Anionic Hyperbranched Amphiphilic Polyelectrolytes as Nanocarriers for Antimicrobial Proteins and Peptides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of H-P(LMA-co-tBMA-co-MAA) Copolymers
2.3. Preparation of Hydrolyzed Hyperbranched Copolymer Nanoparticles in Aqueous Media
2.4. Preparation of Hydrolyzed Hyperbranched Copolymers–Lysozyme Complexes in Aqueous Media
2.5. Preparation of Hydrolyzed Hyperbranched Copolymers–Polymyxin Complexes in Aqueous Media
2.6. Toxicity Assay
2.7. Methods
2.7.1. Size Exclusion Chromatography (SEC)
2.7.2. Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR)
2.7.3. Attenuated Total Reflectance–Fourier Transform Infrared (ATR–FTIR) Spectroscopy
2.7.4. Dynamic Light Scattering (DLS)
2.7.5. Electrophoretic Light Scattering (ELS)
2.7.6. Fluorescence Spectroscopy
2.7.7. Cryogenic Transmission Electron Microscopy (cryo-TEM)
2.7.8. Stereo Microscopy
3. Results and Discussion
3.1. Hyperbranched Copolymers Synthesis and Characterization
3.2. Self-Assembly Studies
3.3. Protein/Peptide Complexation Studies
3.3.1. Hydrolyzed Hyperbranched Copolymer–Lysozyme Complexation Studies
3.3.2. Hydrolyzed Hyperbranched Copolymer–Polymyxin Complexation Studies
3.4. Toxicity Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bodratti, A.M.; Alexandridis, P. Amphiphilic Block Copolymers in Drug Delivery: Advances in Formulation Structure and Performance. Expert Opin. Drug Deliv. 2018, 15, 1085–1104. [Google Scholar] [CrossRef] [PubMed]
- Osorno, L.L.; Brandley, A.N.; Maldonado, D.E.; Yiantsos, A.; Mosley, R.J.; Byrne, M.E. Review of Contemporary Self-Assembled Systems for the Controlled Delivery of Therapeutics in Medicine. Nanomaterials 2021, 11, 278. [Google Scholar] [CrossRef] [PubMed]
- Parveen, S.; Sahoo, S.K. Polymeric Nanoparticles for Cancer Therapy. J. Drug Target 2008, 16, 108–123. [Google Scholar] [CrossRef] [PubMed]
- Masood, F. Polymeric Nanoparticles for Targeted Drug Delivery System for Cancer Therapy. Mater. Sci. Eng. C 2016, 60, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Srikar, R.; Upendran, A.; Kannan, R. Polymeric Nanoparticles for Molecular Imaging. WIREs Nanomed. Nanobiotechnol. 2014, 6, 245–267. [Google Scholar] [CrossRef] [PubMed]
- Canfarotta, F.; Whitcombe, M.J.; Piletsky, S.A. Polymeric Nanoparticles for Optical Sensing. Biotechnol. Adv. 2013, 31, 1585–1599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, Y.; He, B.; Luo, K.; Gu, Z. Biodegradable Polymeric Nanoparticles Based on Amphiphilic Principle: Construction and Application in Drug Delivery. Sci. China Chem. 2014, 57, 461–475. [Google Scholar] [CrossRef]
- Pontes-Quero, G.M.; Benito-Garzón, L.; Pérez Cano, J.; Aguilar, M.R.; Vázquez-Lasa, B. Amphiphilic Polymeric Nanoparticles Encapsulating Curcumin: Antioxidant, Anti-Inflammatory and Biocompatibility Studies. Mater. Sci. Eng. C 2021, 121, 111793. [Google Scholar] [CrossRef]
- Takahashi, H.; Caputo, G.A.; Kuroda, K. Amphiphilic Polymer Therapeutics: An Alternative Platform in the Fight against Antibiotic Resistant Bacteria. Biomater. Sci. 2021, 9, 2758–2767. [Google Scholar] [CrossRef]
- Lombardo, D.; Kiselev, M.A.; Magazù, S.; Calandra, P. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches. Adv. Condens. Matter Phys. 2015, 2015, 151683. [Google Scholar] [CrossRef]
- Gigmes, D.; Trimaille, T. Advances in Amphiphilic Polylactide/Vinyl Polymer Based Nano-Assemblies for Drug Delivery. Adv. Colloid Interface Sci. 2021, 294, 102483. [Google Scholar] [CrossRef] [PubMed]
- Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41, 5969. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Faig, A.; Abdelhamid, D.; Uhrich, K. Sugar-Based Amphiphilic Polymers for Biomedical Applications: From Nanocarriers to Therapeutics. Acc. Chem. Res. 2014, 47, 2867–2877. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Aibani, N.; Callan, J.F.; Callan, B. Recent Advances in Amphiphilic Polymers for Simultaneous Delivery of Hydrophobic and Hydrophilic Drugs. Ther. Deliv. 2016, 7, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, S.; Chitkara, D.; Mittal, A. Exploration and Insights into the Cellular Internalization and Intracellular Fate of Amphiphilic Polymeric Nanocarriers. Acta Pharm. Sin. B 2021, 11, 903–924. [Google Scholar] [CrossRef]
- Kapse, A.; Anup, N.; Patel, V.; Saraogi, G.K.; Mishra, D.K.; Tekade, R.K. Polymeric micelles: A ray of hope among new drug delivery systems. In Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 235–289. [Google Scholar]
- Dimitrov, D.S. Therapeutic Proteins. Methods Mol. Biol. 2012, 899, 1–26. [Google Scholar]
- Iqbal, S.; Blenner, M.; Alexander-Bryant, A.; Larsen, J. Polymersomes for Therapeutic Delivery of Protein and Nucleic Acid Macromolecules: From Design to Therapeutic Applications. Biomacromolecules 2020, 21, 1327–1350. [Google Scholar] [CrossRef]
- Gupta, S.; Jain, A.; Chakraborty, M.; Sahni, J.K.; Ali, J.; Dang, S. Oral Delivery of Therapeutic Proteins and Peptides: A Review on Recent Developments. Drug Deliv. 2013, 20, 237–246. [Google Scholar] [CrossRef]
- Akash, M.S.H.; Rehman, K.; Chen, S. Pluronic F127-Based Thermosensitive Gels for Delivery of Therapeutic Proteins and Peptides. Polym. Rev. 2014, 54, 573–597. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, X.; Yu, H.; Zhou, C.; Nie, Z.; Yang, J.; Qian, J.; Ni, H. Preparation of Zwitterionic Microspheres of PDMAEMA-b-PMAA by RAFT Dispersion Polymerization in Alcohol, Their PH-Sensitivity in Water, and Self-Assembly in KCl Solution. Colloid Polym. Sci. 2021, 299, 663–674. [Google Scholar] [CrossRef]
- Shah, S.; Leon, L. Structural Dynamics, Phase Behavior, and Applications of Polyelectrolyte Complex Micelles. Curr. Opin. Colloid Interface Sci. 2021, 53, 101424. [Google Scholar] [CrossRef]
- Cai, C.; Bakowsky, U.; Rytting, E.; Schaper, A.K.; Kissel, T. Charged Nanoparticles as Protein Delivery Systems: A Feasibility Study Using Lysozyme as Model Protein. Eur. J. Pharm. Biopharm. 2008, 69, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Tao, A.; Huang, G.L.; Igarashi, K.; Hong, T.; Liao, S.; Stellacci, F.; Matsumoto, Y.; Yamasoba, T.; Kataoka, K.; Cabral, H. Polymeric Micelles Loading Proteins through Concurrent Ion Complexation and PH-Cleavable Covalent Bonding for In Vivo Delivery. Macromol. Biosci. 2020, 20, 1900161. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, C.; Xia, W.; Quan, G.; Huang, Y.; Bai, X.; Yu, F.; Xu, Q.; Qin, W.; Liu, D.; et al. Poly(L-Glutamic Acid)-Based Brush Copolymers: Fabrication, Self-Assembly, and Evaluation as Efficient Nanocarriers for Cationic Protein Drug Delivery. AAPS PharmSciTech 2020, 21, 78. [Google Scholar] [CrossRef] [PubMed]
- Perrier, S. 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules 2017, 50, 7433–7447. [Google Scholar] [CrossRef]
- Hatton, F.L. Recent Advances in RAFT Polymerization of Monomers Derived from Renewable Resources. Polym. Chem. 2020, 11, 220–229. [Google Scholar] [CrossRef]
- Cook, A.B.; Perrier, S. Branched and Dendritic Polymer Architectures: Functional Nanomaterials for Therapeutic Delivery. Adv. Funct. Mater. 2020, 30, 1901001. [Google Scholar] [CrossRef]
- Xu, W.; Ling, P.; Zhang, T. Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs. J. Drug Deliv. 2013, 2013, 1–15. [Google Scholar] [CrossRef]
- Delgado, J.D.; Schlenoff, J.B. Polyelectrolyte Complex Films from Blends Versus Copolymers. Macromolecules 2019, 52, 7812–7820. [Google Scholar] [CrossRef]
- Van Gheluwe, L.; Chourpa, I.; Gaigne, C.; Munnier, E. Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness. Polymers 2021, 13, 1285. [Google Scholar] [CrossRef]
- Barkat, K.; Ahmad, M.; Usman Minhas, M.; Khalid, I.; Nasir, B. Development and Characterization of pH-responsive Polyethylene Glycol-co-poly(Methacrylic Acid) Polymeric Network System for Colon Target Delivery of Oxaliplatin: Its Acute Oral Toxicity Study. Adv. Polym. Technol. 2018, 37, 1806–1822. [Google Scholar] [CrossRef]
- Kim, B.; Shin, Y. PH-sensitive Swelling and Release Behaviors of Anionic Hydrogels for Intelligent Drug Delivery System. J. Appl. Polym. Sci. 2007, 105, 3656–3661. [Google Scholar] [CrossRef]
- Tang, Q.; Cheng, F.; Lou, X.L.; Liu, H.J.; Chen, Y. Comparative Study of Thiol-Free Amphiphilic Hyperbranched and Linear Polymers for the Stabilization of Large Gold Nanoparticles in Organic Solvent. J. Colloid Interface Sci. 2009, 337, 485–491. [Google Scholar] [CrossRef]
- Bera, S.; Barman, R.; Ghosh, S. Hyperbranched vs. Linear Poly(Disulfide) for Intracellular Drug Delivery. Polym. Chem. 2022, 13, 5188–5192. [Google Scholar] [CrossRef]
- Namivandi-Zangeneh, R.; Kwan, R.J.; Nguyen, T.K.; Yeow, J.; Byrne, F.L.; Oehlers, S.H.; Wong, E.H.H.; Boyer, C. The Effects of Polymer Topology and Chain Length on the Antimicrobial Activity and Hemocompatibility of Amphiphilic Ternary Copolymers. Polym. Chem. 2018, 9, 1735–1744. [Google Scholar] [CrossRef]
- Kavand, A.; Anton, N.; Vandamme, T.; Serra, C.A.; Chan-Seng, D. Synthesis and Functionalization of Hyperbranched Polymers for Targeted Drug Delivery. J. Control. Release 2020, 321, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Sezgin-bayindir, Z.; Ergin, A.D.; Parmaksiz, M.; Elcin, A.E.; Elcin, Y.M.; Yuksel, N. Evaluation of Various Block Copolymers for Micelle Formation and Brain Drug Delivery: In Vitro Characterization and Cellular Uptake Studies. J. Drug Deliv. Sci. Technol. 2016, 36, 120–129. [Google Scholar] [CrossRef]
- Rashidzadeh, H.; Rezaei, S.J.T.; Zamani, S.; Sarijloo, E.; Ramazani, A. PH-Sensitive Curcumin Conjugated Micelles for Tumor Triggered Drug Delivery. J. Biomater. Sci. Polym. Ed. 2021, 32, 320–336. [Google Scholar] [CrossRef]
- Available online: https://www.noaa.gov/jetstream/ocean/sea-water (accessed on 15 November 2023).
- Gao, Y.; Zhou, D.; Lyu, J.; A, S.; Xu, Q.; Newland, B.; Matyjaszewski, K.; Tai, H.; Wang, W. Complex Polymer Architectures through Free-Radical Polymerization of Multivinyl Monomers. Nat. Rev. Chem. 2020, 4, 194–212. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Neenan, M.L.; Sundberg, D.C.; Tsavalas, J.G. Influence of N-Alkyl Ester Groups on Efficiency of Crosslinking for Methacrylate Monomers Copolymerized with EGDMA: Experiments and Monte Carlo Simulations of Reaction Kinetics and Sol-Gel Structure. Polymer 2016, 96, 130–145. [Google Scholar] [CrossRef]
- Moad, G. RAFT (Reversible Addition-Fragmentation Chain Transfer) Crosslinking (Co)Polymerization of Multi-Olefinic Monomers to Form Polymer Networks. Polym. Int. 2015, 64, 15–24. [Google Scholar] [CrossRef]
- Tochwin, A.; El-Betany, A.; Tai, H.; Chan, K.; Blackburn, C.; Wang, W. Thermoresponsive and Reducible Hyperbranched Polymers Synthesized by RAFT Polymerisation. Polymers 2017, 9, 443. [Google Scholar] [CrossRef] [PubMed]
- Vogt, A.P.; Gondi, S.R.; Sumerlin, B.S. Hyperbranched Polymers via RAFT Copolymerization of an Acryloyl Trithiocarbonate. Aust. J. Chem. 2007, 60, 396. [Google Scholar] [CrossRef]
- Zhukova, O.V.; Arkhipova, E.V.; Kovaleva, T.F.; Ryabov, S.A.; Ivanova, I.P.; Golovacheva, A.A.; Zykova, D.A.; Zaitsev, S.D. Immunopharmacological Properties of Methacrylic Acid Polymers as Potential Polymeric Carrier Constituents of Anticancer Drugs. Molecules 2021, 26, 4855. [Google Scholar] [CrossRef] [PubMed]
- Balafouti, A.; Pispas, S. Hyperbranched Copolymers of Methacrylic Acid and Lauryl Methacrylate H-P(MAA-Co-LMA): Synthetic Aspects and Interactions with Biorelevant Compounds. Pharmaceutics 2023, 15, 1198. [Google Scholar] [CrossRef] [PubMed]
- Sadowski, L.P.; Singh, A.; Luo, D.H.; Majcher, M.J.; Urosev, I.; Rothenbroker, M.; Kapishon, V.; Smeets, N.M.B.; Hoare, T. Functionalized Poly(Oligo(Lactic Acid) Methacrylate)-Block-Poly(Oligo(Ethylene Glycol) Methacrylate) Block Copolymers: A Synthetically Tunable Analogue to PLA-PEG for Fabricating Drug-Loaded Nanoparticles. Eur. Polym. J. 2022, 177, 111443. [Google Scholar] [CrossRef]
- Mohammad, S.A.; Dolui, S.; Kumar, D.; Mane, S.R.; Banerjee, S. Facile Access to Functional Polyacrylates with Dual Stimuli Response and Tunable Surface Hydrophobicity. Polym. Chem. 2021, 12, 3042–3051. [Google Scholar] [CrossRef]
- Teulère, C.; Ben-Osman, C.; Barry, C.; Nicolaÿ, R. Synthesis and Self-Assembly of Amphiphilic Heterografted Molecular Brushes Prepared by Telomerization. Eur. Polym. J. 2020, 141, 110080. [Google Scholar] [CrossRef]
- Gohy, J.-F. Block copolymer micelles. In Block Copolymers II; Springer-Verlag: Berlin/Heidelberg, 2005; pp. 65–136. [Google Scholar]
- Satoh, T. Unimolecular Micelles Based on Hyperbranched Polycarbohydrate Cores. Soft Matter. 2009, 5, 1972. [Google Scholar] [CrossRef]
- Terashima, T. Controlled Self-Assembly of Amphiphilic Random Copolymers into Folded Micelles and Nanostructure Materials. J. Oleo Sci. 2020, 69, 529–538. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, W.; Liu, J.; Zhu, X.; Yan, D. Self-Assembly of Hyperbranched Polymers and Its Biomedical Applications. Adv. Mater. 2010, 22, 4567–4590. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.G.; Jiang, Y.W.; Sun, H.Y.; Luo, J.J.; Yu, Z.W. Complexation of Lysozyme with Sodium Poly(Styrenesulfonate) via the Two-State and Non-Two-State Unfoldings of Lysozyme. J. Phys. Chem. B 2015, 119, 14382–14392. [Google Scholar] [CrossRef] [PubMed]
- Steudle, A.; Pleiss, J. Modelling of Lysozyme Binding to a Cation Exchange Surface at Atomic Detail: The Role of Flexibility. Biophys. J. 2011, 100, 3016–3024. [Google Scholar] [CrossRef] [PubMed]
- Chernysheva, M.G.; Shnitko, A.V.; Ksenofontov, A.L.; Arutyunyan, A.M.; Petoukhov, M.V.; Badun, G.A. Structural Peculiarities of Lysozyme—PLURONIC Complexes at the Aqueous-Air and Liquid-Liquid Interfaces and in the Bulk of Aqueous Solution. Int. J. Biol. Macromol. 2020, 158, 721–731. [Google Scholar] [CrossRef]
- Nicoli, D.F.; Benedek, G.B. Study of Thermal Denaturation of Lysozyme and Other Globular Proteins by Light-scattering Spectroscopy. Biopolymers 1976, 15, 2421–2437. [Google Scholar] [CrossRef] [PubMed]
- Sentoukas, T.; Pispas, S. Poly(2-(Dimethylamino)Ethyl Methacrylate)-b-poly(Hydroxypropyl Methacrylate) Copolymers/Bovine Serum Albumin Complexes in Aqueous Solutions. J. Polym. Sci. 2020, 58, 1241–1252. [Google Scholar] [CrossRef]
- Amara, C.B.; Degraeve, P.; Oulahal, N.; Gharsallaoui, A. pH-Dependent Complexation of Lysozyme with Low Methoxyl (LM) Pectin. Food Chem. 2017, 236, 127–133. [Google Scholar] [CrossRef]
- Kurtin, W.E.; Lee, J.M. The Free Energy of Denaturation of Lysozyme: An Undergraduate Experiment in Biophysical Chemistry*. Biochem. Mol. Biol. Educ. 2002, 30, 244–247. [Google Scholar] [CrossRef]
- Wu, M.; He, S.; Tang, H.; Hu, H.; Shi, Y. Molecular Engineering of Polymyxin B for Imaging and Treatment of Bacterial Infections. Front. Chem. 2022, 9, 809584. [Google Scholar] [CrossRef]
- Insua, I.; Majok, S.; Peacock, A.F.A.; Krachler, A.M.; Fernandez-Trillo, F. Preparation and Antimicrobial Evaluation of Polyion Complex (PIC) Nanoparticles Loaded with Polymyxin B. Eur. Polym. J. 2017, 87, 478–486. [Google Scholar] [CrossRef]
- Insua, I.; Zizmare, L.; Peacock, A.F.A.; Krachler, A.M.; Fernandez-Trillo, F. Polymyxin B Containing Polyion Complex (PIC) Nanoparticles: Improving the Antimicrobial Activity by Tailoring the Degree of Polymerisation of the Inert Component. Sci. Rep. 2017, 7, 9396. [Google Scholar] [CrossRef] [PubMed]
- Michael, A.S.; Thompson, C.G.; Abramovitz, M. Artemia salina as a Test Organism for Bioassay. Science 1956, 123, 464. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, S.; Samathanam, B.; Reuther, H.; Adyanpuram, M.N.M.S.; Enoch, I.V.M.V.; Potzger, K. Molecular encapsulator on the surface of magnetic nanoparticles. Controlled drug release from calcium Ferrite/Cyclodextrin–tethered polymer hybrid. Colloids Surf. B Biointerfaces 2018, 161, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Hamidreza, S. Hamidreza, S. Synthesis of nanocomposition of poly acrylic acid/chitosan coated-magnetite nanoparticles to investigation of interaction with BSA and IGG proteins. Int. J. Nanomater. Nanotechnol. Nanomed. 2017, 027–033. [Google Scholar] [CrossRef]
- Shokry, A.; Khalil, M.; Ibrahim, H.; Soliman, M.; Ebrahim, S. Acute Toxicity Assessment of Polyaniline/Ag Nanoparticles/Graphene Oxide Quantum Dots on Cypridopsis Vidua and Artemia Salina. Sci. Rep. 2021, 11, 5336. [Google Scholar] [CrossRef]
- Muthukrishnan, S.; Senthil Kumar, T.; Rao, M.V. Anticancer Activity of Biogenic Nanosilver and Its Toxicity Assessment on Artemia Salina—Evaluation of Mortality, Accumulation and Elimination: An Experimental Report. J. Environ. Chem. Eng. 2017, 5, 1685–1695. [Google Scholar] [CrossRef]
HC | Initial Feed Ratio c | Mw a (g/mol) (×104) | Mw/Mn a | wt% tBMA Theoretical | wt% tBMA b | wt% tBMA b after Hydrolysis |
---|---|---|---|---|---|---|
1 | 21:27.5:2:1:0.5 | 2.9 | 1.78 | 30 | 33 | 27 |
2 | 35:1.95:2:1:0.5 | 3.4 | 1.93 | 50 | 48 | 7 |
3 | 49:12:2:1:0.5 | 3.5 | 1.94 | 70 | 67 | 5 |
HHC | DLS Results in THF | LS Results in Aqueous Media for the HHCs | LS Results in Aqueous Media after 24 h Hydrolysis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
I90˚ (a.u.) | Rh (nm) | PDI | I90˚ (a.u.) | Rh (nm) | PDI | ζp | I90˚ (a.u.) | Rh (nm) | PDI | ζp | |
1 | 130 | 9 | 0.52 | 16,450 | 42 | 0.22 | −52 | 55,000 | 97 (87%), 38(13%) | 0.16 | −54 |
2 | 136 | 10 | 0.48 | 30 | 5 | 0.47 | −6 | 30 | 5 | 0.47 | −6 |
3 | 160 | 11 | 0.52 | 186 | 63 (92%), 4(8%) | 0.49 | −49 | 1920 | 24 | 0.23 | −45 |
HHC | HHC/LYZ Ratio | Cpolymer (g/mL) | Clysozyme (g/mL) | I90° (a.u.) | PDI | Rh (nm) | ζp (mV) |
---|---|---|---|---|---|---|---|
2 | HHC Non complexed | 7.5 × 10−5 | - | 7000 | 0.12 | 65 | −22 |
2 | HHC:LYZ = 2:1 | 7.5 × 10−5 | 3.26 × 10−4 | 6050 | 0.13 | 74 (95%)/ 20 (5%) | +26 |
2 | HHC:LYZ = 1.5:1 | 7.5 × 10−5 | 4.35 × 10−4 | 7000 | 0.10 | 71 | +26 |
2 | HHC:LYZ = 1:1 | 7.5 × 10−5 | 6.52 × 10−4 | 6850 | 0.11 | 72 (95%)/ 21 (5%) | +28 |
2 | HHC:LYZ = 1:1.5 | 7.5 × 10−5 | 9.78 × 10−4 | 6240 | 0.11 | 71 (96%)/ 20 (4%) | +25 |
2 | HHC:LYZ = 1:2 | 7.5 × 10−5 | 13.04 × 10−4 | 5000 | 0.11 | 67 | +25 |
3 | HHC Non complexed | 7.5 × 10−5 | - | 4330 | 0.13 | 53 (98%)/ 14 (2%) | −57 |
3 | HHC:LYZ = 2:1 | 7.5 × 10−5 | 4.93 × 10−4 | 5900 | 0.14 | 72 (86%)/ 30 (14%) | +19 |
3 | HHC:LYZ = 1.5:1 | 7.5 × 10−5 | 6.57 × 10−4 | 5050 | 0.14 | 66 (96%)/ 15 (4%) | +20 |
3 | HHC:LYZ = 1:1 | 7.5 × 10−5 | 9.86 × 10−4 | 4880 | 0.16 | 67 (94%)/ 21 (6%) | +27 |
3 | HHC:LYZ = 1:1.5 | 7.5 × 10−5 | 14.79 × 10−4 | 3560 | 0.15 | 54 (99%)/ 9 (1%) | +27 |
3 | HHC:LYZ = 1:2 | 7.5 × 10−5 | 19.72 × 10−4 | 1876 | 0.16 | 57 (95%)/ 15 (5%) | +30 |
HHC | HHC:PMX Ratio | Cpolymer (g/mL) | Cpolymyxin (g/mL) | I90° (a.u.) | PDI | Rh (nm) | ζp (mV) |
---|---|---|---|---|---|---|---|
1 | HHC Non complexed | 7.5 × 10−5 | - | 1880 | 0.22 | 59 (73%)/ 23 (27%) | −47 |
1 | HHC:PMX = 2:1 | 7.5 × 10−5 | 0.85 × 10−4 | 1470 | 0.13 | 54 | +25 |
1 | HHC:PMX = 1.5:1 | 7.5 × 10−5 | 1.13 × 10−4 | 1145 | 0.18 | 53 | +23 |
1 | HHC:PMX = 1:1 | 7.5 × 10−5 | 1,69 × 10−4 | 2112 | 0.15 | 56 | +24 |
3 | HHC Non complexed | 7.5 × 10−5 | - | 29 | 0.59 | 56 (90%)/ 3 (10%) | −54 |
3 | HHC:PMX = 8:1 | 7.5 × 10−5 | 2.46 × 10−4 | 790 | 0.25 | 72 (94%)/ 15 (6%) | −50 |
3 | HHC:PMX = 4:1 | 7.5 × 10−5 | 4.99 × 10−4 | 1550 | 0.24 | 75 (96%)/ 15 (4%) | −47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balafouti, A.; Forys, A.; Trzebicka, B.; Gerardos, A.M.; Pispas, S. Anionic Hyperbranched Amphiphilic Polyelectrolytes as Nanocarriers for Antimicrobial Proteins and Peptides. Materials 2023, 16, 7702. https://doi.org/10.3390/ma16247702
Balafouti A, Forys A, Trzebicka B, Gerardos AM, Pispas S. Anionic Hyperbranched Amphiphilic Polyelectrolytes as Nanocarriers for Antimicrobial Proteins and Peptides. Materials. 2023; 16(24):7702. https://doi.org/10.3390/ma16247702
Chicago/Turabian StyleBalafouti, Anastasia, Aleksander Forys, Barbara Trzebicka, Angelica Maria Gerardos, and Stergios Pispas. 2023. "Anionic Hyperbranched Amphiphilic Polyelectrolytes as Nanocarriers for Antimicrobial Proteins and Peptides" Materials 16, no. 24: 7702. https://doi.org/10.3390/ma16247702
APA StyleBalafouti, A., Forys, A., Trzebicka, B., Gerardos, A. M., & Pispas, S. (2023). Anionic Hyperbranched Amphiphilic Polyelectrolytes as Nanocarriers for Antimicrobial Proteins and Peptides. Materials, 16(24), 7702. https://doi.org/10.3390/ma16247702