Influence of Air Humidity Level on the Structure and Mechanical Properties of Thermoplastic Starch-Montmorillonite Nanocomposite during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TPS and TPS-MMT Nanocomposite Samples
2.3. Tensile Testing
2.4. Dynamic Mechanical Thermal Analysis (DMTA)
2.5. Water Content
2.6. 1H and 13C NMR Measurements
3. Results
3.1. 13C CP MAS NMR
3.2. 1H BL NMR
3.3. 1H MAS NMR
3.4. Water Content Estimation by Means of BL 1H NMR
3.5. Mechanical Properties
3.6. Dynamic Mechanical Thermal Analysis (DMTA)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peidayesh, H.; Heydari, A.; Mosnáčková, K.; Chodák, I. In situ dual crosslinking strategy to improve the physico-chemical properties of thermoplastic starch. Carbohyd. Polym. 2021, 269, 118250. [Google Scholar] [CrossRef] [PubMed]
- Baran, A.; Vrábel, P.; Kovaľaková, M.; Hutníková, M.; Fričová, O.; Olčák, D. Effects of sorbitol and formamide plasticizers on molecular motion in corn starch studied using NMR and DMTA. J. Appl. Polym. Sci. 2020, 137, 48964. [Google Scholar] [CrossRef]
- Peidayesh, H.; Ahmadi, Z.; Khonakdar, H.A.; Abdouss, M.; Chodák, I. Fabrication and properties of thermoplastic starch/montmorillonite composite using dialdehyde starch as a crosslinker. Polym. Int. 2020, 69, 317–327. [Google Scholar] [CrossRef]
- Peidayesh, H.; Mosnáčková, K.; Špitalský, Z.; Heydari, A.; Opálková Šišková, A.; Chodák, I. Thermoplastic Starch–Based Composite Reinforced by Conductive Filler Networks: Physical Properties and Electrical Conductivity Changes during Cyclic Deformation. Polymers 2021, 13, 3819. [Google Scholar] [CrossRef] [PubMed]
- Peidayesh, H.; Ahmadi, Z.; Khonakdar, H.A.; Abdouss, M.; Chodák, I. Baked hydrogel from corn starch and chitosan blends cross-linked by citric acid: Preparation and properties. Polym. Adv. Technol. 2020, 31, 1256–1269. [Google Scholar] [CrossRef]
- Fričová, O.; Hutníková, M. Changes in molecular mobility of sorbitol plasticized starch during aging. J. Appl. Polym. Sci. 2022, 139, e52948. [Google Scholar] [CrossRef]
- Baran, A.; Fričová, O.; Vrábel, P.; Popovič, Ľ.; Peidayesh, H.; Chodák, I.; Hutníková, M.; Kovaľaková, M. Effects of urea and glycerol mixture on morphology and molecular mobility in thermoplastic starch/montmorillonite-type nanofiller composites studied using XRD and NMR. J. Polym. Res. 2022, 29, 257. [Google Scholar] [CrossRef]
- Fekete, E.; Angyal, L.; Csiszár, E. The effect of surface characteristics of clays on the properties of starch nanocomposites. Materials 2022, 15, 7627. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Kmetty, Á.; Lendvai, L.; Drakopoulos, S.X.; Bárány, T. Water-assisted production of thermoplastic nanocomposites: A review. Materials 2015, 8, 72–95. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Yu, J.; Ma, X. High mechanical performance MMT-urea and formamide-plasticized thermoplastic cornstarch biodegradable nanocomposites. Carbohyd. Polym. 2006, 63, 393–399. [Google Scholar] [CrossRef]
- Ikeo, Y.; Aoki, K.; Kishi, H.; Matsuda, S.; Murakami, A. Nano clay reinforced biodegradable plastics of PCL starch blends. Polym. Adv. Technol. 2006, 17, 940–944. [Google Scholar] [CrossRef]
- Namazi, H.; Mosadegh, M.; Dadkhah, A. New intercalated layer silicate nanocomposites based on synthesized starch-g-PCL prepared via solution intercalation and in situ polymerization methods: As a comparative study. Carbohyd. Polym. 2009, 75, 665–669. [Google Scholar] [CrossRef]
- Kalambur, S.; Rizvi, S.S. Biodegradable and functionally superior starch–polyester nanocomposites from reactive extrusion. J. Appl. Polym. Sci. 2005, 96, 1072–1082. [Google Scholar] [CrossRef]
- Perotti, G.F.; Tronto, J.; Bizeto, M.A.; Izumi, C.M.S.; Temperini, M.L.A.; Lugão, A.B.; Parra, D.F.; Constantino, V.R.L. Biopolymer-clay nanocomposites: Cassava starch and synthetic clay cast films. J. Braz. Chem. Soc. 2014, 25, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.S.; Tang, X.; Alavi, S.; Faubion, J. Structure and physical properties of starch/poly vinyl alcohol/sodium montmorillonite nanocomposite films. J. Agric. Food Chem. 2011, 59, 12384–12395. [Google Scholar] [CrossRef]
- Derungs, I.; Rico, M.; López, J.; Barral, L.; Montero, B.; Bouza, R. Influence of the hydrophilicity of montmorillonite on structure and properties of thermoplastic wheat starch/montmorillonite bionanocomposites. Polym. Adv. Technol. 2021, 32, 4479–4489. [Google Scholar] [CrossRef]
- Coativy, G.; Chevigny, C.; Rolland-Sabaté, A.; Leroy, E.; Lourdin, D. Interphase vs confinement in starch-clay bionanocomposites. Carbohyd. Polym. 2015, 117, 746–752. [Google Scholar] [CrossRef]
- Godbilot, L.; Dole, P.; Joly, C.; Rogé, B.; Mathlouthi, M. Analysis of water binding in starch plasticized films. Food Chem. 2006, 96, 380–386. [Google Scholar] [CrossRef]
- Šoltýs, A.; Hronský, V.; Šmídová, N.; Olčák, D.; Ivanič, F.; Chodák, I. Solid-state 1H and 13C NMR of corn starch plasticized with glycerol and urea. Eur. Polym. J. 2019, 117, 19–27. [Google Scholar] [CrossRef]
- Šmídová, N.; Šoltýs, A.; Hronský, V.; Olčák, D.; Popovič, L.; Chodák, I. Aging-induced structural relaxation in cornstarch plasticized with urea and glycerol. J. Appl. Polym. Sci. 2021, 138, 50218. [Google Scholar] [CrossRef]
- Fričová, O.; Hutníková, M.; Kovaľaková, M.; Baran, A. Influence of aging on molecular motion in PBAT-thermoplastic starch blends studied using solid-state NMR. Int. J. Polym. Anal. Charact. 2020, 25, 275–282. [Google Scholar] [CrossRef]
- Greenspan, L. Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1977, 81, 89–96. [Google Scholar] [CrossRef]
- Mutungi, C.; Passauer, L.; Onyango, C.; Jaros, D.; Rohm, H. Debranched cassava starch crystallinity determination by Raman spectroscopy: Correlation of features in Raman spectra with X-ray diffraction and 13C CP/MAS NMR spectroscopy. Carbohyd. Polym. 2012, 87, 598–606. [Google Scholar] [CrossRef]
- Thérien-Aubin, H.; Zhu, X.X. NMR spectroscopy and imaging studies of pharmaceutical tablets made of starch. Carbohyd. Polym. 2009, 75, 369–379. [Google Scholar] [CrossRef]
- Spěváček, J.; Brus, J.; Divers, T.; Grohens, Y. Solid-state NMR study of biodegradable starch/polycaprolactone blends. Eur. Polym. J. 2007, 43, 1866–1875. [Google Scholar] [CrossRef]
- Schmitt, H.; Guidez, A.; Prashantha, K.; Soulestin, J.; Lacrampe, M.F.; Krawczak, P. Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohyd. Polym. 2015, 115, 364–372. [Google Scholar] [CrossRef]
- Kawai, K.; Hagura, Y. Discontinuous and heterogeneous glass transition behavior of carbohydrate polymer–plasticizer systems. Carbohyd. Polym. 2012, 89, 836–841. [Google Scholar] [CrossRef]
- Hulleman, S.H.D.; Janssen, F.H.P.; Feil, H. The role of water during plasticization of native starches. Polymer 1998, 39, 2043–2048. [Google Scholar] [CrossRef]
- Forssell, P.M.; Mikkilä, J.M.; Moates, G.K.; Parker, R. Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohyd. Polym. 1997, 34, 275–282. [Google Scholar] [CrossRef]
- Shogren, R.L. Effect of moisture content on the melting and subsequent physical aging of cornstarch. Carbohyd. Polym. 1992, 19, 83–90. [Google Scholar] [CrossRef]
- Shogren, L.R.; Jasberg, B.K. Aging properties of extruded high-amylose starch. J. Environ. Polym. Degrad. 1994, 2, 99–109. [Google Scholar] [CrossRef]
- Leroy, L.; Stoclet, G.; Lefebvre, J.M.; Gaucher, V. Mechanical Behavior of Thermoplastic Starch: Rationale for the Temperature-Relative Humidity Equivalence. Polymers 2022, 14, 2531. [Google Scholar] [CrossRef] [PubMed]
- Nowacka-Perrin, A.; Steglich, T.; Topgaard, D.; Bernin, D. In situ 13C solid-state polarization transfer NMR to follow starch transformations in food. Magn. Reson. Chem. 2022, 60, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.A.; Mauer, L.J. Effects of controlled relative humidity storage on moisture sorption and amylopectin retrogradation in gelatinized starch lyophiles. J. Food Sci. 2019, 84, 507–523. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, J.J.G.; De Wit, D.; Vliegenthart, J.F.G. Mechanical properties of thermoplastic waxy maize starch. J. Appl. Polym. Sci. 1996, 61, 1927–1937. [Google Scholar] [CrossRef]
- Thunwall, M.; Boldizar, A.; Rigdahl, M. Compression molding and tensile properties of thermoplastic potato starch materials. Biomacromolecules 2006, 7, 981–986. [Google Scholar] [CrossRef]
- Brouillet-Fourmann, S.; Carrot, C.; Lacabanne, C.; Mignard, N.; Samouillan, V. Evolution of interactions between water and native corn starch as a function of moisture content. J. Appl. Polym. Sci. 2002, 86, 2860–2865. [Google Scholar] [CrossRef]
- Fričová, O.; Hutníková, M.; Peidayesh, H. DMA study of thermoplastic starch/montmorillonite nanocomposites. AIP Conf. Proc. 2021, 2411, 050004. [Google Scholar]
Sample Code | Dried | 11% RH | 55% RH | 85% RH | ||||
---|---|---|---|---|---|---|---|---|
1 Week | 7 Weeks | 1 Week | 7 Weeks | 1 Week | 7 Weeks | |||
Tensile Strength (MPa) | TPS | 7.8 ± 2.7 | 9.3 ± 0.8 | 6.8 ± 0.5 | 1.3 ± 0.0 | 2.5 ± 0.1 | 1.3 ± 0.0 | 0.6 ± 0.1 |
TPS-MMT | 10.4 ± 1.1 | 11.5 ± 1.0 | 7.6 ± 0.2 | 1.4 ± 0.1 | 2.4 ± 0.4 | 1.3 ± 0.1 | 0.6 ± 0.1 | |
Elongation at break (%) | TPS | 1.5 ± 0.3 | 4.3 ± 1.6 | 27.1 ± 11.5 | 66.6 ± 2.1 | 34.4 ± 2.0 | 25.3 ± 1.2 | 8.2 ± 0.4 |
TPS-MMT | 1.7 ± 0.2 | 3.7 ± 0.8 | 31.4 ± 5.0 | 64.1± 8.9 | 27.8 ± 5.5 | 24.7 ± 1.1 | 7.6 ± 1.3 | |
Young’s Modulus (MPa) | TPS | 970.2 ± 207.5 | 662.9 ± 74.7 | 297.4 ± 2.4 | 9.2 ± 0.5 | 25.2 ± 3.4 | 10.5 ± 0.4 | 9.4 ± 0.8 |
TPS-MMT | 1148.2 ± 47.4 | 703.0 ± 68.9 | 435.9 ± 4.3 | 10.0 ± 1.1 | 26.5 ± 1.3 | 10.9 ± 0.6 | 9.7 ± 0.5 |
Sample | 1st Peak T (°C) | 2nd Peak T (°C) | ||||||
---|---|---|---|---|---|---|---|---|
Dried | 11% RH | 55% RH | 85% RH | Dried | 11% RH | 55% RH | 85% RH | |
TPS | −31.3 | 75.5 | ||||||
TPS-MMT | −28.9 | 86.7 | ||||||
TPS- 1 week | −37.1 | −54.0 | n/a | 71.3 | 8.9 | n/a | ||
TPS- 2 weeks | −37.6 | −56.6 | n/a | 74.0 | 14.1 | n/a | ||
TPS- 3 weeks | −37.0 | −56.0 | n/a | 72.4 | 6.1 | n/a | ||
TPS- 5 weeks | −35.6 | −53.2 | n/a | 71.2 | 20.2 | n/a | ||
TPS- 7 weeks | −35.2 | −58.5 | n/a | 69.9 | 11.3 | n/a | ||
TPS-MMT- 1 week | −40.2 | −52.9 | −61.8 | 70.9 | 13.3 | −4.2 | ||
TPS-MMT- 2 weeks | −32.5 | −57.5 | −60.6 | 70.7 | 11.6 | −22.6 | ||
TPS-MMT- 3 weeks | −20.3 | −57.7 | n/a | 64.0 | 10.2 | n/a | ||
TPS-MMT- 5 weeks | −33.3 | −55.4 | n/a | 72.7 | 2.8 | n/a | ||
TPS-MMT- 7 weeks | −38.5 | −60.6 | n/a | 69.8 | 13.6 | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šmídová, N.; Peidayesh, H.; Baran, A.; Fričová, O.; Kovaľaková, M.; Králiková, R.; Chodák, I. Influence of Air Humidity Level on the Structure and Mechanical Properties of Thermoplastic Starch-Montmorillonite Nanocomposite during Storage. Materials 2023, 16, 900. https://doi.org/10.3390/ma16030900
Šmídová N, Peidayesh H, Baran A, Fričová O, Kovaľaková M, Králiková R, Chodák I. Influence of Air Humidity Level on the Structure and Mechanical Properties of Thermoplastic Starch-Montmorillonite Nanocomposite during Storage. Materials. 2023; 16(3):900. https://doi.org/10.3390/ma16030900
Chicago/Turabian StyleŠmídová, Natália, Hamed Peidayesh, Anton Baran, Oľga Fričová, Mária Kovaľaková, Ružena Králiková, and Ivan Chodák. 2023. "Influence of Air Humidity Level on the Structure and Mechanical Properties of Thermoplastic Starch-Montmorillonite Nanocomposite during Storage" Materials 16, no. 3: 900. https://doi.org/10.3390/ma16030900
APA StyleŠmídová, N., Peidayesh, H., Baran, A., Fričová, O., Kovaľaková, M., Králiková, R., & Chodák, I. (2023). Influence of Air Humidity Level on the Structure and Mechanical Properties of Thermoplastic Starch-Montmorillonite Nanocomposite during Storage. Materials, 16(3), 900. https://doi.org/10.3390/ma16030900