 1000 (0.32) | 17.4 ± 0.2 | ||||||||
1500 (0.48) | 18.3 ± 0.4 | |||||||||
2000 (0.64) | 20.4 ± 0.2 | |||||||||
2500 (0.80) | 23.1 ± 0.6 | |||||||||
CCOD-2 | 342 (84,000) 519 (48,600) THF | 0.12 | 1000 (0.32) | 22.9 ± 0.1 | ||||||
1500 (0.48) | 24.7 ± 0.2 | |||||||||
2000 (0.64) | 26.8 ± 0.2 | |||||||||
2500 (0.80) | 28.0 ± 0.2 | |||||||||
1 | 1000 (0.32) | 18.4 ± 0.4 | ||||||||
1500 (0.48) | 19.9 ± 0.6 | |||||||||
2000 (0.64) | 21.9 ± 0.2 | |||||||||
2500 (0.80) | 24.4 ± 0.3 |
3. Co-Sensitization
4. Concerted Companion Dyes
5. Characterization of Photovoltaic Modules for Low-Power Indoor Application
5.1. Illuminance vs. Irradiance
5.2. External Quantum Efficiency
5.3. Future Developments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- U.S. Energy Information Administration. International Energy Outlook; U.S. Government Printing Office: Washington, DC, USA, 2021.
- International Energy Agency. Renewable Electricity; International Energy Agency: Paris, France, 2022. [Google Scholar]
- Fraunhofer Institute for Solar Energy Systems. Photovoltaics Report; Fraunhofer Institute for Solar Energy Systems: Breisgau, Germany, 2023. [Google Scholar]
- International Renewable Energy Agency. Global Energy Transformation: A Roadmap to 2050; IRENA; Masdar: Abu Dhabi, Saudi Arabia, 2019. [Google Scholar]
- Ragoussi, M.-E.; Torres, T. New Generation Solar Cells: Concepts, Trends and Perspectives. Chem. Commun. 2015, 51, 3957–3972. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef]
- Muñoz-García, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.; et al. Dye-Sensitized Solar Cells Strike Back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [CrossRef]
- Akman, E.; Karapinar, H.S. Electrochemically Stable, Cost-Effective and Facile Produced Selenium@activated Carbon Composite Counter Electrodes for Dye-Sensitized Solar Cells. Sol. Energy 2022, 234, 368–376. [Google Scholar] [CrossRef]
- Ari, D.A.; Sezgin, A.; Unal, M.; Akman, E.; Yavuz, I.; Liang, F.C.; Yilmaz, M.; Akin, S. Design of an Amorphous ZnWSe2 Alloy-Based Counter Electrode for Highly Efficient Dye-Sensitized Solar Cells. Mater. Chem. Front. 2023, 7, 4120–4131. [Google Scholar] [CrossRef]
- Akman, E. Enhanced Photovoltaic Performance and Stability of Dye-Sensitized Solar Cells by Utilizing Manganese-Doped ZnO Photoanode with Europium Compact Layer. J. Mol. Liq. 2020, 317, 114223. [Google Scholar] [CrossRef]
- Parisi, M.L.; Maranghi, S.; Basosi, R. The Evolution of the Dye Sensitized Solar Cells from Grätzel Prototype to Up-Scaled Solar Applications: A Life Cycle Assessment Approach. Renew. Sustain. Energy Rev. 2014, 39, 124–138. [Google Scholar] [CrossRef]
- Spinelli, G.; Freitag, M.; Benesperi, I. What Is Necessary to Fill the Technological Gap to Design Sustainable Dye-Sensitized Solar Cells? Sustain. Energy Fuels 2023, 7, 916–927. [Google Scholar] [CrossRef]
- Vesce, L.; Mariani, P.; Calamante, M.; Dessì, A.; Mordini, A.; Zani, L.; Di Carlo, A. Process Engineering of Semitransparent DSSC Modules and Panel Incorporating an Organic Sensitizer. Sol. RRL 2022, 6, 2200403. [Google Scholar] [CrossRef]
- Lee, H.M.; Yoon, J.H. Power Performance Analysis of a Transparent DSSC BIPV Window Based on 2 Year Measurement Data in a Full-Scale Mock-Up. Appl. Energy 2018, 225, 1013–1021. [Google Scholar] [CrossRef]
- Allardyce, C.S.; Fankhauser, C.; Zakeeruddin, S.M.; Grätzel, M.; Dyson, P.J. The Influence of Greenhouse-Integrated Photovoltaics on Crop Production. Sol. Energy 2017, 155, 517–522. [Google Scholar] [CrossRef]
- La Notte, L.; Giordano, L.; Calabrò, E.; Bedini, R.; Colla, G.; Puglisi, G.; Reale, A. Hybrid and Organic Photovoltaics for Greenhouse Applications. Appl. Energy 2020, 278, 115582. [Google Scholar] [CrossRef]
- Barichello, J.; Vesce, L.; Mariani, P.; Leonardi, E.; Braglia, R.; Di Carlo, A.; Canini, A.; Reale, A. Stable Semi-Transparent Dye-Sensitized Solar Modules and Panels for Greenhouse Application. Energies 2021, 14, 6393. [Google Scholar] [CrossRef]
- Yamori, W. Photosynthesis and Respiration; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 9, ISBN 9780128017753. [Google Scholar]
- Dessì, A.; Calamante, M.; Sinicropi, A.; Parisi, M.L.; Vesce, L.; Mariani, P.; Taheri, B.; Ciocca, M.; Di Carlo, A.; Zani, L.; et al. Thiazolo[5,4-d]Thiazole-Based Organic Sensitizers with Improved Spectral Properties for Application in Greenhouse-Integrated Dye-Sensitized Solar Cells. Sustain. Energy Fuels 2020, 4, 2309–2321. [Google Scholar] [CrossRef]
- Dessì, A.; Chalkias, D.A.; Bilancia, S.; Sinicropi, A.; Calamante, M.; Mordini, A.; Karavioti, A.; Stathatos, E.; Zani, L.; Reginato, G. D-A-π-A Organic Dyes with Tailored Green Light Absorption for Potential Application in Greenhouse-Integrated Dye-Sensitized Solar Cells. Sustain. Energy Fuels 2021, 5, 1171–1183. [Google Scholar] [CrossRef]
- Zhang, D.; Stojanovic, M.; Ren, Y.; Cao, Y.; Eickemeyer, F.T.; Socie, E.; Vlachopoulos, N.; Moser, J.-E.; Zakeeruddin, S.M.; Hagfeldt, A.; et al. A Molecular Photosensitizer Achieves a Voc of 1.24 V Enabling Highly Efficient and Stable Dye-Sensitized Solar Cells with Copper(II/I)-Based Electrolyte. Nat. Commun. 2021, 12, 1777. [Google Scholar] [CrossRef]
- Aftabuzzaman, M.; Sarker, S.; Lu, C.; Kim, H.K. In-Depth Understanding of the Energy Loss and Efficiency Limit of Dye-Sensitized Solar Cells under Outdoor and Indoor Conditions. J. Mater. Chem. A Mater. 2021, 9, 24830–24848. [Google Scholar] [CrossRef]
- Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C. Charge Yield Potential of Indoor-Operated Solar Cells Incorporated into Product Integrated Photovoltaic (PIPV). Renew. Energy 2011, 36, 642–647. [Google Scholar] [CrossRef]
- Speranza, R.; Zaccagnini, P.; Sacco, A.; Lamberti, A. High-Voltage Energy Harvesting and Storage System for Internet of Things Indoor Application. Sol. RRL 2022, 6, 2200245. [Google Scholar] [CrossRef]
- Michaels, H.; Rinderle, M.; Benesperi, I.; Freitag, R.; Gagliardi, A.; Freitag, M. Emerging Indoor Photovoltaics for Self-Powered and Self-Aware IoT towards Sustainable Energy Management. Chem. Sci. 2023, 14, 5350–5360. [Google Scholar] [CrossRef]
- Pecunia, V.; Occhipinti, L.G.; Hoye, R.L.Z. Emerging Indoor Photovoltaic Technologies for Sustainable Internet of Things. Adv. Energy Mater. 2021, 11, 2100698. [Google Scholar] [CrossRef]
- Fortino, G.; Savaglio, C.; Spezzano, G.; Zhou, M. Internet of Things as System of Systems: A Review of Methodologies, Frameworks, Platforms, and Tools. IEEE Trans. Syst. Man. Cybern. Syst. 2021, 51, 223–236. [Google Scholar] [CrossRef]
- Hossein Motlagh, N.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the Energy Sector. Energies 2020, 13, 494. [Google Scholar] [CrossRef]
- Aslam, A.; Mehmood, U.; Arshad, M.H.; Ishfaq, A.; Zaheer, J.; Ul Haq Khan, A.; Sufyan, M. Dye-Sensitized Solar Cells (DSSCs) as a Potential Photovoltaic Technology for the Self-Powered Internet of Things (IoTs) Applications. Sol. Energy 2020, 207, 874–892. [Google Scholar] [CrossRef]
- Saeed, M.A.; Yoo, K.; Kang, H.C.; Shim, J.W.; Lee, J.J. Recent Developments in Dye-Sensitized Photovoltaic Cells under Ambient Illumination. Dye. Pigment. 2021, 194, 109626. [Google Scholar] [CrossRef]
- Guo, Z.; Jena, A.K.; Miyasaka, T. Halide Perovskites for Indoor Photovoltaics: The Next Possibility. ACS Energy Lett. 2023, 8, 90–95. [Google Scholar] [CrossRef]
- Wang, K.-L.; Zhou, Y.-H.; Lou, Y.-H.; Wang, Z.-K. Perovskite Indoor Photovoltaics: Opportunity and Challenges. Chem. Sci. 2021, 12, 11936–11954. [Google Scholar] [CrossRef]
- Marshall, B. PV Magazine International. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics_-_recycling_of_batteries_and_accumulators (accessed on 15 November 2023).
- Eurostat. Waste Statistics—Recycling of Batteries and Accumulators; European Union: Maastricht, The Netherlands, 2023.
- Lee, C.P.; Lin, R.Y.Y.; Lin, L.Y.; Li, C.T.; Chu, T.C.; Sun, S.S.; Lin, J.T.; Ho, K.C. Recent Progress in Organic Sensitizers for Dye-Sensitized Solar Cells. RSC Adv. 2015, 5, 23810–23825. [Google Scholar] [CrossRef]
- Cole, J.M.; Pepe, G.; Al Bahri, O.K.; Cooper, C.B. Cosensitization in Dye-Sensitized Solar Cells. Chem. Rev. 2019, 119, 7279–7327. [Google Scholar] [CrossRef]
- Minnaert, B.; Veelaert, P. Efficiency Simulations of Thin Film Chalcogenide Photovoltaic Cells for Different Indoor Lighting Conditions. Thin Solid Films 2011, 519, 7537–7540. [Google Scholar] [CrossRef]
- Ji, J.-M.; Zhou, H.; Kim, H.K. Rational Design Criteria for D–π–A Structured Organic and Porphyrin Sensitizers for Highly Efficient Dye-Sensitized Solar Cells. J. Mater. Chem. A Mater. 2018, 6, 14518–14545. [Google Scholar] [CrossRef]
- Venkateswararao, A.; Ho, J.K.W.; So, S.K.; Liu, S.W.; Wong, K.T. Device Characteristics and Material Developments of Indoor Photovoltaic Devices. Mater. Sci. Eng. R Rep. 2020, 139, 100517. [Google Scholar] [CrossRef]
- Biswas, S.; Kim, H. Solar Cells for Indoor Applications: Progress and Development. Polymers 2020, 12, 1338. [Google Scholar] [CrossRef] [PubMed]
- Devadiga, D.; Selvakumar, M.; Shetty, P.; Santosh, M.S. Dye-Sensitized Solar Cell for Indoor Applications: A Mini-Review. J. Electron. Mater. 2021, 50, 3187–3206. [Google Scholar] [CrossRef]
- Michaels, H.; Benesperi, I.; Freitag, M. Challenges and Prospects of Ambient Hybrid Solar Cell Applications. Chem. Sci. 2021, 12, 5002–5015. [Google Scholar] [CrossRef]
- Dai, S.; Wang, K.; Weng, J.; Sui, Y.; Huang, Y.; Xiao, S.; Chen, S.; Hu, L.; Kong, F.; Pan, X.; et al. Design of DSC Panel with Efficiency More than 6%. Sol. Energy Mater. Sol. Cells 2005, 85, 447–455. [Google Scholar] [CrossRef]
- Parisi, M.L.; Maranghi, S.; Vesce, L.; Sinicropi, A.; Di Carlo, A.; Basosi, R. Prospective Life Cycle Assessment of Third-Generation Photovoltaics at the Pre-Industrial Scale: A Long-Term Scenario Approach. Renew. Sustain. Energy Rev. 2020, 121, 109703. [Google Scholar] [CrossRef]
- Vesce, L.; Guidobaldi, A.; Mariani, P.; Di Carlo, A.; Parisi, M.L.; Maranghi, S.; Basosi, R. Scaling-up of Dye Sensitized Solar Modules. In World Scientific Reference of Hybrid Materials; Turkovic, V., Madsen, M., Rubahn, H.G., Eds.; World Scientific: Singapore, 2019; pp. 423–485. [Google Scholar]
- Han, L.; Fukui, A.; Chiba, Y.; Islam, A.; Komiya, R.; Fuke, N.; Koide, N.; Yamanaka, R.; Shimizu, M. Integrated Dye-Sensitized Solar Cell Module with Conversion Efficiency of 8.2%. Appl. Phys. Lett. 2009, 94, 013305. [Google Scholar] [CrossRef]
- Sastrawan, R.; Beier, J.; Belledin, U.; Hemming, S.; Hinsch, A.; Kern, R.; Vetter, C.; Petrat, F.M.; Prodi-Schwab, A.; Lechner, P.; et al. New Interdigital Design for Large Area Dye Solar Modules Using a Lead-Free Glass Frit Sealing. Prog. Photovolt. Res. Appl. 2006, 14, 697–709. [Google Scholar] [CrossRef]
- Mathews, I.; Kantareddy, S.N.; Buonassisi, T.; Peters, I.M. Technology and Market Perspective for Indoor Photovoltaic Cells. Joule 2019, 3, 1415–1426. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chou, P.-T.; Yin, T.-C.; Chen, K.-F.; Jiang, M.-L.; Chang, Y.J.; Tai, C.-K.; Wang, B.-C. Rational Design of Cost-Effective Dyes for High Performance Dye-Sensitized Cells in Indoor Light Environments. Org. Electron. 2018, 59, 69–76. [Google Scholar] [CrossRef]
- Chen, Y.C.; Huang, G.W.; Chang, Y.J.; Wen, J.J. Branched Dibenzofulvene-Based Organic Dyes for Dye-Sensitized Solar Cells under One Sun and Dim Light. J. Mater. Sci. Mater. Electron. 2019, 30, 12981–12991. [Google Scholar] [CrossRef]
- Huang, R.Y.; Tsai, W.H.; Wen, J.J.; Chang, Y.J.; Chow, T.J. Spiro[Fluorene-9,9′-Phenanthren]-10′-One as Auxiliary Acceptor of D-A-π-A Dyes for Dye-Sensitized Solar Cells under One Sun and Indoor Light. J. Power Sources 2020, 458, 228063. [Google Scholar] [CrossRef]
- Lin, Y.; Li, H.; Wang, L.H.; Lin, Y.H.; Chiu, H.H.; Chow, T.J.; Chang, Y.J. Spiro-sulfone-based Auxiliary Acceptor in D-A-π-A Dye-sensitized Solar Cells Application under Indoor/Outdoor Light. Asian J. Org. Chem. 2021, 10, 3396–3405. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Zhang, M.; Dong, X. Influences of Cation Charge Density on the Photovoltaic Performance of Dye-Sensitized Solar Cells: Lithium, Sodium, Potassium, and Dimethylimidazolium. Phys. Chem. Chem. Phys. 2011, 13, 14590. [Google Scholar] [CrossRef]
- Srinivas, K.; Yesudas, K.; Bhanuprakash, K.; Rao, V.J.; Giribabu, L. A Combined Experimental and Computational Investigation of Anthracene Based Sensitizers for DSSC: Comparison of Cyanoacrylic and Malonic Acid Electron Withdrawing Groups Binding onto the TiO2 Anatase (101) Surface. J. Phys. Chem. C 2009, 113, 20117–20126. [Google Scholar] [CrossRef]
- Wang, C.L.; Lin, P.T.; Wang, Y.F.; Chang, C.W.; Lin, B.Z.; Kuo, H.H.; Hsu, C.W.; Tu, S.H.; Lin, C.Y. Cost-Effective Anthryl Dyes for Dye-Sensitized Cells under One Sun and Dim Light. J. Phys. Chem. C 2015, 119, 24282–24289. [Google Scholar] [CrossRef]
- Wang, P.; Zakeeruddin, S.M.; Moser, J.E.; Nazeeruddin, M.K.; Sekiguchi, T.; Grätzel, M. A Stable Quasi-Solid-State Dye-Sensitized Solar Cell with an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte. Nat. Mater. 2003, 2, 402–407. [Google Scholar] [CrossRef]
- Tsai, M.C.; Wang, C.L.; Chang, C.W.; Hsu, C.W.; Hsiao, Y.H.; Liu, C.L.; Wang, C.C.; Lin, S.Y.; Lin, C.Y. A Large, Ultra-Black, Efficient and Cost-Effective Dye-Sensitized Solar Module Approaching 12% Overall Efficiency under 1000 Lux Indoor Light. J. Mater. Chem. A Mater. 2018, 6, 1995–2003. [Google Scholar] [CrossRef]
- Tsai, M.C.; Chiu, Y.C.; Lu, M.D.; Tung, Y.L.; Tsai, H.C.; Chang Chien, J.R.; Lin, C.Y. Efficient Anthryl Dye Enhanced by an Additional Ethynyl Bridge for Dye-Sensitized Module with Large Active Area to Drive Indoor Appliances. ACS Appl. Energy Mater. 2020, 3, 2744–2754. [Google Scholar] [CrossRef]
- Tingare, Y.S.; Vinh, N.S.; Chou, H.-H.; Liu, Y.-C.; Long, Y.-S.; Wu, T.-C.; Wei, T.-C.; Yeh, C.-Y. New Acetylene-Bridged 9,10-Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dye-Sensitized Solar Cells. Adv. Energy Mater. 2017, 7, 1700032. [Google Scholar] [CrossRef]
- Chen, C.; Nguyen, V.S.; Chiu, H.; Chen, Y.; Wei, T.; Yeh, C. Anthracene-Bridged Sensitizers for Dye-Sensitized Solar Cells with 37% Efficiency under Dim Light. Adv. Energy Mater. 2022, 12, 2104051. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Gong, X.; Heeger, A.J. Low Bandgap Semiconducting Polymers for Polymeric Photovoltaics. Chem. Soc. Rev. 2016, 45, 4825–4846. [Google Scholar] [CrossRef]
- Desta, M.B.; Vinh, N.S.; Pavan Kumar, C.; Chaurasia, S.; Wu, W.T.; Lin, J.T.; Wei, T.C.; Wei-Guang Diau, E. Pyrazine-Incorporating Panchromatic Sensitizers for Dye Sensitized Solar Cells under One Sun and Dim Light. J. Mater. Chem. A 2018, 6, 13778–13789. [Google Scholar] [CrossRef]
- Jiang, M.L.; Wen, J.J.; Chen, Z.M.; Tsai, W.H.; Lin, T.C.; Chow, T.J.; Chang, Y.J. High-Performance Organic Dyes with Electron-Deficient Quinoxalinoid Heterocycles for Dye-Sensitized Solar Cells under One Sun and Indoor Light. ChemSusChem 2019, 12, 3654–3665. [Google Scholar] [CrossRef]
- Wubie, G.Z.; Lu, M.N.; Desta, M.A.; Weldekirstos, H.D.; Lee, M.M.; Wu, W.T.; Li, S.R.; Wei, T.C.; Sun, S.S. Structural Engineering of Organic D-A-π-A Dyes Incorporated with a Dibutyl-Fluorene Moiety for High-Performance Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 23513–23522. [Google Scholar] [CrossRef] [PubMed]
- Wubie, G.Z.; Desta, M.A.; Weldekirstos, H.D.; Lee, M.M.; Wu, W.T.; Li, S.R.; Sun, S.S. An Organic Dye Containing Electron-Rich Cyclopentadithiophene for Dye-Sensitized Solar Cells with an Efficiency over 28% at 6,000 Lux. J. Chin. Chem. Soc. 2021, 68, 952–958. [Google Scholar] [CrossRef]
- Ezhumalai, Y.; Lin, F.S.; Fan, M.S.; Prabakaran, K.; Ni, J.S.; Wu, Y.C.; Lee, G.H.; Chen, M.C.; Ho, K.C. Thioalkyl-Functionalized Bithiophene (SBT)-Based Organic Sensitizers for High-Performance Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 15071–15079. [Google Scholar] [CrossRef]
- Ferdowsi, P.; Saygili, Y.; Jazaeri, F.; Edvinsson, T.; Mokhtari, J.; Zakeeruddin, S.M.; Liu, Y.; Grätzel, M.; Hagfeldt, A. Molecular Engineering of Simple Metal-Free Organic Dyes Derived from Triphenylamine for Dye-Sensitized Solar Cell Applications. ChemSusChem 2020, 13, 212–220. [Google Scholar] [CrossRef]
- Haridas, R.; Velore, J.; Pradhan, S.C.; Vindhyasarumi, A.; Yoosaf, K.; Soman, S.; Unni, K.N.N.; Ajayaghosh, A. Indoor Light-Harvesting Dye-Sensitized Solar Cells Surpassing 30% Efficiency without Co-Sensitizers. Mater. Adv. 2021, 2, 7773–7787. [Google Scholar] [CrossRef]
- Vinayak, M.V.; Lakshmykanth, T.M.; Yoosuf, M.; Soman, S.; Gopidas, K.R. Effect of Recombination and Binding Properties on the Performance of Dye Sensitized Solar Cells Based on Propeller Shaped Triphenylamine Dyes with Multiple Binding Groups. Sol. Energy 2016, 124, 227–241. [Google Scholar] [CrossRef]
- Yoosuf, M.; Pradhan, S.C.; Sruthi, M.M.; Soman, S.; Gopidas, K.R. Propellar Shaped Triple Bond Rigidified D-A-π-A Triphenylamine Dye as Back Electron Interceptor in Iodine and Cobalt Electrolyte DSSCs under Full Sun and Indoor Light. Sol. Energy 2021, 216, 151–163. [Google Scholar] [CrossRef]
- Siva Gangadhar, P.; Jagadeesh, A.; George, A.S.; Reddy, G.; Prasanthkumar, S.; Soman, S.; Giribabu, L. An Investigation into the Origin of Variations in Photovoltaic Performance Using D-D-π-A and D-A-π-A Triphenylimidazole Dyes with a Copper Electrolyte. Mol. Syst. Des. Eng. 2021, 6, 779–789. [Google Scholar] [CrossRef]
- Gangadhar, P.S.; Jagadeesh, A.; Rajesh, M.N.; George, A.S.; Prasanthkumar, S.; Soman, S.; Giribabu, L. Role of π-Spacer in Regulating the Photovoltaic Performance of Copper Electrolyte Dye-Sensitized Solar Cells Using Triphenylimidazole Dyes. Mater. Adv. 2022, 3, 1231–1239. [Google Scholar] [CrossRef]
- Gangadhar, P.S.; Jagadeesh, A.; George, A.S.; Soman, S.; Giribabu, L. Triphenylimidazole Based Dye-Sensitized Solar Cells for Efficient Solar and Artificial Light Conversion Using Iodide/Triiodide Redox Electrolyte. J. Chem. Sci. 2022, 134, 1–8. [Google Scholar] [CrossRef]
- Royo, R.; Domínguez-Celorrio, A.; Franco, S.; Andreu, R.; Orduna, J. Pyranylidene/Trifluoromethylbenzoic Acid-Based Chromophores for Dye-Sensitized Solar Cells. Dye. Pigment. 2022, 206, 110566. [Google Scholar] [CrossRef]
- Han, B.Y.; Pan, T.Y.; Wu, Y.C.; Lin, J.T.; Chou, H.H.; Li, C.T. Steric Effect of N-Substituted Triphenylamine on Double-Anchored Phenothiazine Dye-Sensitized Solar Cells. ACS Appl. Energy Mater. 2023, 6, 3778–3788. [Google Scholar] [CrossRef]
- D’Amico, F.; Papucci, C.; Franchi, D.; Reginato, G.; Calamante, M.; Zani, L.; Dessì, A.; Mordini, A. Sustainable Pd-Catalyzed Direct Arylation of Thienyl Derivatives with (Hetero)Aromatic Bromides under Air in Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2022, 10, 3037–3047. [Google Scholar] [CrossRef]
- Punzi, A.; Coppi, D.I.; Matera, S.; Capozzi, M.A.M.; Operamolla, A.; Ragni, R.; Babudri, F.; Farinola, G.M. Pd-Catalyzed Thiophene-Aryl Coupling Reaction via C-H Bond Activation in Deep Eutectic Solvents. Org. Lett. 2017, 19, 4754–4757. [Google Scholar] [CrossRef]
- Krishna, N.V.; Krishna, J.V.S.; Mrinalini, M.; Prasanthkumar, S.; Giribabu, L. Role of Co-Sensitizers in Dye-Sensitized Solar Cells. ChemSusChem 2017, 10, 4668–4689. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.-E.; Grätzel, M.; et al. Dye-Sensitized Solar Cells for Efficient Power Generation under Ambient Lighting. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Tanaka, E.; Michaels, H.; Freitag, M.; Robertson, N. Synergy of Co-Sensitizers in a Copper Bipyridyl Redox System for Efficient and Cost-Effective Dye-Sensitized Solar Cells in Solar and Ambient Light. J. Mater. Chem. A Mater. 2020, 8, 1279–1287. [Google Scholar] [CrossRef]
- Michaels, H.; Rinderle, M.; Freitag, R.; Benesperi, I.; Edvinsson, T.; Socher, R.; Gagliardi, A.; Freitag, M. Dye-Sensitized Solar Cells under Ambient Light Powering Machine Learning: Towards Autonomous Smart Sensors for the Internet of Things. Chem. Sci. 2020, 11, 2895–2906. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics. Joule 2018, 2, 1108–1117. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, D.; Suo, J.; Cao, Y.; Eickemeyer, F.T.; Vlachopoulos, N.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Hydroxamic Acid Pre-Adsorption Raises the Efficiency of Cosensitized Solar Cells. Nature 2023, 613, 60–65. [Google Scholar] [CrossRef]
- Fan, S.; Lu, X.; Sun, H.; Zhou, G.; Chang, Y.J.; Wang, Z.S. Effect of the Co-Sensitization Sequence on the Performance of Dye-Sensitized Solar Cells with Porphyrin and Organic Dyes. Phys. Chem. Chem. Phys. 2015, 18, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Chen, Y.; Zhu, W.H.; Tian, H.; Xie, Y. Efficient Solar Cells Based on Concerted Companion Dyes Containing Two Complementary Components: An Alternative Approach for Cosensitization. J. Am. Chem. Soc. 2020, 142, 5154–5161. [Google Scholar] [CrossRef]
- Zeng, K.; Tang, W.; Li, C.; Chen, Y.; Zhao, S.; Liu, Q.; Xie, Y. Systematic Optimization of the Substituents on the Phenothiazine Donor of Doubly Strapped Porphyrin Sensitizers: An Efficiency over 11% Unassisted by Any Cosensitizer or Coadsorbent. J. Mater. Chem. A Mater. 2019, 7, 20854–20860. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Zou, J.; Luo, J.; Li, C.; Xie, Y. Efficient Solar Cells Sensitized by Organic Concerted Companion Dyes Suitable for Indoor Lamps. ChemSusChem 2022, 15, e202201116. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, Y.; Zou, J.; Zeng, K.; Baryshnikov, G.; Li, C.; Xie, Y. Fluorenyl Indoline as an Efficient Electron Donor for Concerted Companion Dyes: Enhanced Light-Harvesting and Photocurrent. ACS Appl. Mater. Interfaces 2021, 13, 49828–49839. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Zou, J.; Wu, X.; Gong, X.; Li, C.; Xie, Y. Efficient Dye-Sensitized Solar Cells Based on Concerted Companion Dyes: Systematic Optimization of Thiophene Units in the Organic Dye Components. Chin. Chem. Lett. 2022, 33, 4313–4316. [Google Scholar] [CrossRef]
- Zou, J.; Wang, Y.; Baryshnikov, G.; Luo, J.; Wang, X.; Ågren, H.; Li, C.; Xie, Y. Efficient Dye-Sensitized Solar Cells Based on a New Class of Doubly Concerted Companion Dyes. ACS Appl. Mater. Interfaces 2022, 14, 33274–33284. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y.; Zhang, W.; Stojanovic, M.; Dar, M.I.; Péchy, P.; Saygili, Y.; Hagfeldt, A.; Zakeeruddin, S.M.; Grätzel, M. Electron-Affinity-Triggered Variations on the Optical and Electrical Properties of Dye Molecules Enabling Highly Efficient Dye-Sensitized Solar Cells. Angew. Chem.-Int. Ed. 2018, 57, 14125–14128. [Google Scholar] [CrossRef]
- Li, B.; Hou, B.; Amaratunga, G.A.J. Indoor Photovoltaics, The Next Big Trend in Solution-Processed Solar Cells. InfoMat 2021, 3, 445–459. [Google Scholar] [CrossRef]
- Khenkin, M.V.; Katz, E.A.; Abate, A.; Bardizza, G.; Berry, J.J.; Brabec, C.; Brunetti, F.; Bulović, V.; Burlingame, Q.; Di Carlo, A.; et al. Consensus Statement for Stability Assessment and Reporting for Perovskite Photovoltaics Based on ISOS Procedures. Nat. Energy 2020, 5, 35–49. [Google Scholar] [CrossRef]
- IEC 60904-3:2019; Photovoltaic Devices—Part 3: Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices with Reference Spectral Irradiance Data. International Electrotechnical Commission: London, UK, 2019.
- Sharpe, L.T.; Stockman, A.; Jagla, W.; Jägle, H. A Luminous Efficiency Function, VD65* (λ), for Daylight Adaptation: A Correction. Color. Res. Appl. 2011, 36, 42–46. [Google Scholar] [CrossRef]
- Cui, Y.; Hong, L.; Zhang, T.; Meng, H.; Yan, H.; Gao, F.; Hou, J. Accurate Photovoltaic Measurement of Organic Cells for Indoor Applications. Joule 2021, 5, 1016–1023. [Google Scholar] [CrossRef]
- Saliba, M.; Etgar, L. Current Density Mismatch in Perovskite Solar Cells. ACS Energy Lett. 2020, 5, 2886–2888. [Google Scholar] [CrossRef]
- Bliss, M.; Smith, A.; Betts, T.R.; Baker, J.; De Rossi, F.; Bai, S.; Watson, T.; Snaith, H.; Gottschalg, R. Spectral Response Measurements of Perovskite Solar Cells. IEEE J. Photovolt. 2019, 9, 220–226. [Google Scholar] [CrossRef]
- Jeong, W.-S.; Lee, J.-W.; Jung, S.; Ho Yun, J.; Park, N.-G. Evaluation of External Quantum Efficiency of a 12.35% Tandem Solar Cell Comprising Dye-Sensitized and CIGS Solar Cells. Sol. Energy Mater. Sol. Cells 2011, 95, 3419–3423. [Google Scholar] [CrossRef]
- Takagi, K.; Magaino, S.; Saito, H.; Aoki, T.; Aoki, D. Measurements and Evaluation of Dye-Sensitized Solar Cell Performance. J. Photochem. Photobiol. C Photochem. Rev. 2013, 14, 1–12. [Google Scholar] [CrossRef]
- Hamadani, B.H.; Campanelli, M.B. Photovoltaic Characterization Under Artificial Low Irradiance Conditions Using Reference Solar Cells. IEEE J. Photovolt. 2020, 10, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
TKU-1 | TKU-3 | TKU-6 | TKU-2 | TKU-4 | TKU-5 | |
---|---|---|---|---|---|---|
LED | 0.50 | 0.53 | 0.56 | 0.57 | 0.58 | 0.59 |
T5 | 0.49 | 0.55 | 0.55 | 0.55 | 0.60 | 0.60 |
AM 1.5 G | 0.63 | 0.69 | 0.60 | 0.59 | 0.65 | 0.63 |
Light Source | PCE (%) | ||
---|---|---|---|
RY1 | RY3 | RY5 | |
CWF | 16.06 (±0.77) | 17.49 (±0.79) | 18.29 (±0.70) |
TL84 | 17.94 (±0.91) | 20.83 (±0.84) | 19.74 (±0.76) |
Dye 1 Solvent λabs (nm) ε (M−1/cm−1) | Dye 2 Solvent λabs (nm) ε (M−1/cm−1) | Staining Procedure | Semi Conductor Layer | Additive | Electrolyte | Counter Electrode | Active Area (cm2) | Lamp Type (a) | Illumin-ance (Lux) (b) | PCE (%) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
N719 BuOH/MeCN 0.3 mM 535 (16,300) | RY3 CH2Cl2 0.3 mM 450 (45,000) | Sequential N719 (8 h) RY3 (4 h) | TiO2 12 μm (transp.) 6 μm scatt. layer | none | I−/I3− TBP | platinum | 0.28 (mask) | TL84 (4100 K) CWF (4150 K) | 24.45 ± 1.12 26.19 ± 0.85 21.67 ± 0.81 25.19 ± 0.63 | [38] | |
1000 | |||||||||||
2500 | |||||||||||
N719 BuOH/MeCN 0.3 mM 535 (16,300) | YS1 CH2Cl2 0.3 mM 384 (48,400) | Sequential N719 (6 h) YS1 (6 h) | TiO2 12 μm (transp.) 6 μm scatt. layer | none | I−/I3− TBP | platinum | 0.28 (mask) | TL84 (4100 K) CWF (4150 K) | 2500 | 20.82 ± 0.49 19.50 ± 0.55 | [39] |
YS2 CH2Cl2 0.3 mM 417 (34,800) | Sequential N719 (8 h) YS2 (4 h) | TL84 (4100 K) CWF (4150 K) | 23.76 ± 0.96 21.56 ± 0.89 | ||||||||
MM-6 CH2Cl2 0.3 mM 484 (35,700) | MM-3 CH2Cl2 0.3 mM 427 (80,600) | Sequential MM6 (8 h) MM3 (4 h) | TiO2 12μm (transp.) 6 μm scatt. layer | none | I−/I3− TBP | platinum | 0.28 | TL84 | 600 (0.110) | 27.76 ± 1.39 | [49] |
1000 (0.185) | 28.74 ± 1.06 | ||||||||||
2500 (0.462) | 30.45 ± 1.06 | ||||||||||
D35 0.08 mM MeCN/ tBuOH 1:1 445 (70,100) | XY1 0.08 mM MeCN/ tBuOH 1:1 552 (56,500) | Cocktail D35:XY1 4:1 for 16 h | TiO2 4 μm (transp.) 4 μm scatt. layer | none | Cu(tmby)2 (TFSI)1/2 LiTFSI, TBP MeCN | PEDOT | 0.1582 | Osram Warm White 930 | 200 | 25.5 | [61] |
1000 | 28.9 | ||||||||||
Cu(tmby)2 (TFSI)1/2 LiTFSI, TBP MeCN | 200 | 22.3 | |||||||||
1000 | 27.4 | ||||||||||
T5 0.1 mM CDCA 0.4 mM CHCl3/EtOH 3:7 478 (39,000) | XY1 0.1 mM CDCA 1mM CHCl3/EtOH 3:7 552 (56,500) | Cocktail: T5:XY1 1:1 for 16 h | TiO2 4 μm (transp.) 4 μm scatt. layer | CDCA | Cu(tmby)2 (TFSI)1/2 LiTFSI TBP | PEDOT | 3.2 | Osram Warm White 930 | 1000 (0.3031) | 28 ± 2 | [62] |
MS5 329 (45,000) 463 (12,600) | XY1b 0.1 mM CDCA 2.5 mM CHCl3/EtOH 1:9 328 (34,000) 542 (36,400) | Cocktail MS5:XY1b 0.05:0.1mM CDCA 0.5mM CHCl3:EtOH 1:9 16 h | TiO2 4 μm (transp.) 4 μm scatt. layer | CDCA | Cu(tmby)2 (TFSI)1/2 LiTFSI TBP | PEDOT | 2.8 | Osram Warm White 930 | 200 | 32.4 | [15] |
500 | 32.4 | ||||||||||
1000 | 34.5 | ||||||||||
L1 0.5 mM MeCN 404 (25,000) | XY1 0.01 mM CDCA 1mM CHCl3:EtOH 3:7 552 (56,500) | Cocktail L1:XY1 2.5:1 16 h | TiO2 4μm (transp) 4 μm scatt. layer | CDCA | Cu(tmby)2 (TFSI)1/2 LiTFSI TBP | PEDOT | 0.23 | Osram Warm White 930 | 200 | 31.4 | [63] |
500 | 32.7 | ||||||||||
1000 (0.3031) | 34.0 | ||||||||||
3.2 | 1000 (0.3031) | 33.2 | |||||||||
8 | 1000 (0.3031) | 30.6 | |||||||||
D35 0.1 mM MeCN:t BuOH 1:1 445 (70,100) | XY1 0.01 mM CDCA 1mM CHCl3:EtOH 3:7 552 (56,500) | Cocktail D35:XY1 4:1 16 h | - | 1000 (0.3031) | 29.5 | [61] | |||||
Y123 0.2mM MeCN:tBuOH 1:1 530 (48,000) | XY1b 0.2 mM CDCA 5mM THF:EtOH 1:4 328 (34,000) 542 (36,400) | Cocktail Y123:XY1b 1:1 16 h | - | 1000 (0.3031) | 30.1 | [64] | |||||
SL9 0.06mM in CHCl3:EtOH 2:8 330 (54,700) 557 (64,600) THF | SL10 0.1mM in MeCN:tBuOH 1:1 333 (41,900) 413 (33,000) | Cocktail: SL9:SL10 2:3 (0.06mM: 0.09mM) in CHCl3:EtOH 2:8 12 h | TiO2 8 μm (transp.) 4 μm scatt. layer | BPHA pre-treat ment anti reflecting film | Cu(tmby)2 (TFSI)1/2 NaTFSI CEMI | PEDOT | 2.8 | T8 (4000K) LED tube | 1479 (0.4310) 997 (0.2900) 859 (0.2520) 583 (0.1701) 201 (0.5898) | 30.1 29.4 28.9 30.1 29.6 | [65] |
BPHA pre-treat ment | T8 (3000 K) LED tube | 936 (0.2758) 494 (0.1470) | 29.5 30.2 | ||||||||
T8 (6500 K) LED tube | 949 (0.2869) 949 (0.2869) | 28.4 29.1 | |||||||||
none | T8 (4000K) LED tube | 1479 (0.4310) | 27.2 | ||||||||
T8 (4000K) LED tube | 1479 (0.4310) | 26.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amico, F.; de Jong, B.; Bartolini, M.; Franchi, D.; Dessì, A.; Zani, L.; Yzeiri, X.; Gatto, E.; Santucci, A.; Di Carlo, A.; et al. Recent Advances in Organic Dyes for Application in Dye-Sensitized Solar Cells under Indoor Lighting Conditions. Materials 2023, 16, 7338. https://doi.org/10.3390/ma16237338
D’Amico F, de Jong B, Bartolini M, Franchi D, Dessì A, Zani L, Yzeiri X, Gatto E, Santucci A, Di Carlo A, et al. Recent Advances in Organic Dyes for Application in Dye-Sensitized Solar Cells under Indoor Lighting Conditions. Materials. 2023; 16(23):7338. https://doi.org/10.3390/ma16237338
Chicago/Turabian StyleD’Amico, Francesco, Bas de Jong, Matteo Bartolini, Daniele Franchi, Alessio Dessì, Lorenzo Zani, Xheila Yzeiri, Emanuela Gatto, Annalisa Santucci, Aldo Di Carlo, and et al. 2023. "Recent Advances in Organic Dyes for Application in Dye-Sensitized Solar Cells under Indoor Lighting Conditions" Materials 16, no. 23: 7338. https://doi.org/10.3390/ma16237338
APA StyleD’Amico, F., de Jong, B., Bartolini, M., Franchi, D., Dessì, A., Zani, L., Yzeiri, X., Gatto, E., Santucci, A., Di Carlo, A., Reginato, G., Cinà, L., & Vesce, L. (2023). Recent Advances in Organic Dyes for Application in Dye-Sensitized Solar Cells under Indoor Lighting Conditions. Materials, 16(23), 7338. https://doi.org/10.3390/ma16237338