The Importance of the Mineral Substrate of the Biofilm in the Process of Low-Temperature Removal of Nitrogen Compounds from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Place of Research
2.2. Mineral Substrate of the Biofilm
2.3. Characteristics of Raw Sewage Sent to the Sewage Treatment Plant in Człuchów
2.4. Process Research Methodology
2.5. Microbiological Testing
3. Results
3.1. Physical and Chemical Characteristics
3.2. Microbiological Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reiter, J.; Beier, M. Deammonification Potential of pig slurries and vapor condensates from sewage sludge drying—Substrate quality and inhibition. Bioengineering 2023, 10, 826. [Google Scholar] [CrossRef] [PubMed]
- Bonassa, G.; Bolsan, A.C.; Hollas, C.E.; Venturin, B.; Candido, D.; Chini, A.; De Prá, M.C.; Antes, F.G.; Campos, J.L.; Kunz, A. Organic carbon bioavailability: Is it a good driver to choose the best biological nitrogen removal process? Sci. Total Environ. 2021, 786, 147390. [Google Scholar] [CrossRef] [PubMed]
- Anielak, A.M.; Kłeczek, A. Humus acids in the digested sludge and their properties. Materials 2022, 15, 1475. [Google Scholar] [CrossRef] [PubMed]
- Baas, P.; Knoepp, J.D.; Mohan, J.E. Well-aerated southern appalachian forest soils demonstrate significant potential for gaseous nitrogen loss. Forests 2019, 10, 1155. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Chai, B. Effect of temperature on microorganisms and nitrogen removal in a multi-stage surface constructed wetland. Water 2023, 15, 1256. [Google Scholar] [CrossRef]
- Henze, M. Wastewater Treatment, Biological and Chemical Processes; Springer-Verlag Telos: Berlin, Germany, 2002. [Google Scholar]
- Kruglova, A.; Kesulahti, J.; Le, K.M.; Gonzalez-Martinez, A. Low-temperature adapted nitrifying microbial communities of finnish wastewater treatment systems. Water 2020, 12, 2450. [Google Scholar] [CrossRef]
- Kaczor, G. Influence of air temperature on sewage temperature in sewerage system and biological reactor. Infrastruct. Ecol. Rural. Areas 2008, 3, 129. [Google Scholar]
- Hu, X.; Zhang, Y.; Wang, D.; Ma, J.; Xue, K.; An, Z.; Luo, W.; Sheng, Y. Effects of temperature and humidity on soil gross nitrogen transformation in a typical shrub ecosystem in Yanshan Mountain and Hilly Region. Life 2023, 13, 643. [Google Scholar] [CrossRef]
- Collings, E.J.; Bunce, J.T.; Jong, M.-C.; Graham, D.W. Impact of cold temperatures on nitrogen removal in denitrifying down-flow hanging sponge (DDHS) reactors. Water 2020, 12, 2029. [Google Scholar] [CrossRef]
- Mukhtar, H.; Lin, Y.-P.; Lin, C.-M.; Lin, Y.-R. Relative abundance of ammonia oxidizing archaea and bacteria influences soil nitrification responses to temperature. Microorganisms 2019, 7, 526. [Google Scholar] [CrossRef]
- Alves, R.J.E.; Wanek, W.; Zappe, A.; Richter, A.; Svenning, M.M.; Schleper, C.; Urich, T. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. ISME J. 2013, 7, 1620. [Google Scholar] [CrossRef] [PubMed]
- Alawi, M.; Lipski, A.; Sanders, T.; Eva Maria, P.; Spieck, E. Cultivation of a novel cold-adapted nitriteoxidizing betaproteobacterium from the Siberian Arctic. ISME J. 2007, 1, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Karkman, A.; Mattila, K.; Tamminen, M.; Virta, M. Cold temperature decreases bacterial species richness in nitrogen-removing bioreactors treating inorganic mine waters. Biotechnol. Bioeng. 2011, 108, 2876–2883. [Google Scholar] [CrossRef] [PubMed]
- Shourjeh, M.S.; Kowal, P.; Drewnowski, J.; Szela, B.; Szaja, A.; Łagód, G. Mutual interaction between temperature and DO set point on AOB and NOB activity during shortcut nitrification in a sequencing batch reactor in terms of energy consumption optimization. Energies 2020, 13, 5808. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, A.; Sihvonen, M.; Muñoz-Palazon, B.; Rodriguez-Sanchez, A.; Mikola, A.; Vahala, R. Microbial ecology of full-scale wastewater treatment systems in the Polar Arctic Circle: Archaea, Bacteria and Fungi. Sci. Rep. 2018, 8, 2208. [Google Scholar] [CrossRef] [PubMed]
- Kruglova, A.; Gonzalez-Martinez, A.; Kråkström, M.; Mikola, A.; Vahala, R. Bacterial diversity and population shifts driven by spotlight wastewater micropollutants in low-temperature highly nitrifying activated sludge. Sci. Total Environ. 2017, 605, 291. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Li, K.; Li, Z.; Xu, H.; He, T.; Tang, W.; Xiang, S. Heterotrophic Nitrification-Aerobic Denitrification Performance of Strain Y-12 under Low Temperature and High Concentration of Inorganic Nitrogen Conditions. Water 2017, 9, 835. [Google Scholar] [CrossRef]
- Zhong, Y.; Xia, H. Characterization of the Nitrogen Removal Potential of Two Newly Isolated Acinetobacter Strains under Low Temperature. Water 2023, 15, 2990. [Google Scholar] [CrossRef]
- Parmar, P.; Niculita-Hirzel, H. The accumulation of heavy metals in shower system biofilms: Implications for emissions and indoor human exposure. Pollutants 2023, 3, 396–405. [Google Scholar] [CrossRef]
- Niculita-Hirzel, H.; Morales, M.; Parmar, P. Assessing the health risks associated with the usage of water-atomization shower systems in buildings. Water Res. 2023, 243, 120413. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Yin, H.; An, T. Bacterial response mechanism during biofilm growth on different metal material substrates: EPS characteristics, oxidative stress and molecular regulatory network analysis. Environ. Res. 2020, 185, 109451. [Google Scholar] [CrossRef]
- Mpongwana, N.; Rathilal, S. Exploiting biofilm characteristics to enhance biological nutrient removal in wastewater treatment plants. Appl. Sci. 2022, 12, 7561. [Google Scholar] [CrossRef]
- Davis, E.M.; Li, D.; Shahrooei, M.; Yu, B.; Muruve, D.; Irvin, R.T. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel Surface structural complexity for biofilm formation. Acta Biomater. 2013, 9, 6236. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Zhang, X.; Li, J.; Wu, X.; Feng, H.; Dong, W. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs). Sci. Total Environ. 2021, 801, 149319. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Wang, Q.; She, Z.; Gao, M.; Zhao, Y.; Guo, L.; Jin, C. Nitrogen removal pathway and dynamics of microbial community. with the increase of salinity in simultaneous nitrification and denitrification process. Sci. Total Environ. 2019, 697, 134047. [Google Scholar] [CrossRef] [PubMed]
- Anielak, A.M.; Piaskowski, K. Influence of zeolites on kinetics and effectiveness of the proces of sewage biological purification in sequencing batch reactors. Environ. Prot. Eng. 2005, 31, 21. [Google Scholar]
- Catalogue. CENTECH. 2023. Available online: https://www.certech.com.pl (accessed on 20 November 2023).
- Anielak, A.M.; Polus, M. Kinetics of the sewage treatment involving an archaea-enriched system SBR. Przem. Chem. 2015, 94, 1485. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Bi, Y.; Meng, F.; Wang, D.; Qiu, C.; Yu, J.; Wang, S. The Recovery of a Sequencing Biofilm Batch Reactor—Anammox System: Performance, Metabolic Characteristics, and Microbial Community Analysis. Sustainability 2023, 15, 10454. [Google Scholar] [CrossRef]
- Chen, Z.J.; Meng, Y.B.; Sheng, B.B.; Zhou, Z.B.; Jin, C.; Meng, F.G. Linking Exoproteome Function and Structure to Anammox Biofilm Development. Environ. Sci. Technol. 2019, 53, 1490–1500. [Google Scholar] [CrossRef]
- Magrí, A.; Lotti, T. Special Issue on “Anammox-Based Processes for Wastewater Treatment”. Processes 2023, 11, 1422. [Google Scholar] [CrossRef]
Primer | Sequence | Amplicon Size (bp) |
---|---|---|
AOA amoA | F: 5′-STA ATG GTC TGG CTT AGA CG-3′ | 635 |
R: 5′-GCG GCC ATC CAT CTG TAT GT-3′ | ||
AOA 16S Rrna | 5′-ACK GCT CAG TAA CAC GT-3′ | 840 |
5′-YCC GGC GTT GAM TCC AAT T-3′ | ||
AOB amoA | 5′-GGG GTT TCT ACT GGT GGT-3′ | 491 |
5′-CCC CTC KGS AAA GCC TTC TTC-3′ | ||
AOB 16S Rrna | 5′-GGAGrAAAGyAGGGGATC-3′ | 465 |
5′-CTA GCY TTG TAG TTT CAA ACG C-3′ |
Days | T °C | pH | TSS, mg/L | TN, mg/L | TP mg/L | COD, mg/L | BOD, mg/L | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SBR 4.1. | SBR 4.2. | SBR 4.1. | SBR 4.2. | SBR 4.1. | SBR 4.2. | SBR 4.1. | SBR 4.2. | SBR 4.1. | SBR 4.2. | SBR 4.1. | SBR 4.2. | SBR 4.1. | SBR 4.2. | |
1 | 18.32 | 17.62 | 7 | 7.11 | - | - | 2.5 | 3.26 | 0.703 | 0.98 | 46.2 | 41.9 | - | - |
4 | 17.38 | 17.26 | 7.15 | 7.06 | 6 | 8 | 2.37 | 4.24 | 0.328 | 0.626 | 43.8 | 44.9 | 6 | 4 |
7 | 17.56 | 16.91 | 7.1 | 7.15 | 5 | 5 | 3.75 | 4.44 | 2.31 | 0.899 | 53.6 | 46.4 | 7 | 5 |
10 | 17.38 | 17.26 | 7.22 | 7.21 | 6 | 8 | 2.37 | 4.24 | 0.328 | 0.626 | 49.7 | 50.7 | 6 | 4 |
14 | 17.2 | 17.1 | 7.15 | 7.05 | 2 | 3 | 8.26 | 3.01 | 0.282 | 0.53 | 52.1 | 50.5 | 1 | 2 |
17 | 17 | 17.2 | 7.2 | 6.84 | 9 | 9 | 5.65 | 5.24 | 1.81 | 2.32 | 56.8 | 50.3 | 2 | 11 |
21 | 17.63 | 16.89 | 7.38 | 7.32 | 6 | 2 | 3.45 | 4.02 | 1.12 | 0.493 | 55.2 | 47.3 | 5 | 4 |
24 | 16.64 | 16.76 | 7.44 | 7.23 | 4 | 2 | 2.63 | 6.07 | 0.655 | 0.423 | 48.4 | 46 | 3 | 5 |
29 | 16.81 | 16.84 | 7.03 | 7.08 | 3 | 4 | 3.31 | 7.7 | 0.259 | 0.273 | 51.3 | 46.5 | 14 | 13 |
32 | 17.01 | 17.01 | 7.05 | 7.06 | 3 | 3 | 3.21 | 7.6 | 0.268 | 0.287 | 50.8 | 46.7 | 2 | 4 |
34 | 17.05 | 17.05 | 6.92 | 6.9 | 6 | 4 | 4.45 | 5.13 | 1.21 | 0.352 | 50.5 | 48.4 | 5 | 6 |
37 | 16.41 | 16.77 | 7.23 | 7.13 | 10 | 3 | 4.53 | 12.1 | 1.28 | 0.579 | 48.7 | 57.3 | 6 | 4 |
41 | 15.23 | 15.25 | 7.48 | 7.13 | 6 | 2 | 2.95 | 11.5 | 0.871 | 0.224 | 46.5 | 42.9 | 4 | 3 |
44 | 15.88 | 15.71 | 7 | 7.19 | 21 | 16 | 9 | 3.85 | 0.604 | 0.688 | 65.3 | 60.3 | 10 | 4 |
48 | 15.67 | 15 | 7.28 | 7.33 | 6 | 1 | 6.19 | 4.49 | 0.695 | 0.888 | 63.7 | 46.8 | 10 | 16 |
51 | 14.11 | 14.62 | 6.96 | 7.13 | 18 | 5 | 3.5 | 4.52 | 1.63 | 0.301 | 56.3 | 49.2 | 9 | 8 |
55 | 12.85 | 13.15 | 6.8 | 7.04 | 1 | 2 | 10.9 | 4.66 | 0.352 | 0.506 | 58.3 | 46.6 | 9 | 8 |
62 | 14.43 | 12.7 | 7.26 | 7.36 | 3 | 9 | 4.14 | 10.3 | 0.802 | 0.309 | 52.7 | 45 | 11 | 18 |
65 | 12.38 | 12.56 | 7.2 | 7.26 | 11 | 4 | 3.52 | 5.63 | 1.03 | 0.228 | 57.6 | 44.5 | 6 | 5 |
69 | 12.43 | 12.7 | 7.26 | 7.15 | 3 | 9 | 4.14 | 10.3 | 0.802 | 0.309 | 52.7 | 45 | 11 | 4 |
76 | 11.24 | 10.74 | 6.92 | 7.11 | 9 | 3 | 10.8 | 3.19 | 0.319 | 1.21 | 60.3 | 47.7 | 2 | 2 |
average | 15.74 | 15.58 | 7.14 | 7.14 | 6.90 | 5.10 | 4.84 | 5.98 | 0.84 | 0.62 | 53.36 | 47.85 | 6.45 | 6.50 |
standard deviation | 2.00 | 1.99 | 0.17 | 0.13 | 4.97 | 3.59 | 2.61 | 2.75 | 0.55 | 0.46 | 5.50 | 4.23 | 3.53 | 4.43 |
SBR 4.1 | SBR 4.2 | |||||
---|---|---|---|---|---|---|
Days | NOx mg/L | NH4, mg/L | O2, mg/L | NOx, mg/L | NH4, mg/L | O2, mg/L |
5–6 May 2023 | 19.97 | 28.48 | 2.02 | 233 | 4.56 | 1.95 |
13–14 May 2023 | 44.5 | 31.2 | 2.1 | 181 | 3.7 | 2.13 |
26–27 May 2023 | 36.23 | 29.34 | 1.79 | 220 | 5.54 | 2.37 |
7–8 June 2023 | 37.98 | 38.92 | 1.79 | 207 | 4.33 | 2.43 |
10–11 June 2023 | 41.71 | 42.76 | 1.89 | 187 | 4.97 | 2.13 |
15–16 June 2023 | 22.81 | 43.2 | 2.12 | 142 | 4.28 | 2.23 |
mean | 33.87 | 35.65 | 1.95 | 195 | 4.56 | 2.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anielak, A.M.; Polus, M.; Diakun, H.; Radomska-Kreft, I. The Importance of the Mineral Substrate of the Biofilm in the Process of Low-Temperature Removal of Nitrogen Compounds from Wastewater. Materials 2023, 16, 7417. https://doi.org/10.3390/ma16237417
Anielak AM, Polus M, Diakun H, Radomska-Kreft I. The Importance of the Mineral Substrate of the Biofilm in the Process of Low-Temperature Removal of Nitrogen Compounds from Wastewater. Materials. 2023; 16(23):7417. https://doi.org/10.3390/ma16237417
Chicago/Turabian StyleAnielak, Anna Maria, Michał Polus, Helena Diakun, and Izabela Radomska-Kreft. 2023. "The Importance of the Mineral Substrate of the Biofilm in the Process of Low-Temperature Removal of Nitrogen Compounds from Wastewater" Materials 16, no. 23: 7417. https://doi.org/10.3390/ma16237417
APA StyleAnielak, A. M., Polus, M., Diakun, H., & Radomska-Kreft, I. (2023). The Importance of the Mineral Substrate of the Biofilm in the Process of Low-Temperature Removal of Nitrogen Compounds from Wastewater. Materials, 16(23), 7417. https://doi.org/10.3390/ma16237417