Derivatives of Pyridazine with Phenoxazine and 9,9-Dimethyl-9,10-dihydroacridine Donor Moieties Exhibiting Thermally Activated Delayed Fluorescence
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Thermal Properties
2.2. Theoretical Calculations and Electrochemical Properties
2.3. Photophysical Properties
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schleper, A.L.; Goushi, K.; Bannwarth, C.; Haehnle, B.; Welscher, P.J.; Adachi, C.; Kuehne, A.J.C. Hot Exciplexes in U-Shaped TADF Molecules with Emission from Locally Excited States. Nat. Commun. 2021, 12, 6179. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhang, Y.; Ma, D.; Wang, Q. Phthalonitrile-Based Bipolar Host for Efficient Green to Red Phosphorescent and TADF OLEDs. Dye. Pigment. 2020, 173, 107895. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.-X.; Yuan, Y.; Hu, Y.; Tian, Q.-S.; Jiang, Z.-Q.; Liao, L.-S. Alleviating Efficiency Roll-Off of Hybrid Single-Emitting Layer WOLED Utilizing Bipolar TADF Material as Host and Emitter. ACS Appl. Mater. Interfaces 2019, 11, 2197–2204. [Google Scholar] [CrossRef] [PubMed]
- Haase, N.; Danos, A.; Pflumm, C.; Stachelek, P.; Brütting, W.; Monkman, A.P. Are the Rates of Dexter Transfer in TADF Hyperfluorescence Systems Optically Accessible? Mater. Horiz. 2021, 8, 1805–1815. [Google Scholar] [CrossRef]
- Chen, X.-K.; Bakr, B.W.; Auffray, M.; Tsuchiya, Y.; Sherrill, C.D.; Adachi, C.; Bredas, J.-L. Intramolecular Noncovalent Interactions Facilitate Thermally Activated Delayed Fluorescence (TADF). J. Phys. Chem. Lett. 2019, 10, 3260–3268. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Luo, S.; Li, Z.; Ai, X.; Pang, Z.; Li, C.; Chen, K.; Zhou, L.; Li, F.; Huang, Y.; et al. Highly Efficient Deep-Blue OLEDs Based on Hybridized Local and Charge-Transfer Emitters Bearing Pyrene as the Structural Unit. Chem. Commun. 2019, 55, 6317–6320. [Google Scholar] [CrossRef]
- Gao, F.; Du, R.; Han, C.; Zhang, J.; Wei, Y.; Lu, G.; Xu, H. High-Efficiency Blue Thermally Activated Delayed Fluorescence from Donor–Acceptor–Donor Systems via the through-Space Conjugation Effect. Chem. Sci. 2019, 10, 5556–5567. [Google Scholar] [CrossRef]
- Colella, M.; Danos, A.; Monkman, A.P. Identifying the Factors That Lead to PLQY Enhancement in Diluted TADF Exciplexes Based on Carbazole Donors. J. Phys. Chem. C 2019, 123, 17318–17324. [Google Scholar] [CrossRef]
- Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; et al. A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes. J. Am. Chem. Soc. 2016, 138, 628–634. [Google Scholar] [CrossRef]
- Han, C.; Zhang, J.; Ma, P.; Yang, W.; Xu, H. Host Engineering Based on Multiple Phosphorylation for Efficient Blue and White TADF Organic Light-Emitting Diodes. Chem. Eng. J. 2021, 405, 126986. [Google Scholar] [CrossRef]
- Lin, T.-C.; Sarma, M.; Chen, Y.-T.; Liu, S.-H.; Lin, K.-T.; Chiang, P.-Y.; Chuang, W.-T.; Liu, Y.-C.; Hsu, H.-F.; Hung, W.-Y.; et al. Probe Exciplex Structure of Highly Efficient Thermally Activated Delayed Fluorescence Organic Light Emitting Diodes. Nat. Commun 2018, 9, 3111. [Google Scholar] [CrossRef]
- Chen, D.; Zysman-Colman, E. Exploring the Possibility of Using Fluorine-Involved Non-Conjugated Electron-Withdrawing Groups for Thermally Activated Delayed Fluorescence Emitters by TD-DFT Calculation. Beilstein. J. Org. Chem. 2021, 17, 210–223. [Google Scholar] [CrossRef]
- Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.D.S.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, Its Derivatives and Applications: A State of the Art Review. Eur. J. Med. Chem. 2015, 97, 664–672. [Google Scholar] [CrossRef]
- Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Adv. Mater. 2014, 26, 7931–7958. [Google Scholar] [CrossRef]
- Wang, K.; Bao, Y.; Zhu, S.; Liu, R.; Zhu, H. Novel 1,5-Naphthyridine-Chromophores with D-A-D Architecture: Synthesis, Synthesis, Luminescence and Electrochemical Properties. Dye. Pigment. 2020, 181, 108596. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, H.; Chen, Z.; Gong, S.; Lu, Z.-H.; Yang, C. Naphthyridine-Based Emitters Simultaneously Exhibiting Thermally Activated Delayed Fluorescence and Aggregation-Induced Emission for Highly Efficient Non-Doped Fluorescent OLEDs. J. Mater. Chem. C Mater. 2019, 7, 6607–6615. [Google Scholar] [CrossRef]
- Kaji, H.; Suzuki, H.; Fukushima, T.; Shizu, K.; Suzuki, K.; Kubo, S.; Komino, T.; Oiwa, H.; Suzuki, F.; Wakamiya, A.; et al. Purely Organic Electroluminescent Material Realizing 100% Conversion from Electricity to Light. Nat. Commun. 2015, 6, 8476. [Google Scholar] [CrossRef]
- Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Recent Advances of 1,2,3,5-Tetrakis(Carbazol-9-Yl)-4,6-Dicyanobenzene (4CzIPN) in Photocatalytic Transformations. Chem. Commun. 2019, 55, 5408–5419. [Google Scholar] [CrossRef] [PubMed]
- He, Z.-X.; Gong, Y.-P.; Zhang, X.; Ma, L.-Y.; Zhao, W. Pyridazine as a Privileged Structure: An Updated Review on Anticancer Activity of Pyridazine Containing Bioactive Molecules. Eur. J. Med. Chem. 2021, 209, 112946. [Google Scholar] [CrossRef]
- Achelle, S.; Hodée, M.; Massue, J.; Fihey, A.; Katan, C. Diazine-Based Thermally Activated Delayed Fluorescence Chromophores. Dye. Pigment. 2022, 200, 110157. [Google Scholar] [CrossRef]
- Yuan, W.; Hu, D.; Zhu, M.; Shi, W.; Shi, C.; Sun, N.; Tao, Y. Simple Peripheral Modification for Color Tuning of Thermally Activated Delayed Fluorescence Emitters in OLEDs. Dye. Pigment. 2021, 191, 109395. [Google Scholar] [CrossRef]
- Gauthier, S.; Fréchet, J.M.J. Phase-Transfer Catalysis in the Ullmann Synthesis of Substituted Triphenylamines. Synthesis 1987, 1987, 383–385. [Google Scholar] [CrossRef]
- Qu, Y.; Pander, P.; Vybornyi, O.; Vasylieva, M.; Guillot, R.; Miomandre, F.; Dias, F.B.; Skabara, P.; Data, P.; Clavier, G.; et al. Donor–Acceptor 1,2,4,5-Tetrazines Prepared by the Buchwald–Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-On Property by Inverse Electron Demand Diels–Alder Reaction. J. Org. Chem. 2020, 85, 3407–3416. [Google Scholar] [CrossRef]
- Franz, A.W.; Popa, L.N.; Rominger, F.; Müller, T.J.J. First Synthesis and Electronic Properties of Diphenothiazine Dumbbells Bridged by Heterocycles. Org. Biomol. Chem. 2009, 7, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Wang, X.; Zhang, W.; Zhuang, X.; Bi, S.; Zhang, W.; Zhang, F. Aromatic Azaheterocycle-Cored Luminogens with Tunable Physical Properties via Nitrogen Atoms for Sensing Strong Acids. J. Mater. Chem. C Mater. 2016, 4, 7640–7648. [Google Scholar] [CrossRef]
- Plé, N.; Achelle, S.; Kreher, D.; Mathevet, F.; Turck, A. Oligomers Containing Ethynylpyridazine Moieties: Synthesis, Fluorescence and Liquid Crystalline Properties. Diazines 50. Heterocycles 2008, 75, 357. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, S.J.; Guo, L.Y.; Wang, C.J.; Tong, Y.; Mi, B.X.; Cao, D.P.; Song, J.; Gao, Z.Q. Design of C^N=N Type Iridium(III) Complexes towards Short-Wavelength Emission for High Efficiency Organic Light-Emitting Diodes. RSC Adv. 2016, 6, 81869–81876. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Ou, C.; Wang, S.; Yang, X.; Zhou, X.; Mi, B.; Cao, D.; Gao, Z. Structure–Property Study on Two New D–A Type Materials Comprising Pyridazine Moiety and the OLED Application as Host. ACS Appl. Mater. Interfaces 2017, 9, 26242–26251. [Google Scholar] [CrossRef]
- Krotkus, S.; Matulaitis, T.; Diesing, S.; Copley, G.; Archer, E.; Keum, C.; Cordes, D.B.; Slawin, A.M.Z.; Gather, M.C.; Zysman-Colman, E.; et al. Fast Delayed Emission in New Pyridazine-Based Compounds. Front. Chem. 2021, 8, 572862. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, UK, 2016. [Google Scholar]
- Dias, F.B.; Penfold, T.J.; Monkman, A.P. Photophysics of Thermally Activated Delayed Fluorescence Molecules. Methods Appl. Fluoresc. 2017, 5, 012001. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Hasan, M.; Shukla, A.; Acharya, N.; Upadhyay, M.; Lo, S.-C.; Namdas, E.B.; Ray, D. Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in Asymmetric Phenoxazine-Quinoline (D2–A) Conjugates and Dual Electroluminescence. J. Phys. Chem. C 2022, 126, 5649–5657. [Google Scholar] [CrossRef]
- Kwon, D.Y.; Lee, G.H.; Kim, Y.S. Theoretical Study on Benzazole Derivatives for Use in Blue Thermally Activated Delayed Fluorescence Emitters. J. Nanosci. Nanotechnol. 2015, 15, 7819–7822. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.L.; Ward, J.S.; Data, P.; Batsanov, A.S.; Bryce, M.R.; Dias, F.B.; Monkman, A.P. Engineering the Singlet–Triplet Energy Splitting in a TADF Molecule. J. Mater. Chem. C Mater. 2016, 4, 3815–3824. [Google Scholar] [CrossRef]
- Hosokai, T.; Matsuzaki, H.; Nakanotani, H.; Tokumaru, K.; Tsutsui, T.; Furube, A.; Nasu, K.; Nomura, H.; Yahiro, M.; Adachi, C. Evidence and Mechanism of Efficient Thermally Activated Delayed Fluorescence Promoted by Delocalized Excited States. Sci. Adv. 2017, 3, e1603282. [Google Scholar] [CrossRef]
- Jang, J.S.; Lee, H.L.; Lee, K.H.; Lee, J.Y. Electrostatic Potential Dispersing Pyrimidine-5-Carbonitrile Acceptor for High Efficiency and Long Lifetime Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. J. Mater. Chem. C Mater. 2019, 7, 12695–12703. [Google Scholar] [CrossRef]
- Traskovskis, K.; Sebris, A.; Novosjolova, I.; Turks, M.; Guzauskas, M.; Volyniuk, D.; Bezvikonnyi, O.; Grazulevicius, J.V.; Mishnev, A.; Grzibovskis, R.; et al. All-Organic Fast Intersystem Crossing Assisted Exciplexes Exhibiting Sub-Microsecond Thermally Activated Delayed Fluorescence. J. Mater. Chem. C Mater. 2021, 9, 4532–4543. [Google Scholar] [CrossRef]
Compound | TID, °C 1 | Tg, °C | Tcr, °C 2 | Tm, °C 3 |
---|---|---|---|---|
2PO-PYD | 314 | - | 188 | 248 |
2AC-PYD | 336 | 80 | 133 | 231 |
Compound | λa, nm 1 | λe, nm 2 | Φ 3 | ES1, eV 4 | ET1, eV 4 | ΔEST 4 |
---|---|---|---|---|---|---|
2PO-PYD | 308/308 | ca. 420, 618/398, 639/565 | <0.01 | 2.68 | 2.59 | 0.09 |
2AC-PYD | ca. 280/290 | 353, 535/346, 561/517 | <0.01 | 2.64 | 2.29 | 0.35 |
Toluene Solution 1 | λ, nm 2 | Lifetime, ns 3 | kRISC, s−1 | kISC, s−1 | χ 2,4 |
---|---|---|---|---|---|
2PO-PYD | 394 | 2.85 | - | - | 1.043 |
2PO-PYD | 609 | 2.49 (85.44%), 9.75 (6.49%), 92.86 (8.07%) | 9.5 × 105 | 2.2 × 108 | 1.166 |
2AC-PYD | 534 | 6 (95.52%), 142.96 (4.48%) | 3.3 × 105 | 1.6 × 108 | 1.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skhirtladze, L.; Bezvikonnyi, O.; Keruckienė, R.; Dvylys, L.; Mahmoudi, M.; Labanauskas, L.; Ariffin, A.; Grazulevicius, J.V. Derivatives of Pyridazine with Phenoxazine and 9,9-Dimethyl-9,10-dihydroacridine Donor Moieties Exhibiting Thermally Activated Delayed Fluorescence. Materials 2023, 16, 1294. https://doi.org/10.3390/ma16031294
Skhirtladze L, Bezvikonnyi O, Keruckienė R, Dvylys L, Mahmoudi M, Labanauskas L, Ariffin A, Grazulevicius JV. Derivatives of Pyridazine with Phenoxazine and 9,9-Dimethyl-9,10-dihydroacridine Donor Moieties Exhibiting Thermally Activated Delayed Fluorescence. Materials. 2023; 16(3):1294. https://doi.org/10.3390/ma16031294
Chicago/Turabian StyleSkhirtladze, Levani, Oleksandr Bezvikonnyi, Rasa Keruckienė, Lukas Dvylys, Malek Mahmoudi, Linas Labanauskas, Azhar Ariffin, and Juozas V. Grazulevicius. 2023. "Derivatives of Pyridazine with Phenoxazine and 9,9-Dimethyl-9,10-dihydroacridine Donor Moieties Exhibiting Thermally Activated Delayed Fluorescence" Materials 16, no. 3: 1294. https://doi.org/10.3390/ma16031294
APA StyleSkhirtladze, L., Bezvikonnyi, O., Keruckienė, R., Dvylys, L., Mahmoudi, M., Labanauskas, L., Ariffin, A., & Grazulevicius, J. V. (2023). Derivatives of Pyridazine with Phenoxazine and 9,9-Dimethyl-9,10-dihydroacridine Donor Moieties Exhibiting Thermally Activated Delayed Fluorescence. Materials, 16(3), 1294. https://doi.org/10.3390/ma16031294