Molecular Dynamics Simulation of Ti Metal Cutting Using a TiN:Ag Self-Lubricating Coated Tool
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Unlubricated Cutting
3.2. Ag-Lubricated Cutting
3.3. Cutting Forces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pramanik, A. Problems and Solutions in Machining of Titanium Alloys. Int. J. Adv. Manuf. Technol. 2014, 70, 919–928. [Google Scholar] [CrossRef]
- Debnath, S.; Reddy, M.M.; Yi, Q.S. Environmental Friendly Cutting Fluids and Cooling Techniques in Machining: A Review. J. Clean. Prod. 2014, 83, 33–47. [Google Scholar] [CrossRef]
- Kang, X.; Sun, Y.; Zhang, L. Self-Lubricating and High Wear Resistance Mechanism of Silver Matrix Self-Lubricating Nanocomposite in High Vacuum. Vacuum 2020, 182, 109768. [Google Scholar] [CrossRef]
- Papi, P.A.; Mulligan, C.P.; Gall, D. CrN–Ag Nanocomposite Coatings: Control of Lubricant Transport by Diffusion Barriers. Thin Solid Film. 2012, 524, 211–217. [Google Scholar] [CrossRef]
- Sliney, H.E. The Use of Silver in Self-Lubricating Coatings for Extreme Temperatures. ASLE Trans. 1986, 29, 370–376. [Google Scholar] [CrossRef]
- Ye, F.; Lou, Z.; Wang, Y.; Liu, W. Wear Mechanism of Ag as Solid Lubricant for Wide Range Temperature Application in Micro-Beam Plasma Cladded Ni60 Coatings. Tribol. Int. 2022, 167, 107402. [Google Scholar] [CrossRef]
- Shi, X.; Xu, Z.; Wang, M.; Zhai, W.; Yao, J.; Song, S.; Din, A.Q.; Zhang, Q. Tribological Behavior of TiAl Matrix Self-Lubricating Composites Containing Silver from 25 to 800 °C. Wear 2013, 303, 486–494. [Google Scholar] [CrossRef]
- Rajput, S.S.; Gangopadhyay, S.; Yaqub, T.B.; Cavaleiro, A.; Fernandes, F. Room and High Temperature Tribological Performance of CrAlN(Ag) Coatings: The Influence of Ag Additions. Surf. Coat. Technol. 2022, 450, 129011. [Google Scholar] [CrossRef]
- Krzanowski, J.E. Phase Formation and Phase Separation in Multiphase Thin Film Hard Coatings. Surf. Coat. Technol. 2004, 188–189, 376–383. [Google Scholar] [CrossRef]
- Thompson, F.C.; Kustas, F.M.; Coulter, K.E.; Crawford, G.A. Influence of Chemical Vapor Precursor Flow Rate on the Structure and Thermal Stability of Phase-Modulated VSiCN/Ag Coatings. J. Vac. Sci. Technol. A 2021, 39, 63409. [Google Scholar] [CrossRef]
- Velasco, S.C.; Cavaleiro, A.; Carvalho, S. Functional Properties of Ceramic-Ag Nanocomposite Coatings Produced by Magnetron Sputtering. Prog. Mater. Sci. 2016, 84, 158–191. [Google Scholar] [CrossRef]
- Hao, S.; Delley, B.; Veprek, S.; Stampfl, C. Superhard Nitride-Based Nanocomposites: Role of Interfaces and Effect of Impurities. Phys. Rev. Lett. 2006, 97, 86102. [Google Scholar] [CrossRef]
- Fernandes, F.; Calderon, V.S.; Ferreira, P.J.; Cavaleiro, A.; Oliveira, J.C. Low Peak Power Deposition Regime in HiPIMS: Deposition of Hard and Dense Nanocomposite Ti-Si-N Films by DOMS without the Need of Energetic Bombardment. Surf. Coat. Technol. 2020, 397, 125996. [Google Scholar] [CrossRef]
- Cavaleiro, D.; Figueiredo, D.; Moura, C.W.; Cavaleiro, A.; Carvalho, S.; Fernandes, F. Machining Performance of TiSiN(Ag) Coated Tools during Dry Turning of TiAl6V4 Aerospace Alloy. Ceram. Int. 2021, 47, 11799–11806. [Google Scholar] [CrossRef]
- AL-Rjoub, A.; Cavaleiro, A.; Rajput, S.S.; Fernandes, F. High Si Multilayered TiSiN/TiN(Ag) Films with Superior Oxidation Resistance. J. Mater. Res. Technol. 2021, 12, 2340–2347. [Google Scholar] [CrossRef]
- Bondarev, A.; Al-Rjoub, A.; Bin Yaqub, T.; Polcar, T.; Fernandes, F. TEM Study of the Oxidation Resistance and Diffusion Processes in a Multilayered TiSiN/TiN(Ag) Coating Designed for Tribological Applications. Appl. Surf. Sci. 2023, 609, 155319. [Google Scholar] [CrossRef]
- Robinson, G.M.; Jackson, M.J. A Review of Micro and Nanomachining from a Materials Perspective. J. Mater. Process. Technol. 2005, 167, 316–337. [Google Scholar] [CrossRef]
- Balázs, B.Z.; Geier, N.; Takács, M.; Davim, J.P. A Review on Micro-Milling: Recent Advances and Future Trends. Int. J. Adv. Manuf. Technol. 2021, 112, 655–684. [Google Scholar] [CrossRef]
- Gao, S.; Huang, H. Recent Advances in Micro- and Nano-Machining Technologies. Front. Mech. Eng. 2017, 12, 18–32. [Google Scholar] [CrossRef]
- Faure, C.; Hänni, W.; Schmutz, C.J.; Gervanoni, M. Diamond-Coated Tools. Diam. Relat. Mater. 1999, 8, 830–833. [Google Scholar] [CrossRef]
- Leopold, J. Approaches for Modelling and Simulation of Metal Machining—A Critical Review. Manuf. Rev. 2014, 1, 7. [Google Scholar] [CrossRef]
- Cui, D.-D.; Zhang, L.-C. Nano-Machining of Materials: Understanding the Process through Molecular Dynamics Simulation. Adv. Manuf. 2017, 5, 20–34. [Google Scholar] [CrossRef]
- Chen, D.; Wu, S.; He, Y.; Luo, Y.; Wang, X. A Review of Simulation and Experiment Research on Cutting Mechanism and Cutting Force in Nanocutting Process. Int. J. Adv. Manuf. Technol. 2022, 121, 1533–1574. [Google Scholar] [CrossRef]
- Li, Z.; Yan, Y.; Wang, J.; Geng, Y. Molecular Dynamics Study on Tip-Based Nanomachining: A Review. Nanoscale Res. Lett. 2020, 15, 201. [Google Scholar] [CrossRef]
- Fang, F.; Lai, M.; Wang, J.; Luo, X.; Yan, J.; Yan, Y. Nanometric Cutting: Mechanisms, Practices and Future Perspectives. Int. J. Mach. Tools Manuf. 2022, 178, 103905. [Google Scholar] [CrossRef]
- Fang, F.; Liu, B.; Xu, Z. Nanometric Cutting in a Scanning Electron Microscope. Precis. Eng. 2015, 41, 145–152. [Google Scholar] [CrossRef]
- Liu, B.; Yang, H.; Kong, R.; Wang, X.; Liu, J.; Pang, K. Simulation and Experimental Study on Limited Cutting and Heat Effect of Silicon Carbide. Mater. Today Commun. 2022, 33, 104378. [Google Scholar] [CrossRef]
- Goel, S.; Luo, X.; Agrawal, A.; Reuben, R.L. Diamond Machining of Silicon: A Review of Advances in Molecular Dynamics Simulation. Int. J. Mach. Tools Manuf. 2015, 88, 131–164. [Google Scholar] [CrossRef]
- Nozaki, T.; Doyama, M.; Kogure, Y.; Yokotsuka, T. Micromachining of Pure Silicon by Molecular Dynamics. Thin Solid Film. 1998, 334, 221–224. [Google Scholar] [CrossRef]
- Tanaka, H.; Shimada, S.; Anthony, L. Requirements for Ductile-Mode Machining Based on Deformation Analysis of Mono-Crystalline Silicon by Molecular Dynamics Simulation. CIRP Ann. 2007, 56, 53–56. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, W.; Zhang, L. Revealing the Deformation Mechanisms of 6H-Silicon Carbide under Nano-Cutting. Comput. Mater. Sci. 2017, 137, 282–288. [Google Scholar] [CrossRef]
- Sharma, A.; Datta, D.; Balasubramaniam, R. Molecular Dynamics Simulation to Investigate the Orientation Effects on Nanoscale Cutting of Single Crystal Copper. Comput. Mater. Sci. 2018, 153, 241–250. [Google Scholar] [CrossRef]
- Pei, Q.X.; Lu, C.; Fang, F.Z.; Wu, H. Nanometric Cutting of Copper: A Molecular Dynamics Study. Comput. Mater. Sci. 2006, 37, 434–441. [Google Scholar] [CrossRef]
- AlMotasem, A.T.; Bergström, J.; Gåård, A.; Krakhmalev, P.; Holleboom, L.J. Tool Microstructure Impact on the Wear Behavior of Ferrite Iron during Nanoscratching: An Atomic Level Simulation. Wear 2017, 370–371, 39–45. [Google Scholar] [CrossRef]
- Lai, M.; Zhang, X.D.; Fang, F.Z. Study on Critical Rake Angle in Nanometric Cutting. Appl. Phys. A 2012, 108, 809–818. [Google Scholar] [CrossRef]
- Zhu, P.-Z.; Qiu, C.; Fang, F.-Z.; Yuan, D.-D.; Shen, X.-C. Molecular Dynamics Simulations of Nanometric Cutting Mechanisms of Amorphous Alloy. Appl. Surf. Sci. 2014, 317, 432–442. [Google Scholar] [CrossRef]
- Guo, Y.; Liang, Y.; Chen, M.; Bai, Q.; Lu, L. Molecular Dynamics Simulations of Thermal Effects in Nanometric Cutting Process. Sci. China Technol. Sci. 2010, 53, 870–874. [Google Scholar] [CrossRef]
- Feng, R.; Shao, Z.; Yang, S.; Cao, H.; Li, H.; Lei, C.; Zhang, J. Material Removal Behavior of Nanoscale Shear Cutting and Extrusion Cutting of Monocrystalline γ-TiAl Alloy. Int. J. Adv. Manuf. Technol. 2022, 119, 6729–6742. [Google Scholar] [CrossRef]
- Merchant, M.E. Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip. J. Appl. Phys. 1945, 16, 267–275. [Google Scholar] [CrossRef]
- Fang, F.Z.; Wu, H.; Liu, Y.C. Modelling and Experimental Investigation on Nanometric Cutting of Monocrystalline Silicon. Int. J. Mach. Tools Manuf. 2005, 45, 1681–1686. [Google Scholar] [CrossRef]
- Li, J.; Sun, Y.; Xie, H.; Zhao, W.; Xu, C.; Liu, J. Effect of Cutting Parameters on the Depth of Subsurface Deformed Layers of Single γ-TiAl Alloy during Nano-Cutting Process. Appl. Phys. A 2022, 128, 189. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Fang, T.-H. Molecular Dynamics Study of the Effects of Machining Tool Shape on the Nanotribology and Interfacial Behavior of Diamond-like Coatings on Silicon Substrates. Thin Solid Film. 2022, 755, 139348. [Google Scholar] [CrossRef]
- Cheng, K.; Luo, X.; Ward, R.; Holt, R. Modeling and Simulation of the Tool Wear in Nanometric Cutting. Wear 2003, 255, 1427–1432. [Google Scholar] [CrossRef]
- Dong, G.; Wang, X.; Gao, S. Molecular Dynamics Simulation and Experiment Research of Cutting-Tool Wear Mechanism for Cutting Aluminum Alloy. Int. J. Adv. Manuf. Technol. 2018, 96, 1123–1137. [Google Scholar] [CrossRef]
- Fan, P.; Goel, S.; Luo, X.; Yan, Y.; Geng, Y.; Wang, Y. An Atomistic Investigation on the Wear of Diamond during Atomic Force Microscope Tip-Based Nanomachining of Gallium Arsenide. Comput. Mater. Sci. 2021, 187, 110115. [Google Scholar] [CrossRef]
- Lin, Q.; Chen, S.; Ji, Z.; Huang, Z.; Zhang, Z.; Shen, B. High-Temperature Wear Mechanism of Diamond at the Nanoscale: A Reactive Molecular Dynamics Study. Appl. Surf. Sci. 2022, 585, 152614. [Google Scholar] [CrossRef]
- Lenzi, V.; Cavaleiro, A.; Fernandes, F.; Marques, L. Diffusion of Silver in Titanium Nitride: Insights from Density Functional Theory and Molecular Dynamics. Appl. Surf. Sci. 2021, 556, 149738. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, R.; Kenny, S.D.; Lloyd, A.L. Development of an Empirical Interatomic Potential for the Ag–Ti System. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 393, 122–125. [Google Scholar] [CrossRef]
- Sangiovanni, D.G.; Alling, B.; Steneteg, P.; Hultman, L.; Abrikosov, I.A. Nitrogen Vacancy, Self-Interstitial Diffusion, and Frenkel-Pair Formation/Dissociation in B1 TiN Studied by Ab Initio and Classical Molecular Dynamics with Optimized Potentials. Phys. Rev. B 2015, 91, 54301. [Google Scholar] [CrossRef] [Green Version]
- Mie, G. Zur Kinetischen Theorie Der Einatomigen Körper. Ann. Phys. 1903, 316, 657–697. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Hirel, P. Atomsk: A Tool for Manipulating and Converting Atomic Data Files. Comput. Phys. Commun. 2015, 197, 212–219. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Asoro, M.; Damiano, J.; Ferreira, P.J. Size Effects on the Melting Temperature of Silver Nanoparticles: In-Situ TEM Observations. Microsc. Microanal. 2009, 15, 706–707. [Google Scholar] [CrossRef]
- Polvorosa, R.; Suárez, A.; de Lacalle, L.L.; Cerrillo, I.; Wretland, A.; Veiga, F. Tool Wear on Nickel Alloys with Different Coolant Pressures: Comparison of Alloy 718 and Waspaloy. J. Manuf. Process. 2017, 26, 44–56. [Google Scholar] [CrossRef]
- González, H.; Pereira, O.; López de Lacalle, L.N.; Calleja, A.; Ayesta, I.; Muñoa, J. Flank-Milling of Integral Blade Rotors Made in Ti6Al4V Using Cryo CO2 and Minimum Quantity Lubrication. J. Manuf. Sci. Eng. 2021, 143, 91011. [Google Scholar] [CrossRef]
- Khanna, N.; Shah, P.; de Lacalle, L.N.L.; Rodríguez, A.; Pereira, O. In Pursuit of Sustainable Cutting Fluid Strategy for Machining Ti-6Al-4V Using Life Cycle Analysis. Sustain. Mater. Technol. 2021, 29, e00301. [Google Scholar] [CrossRef]
- Pei, Q.X.; Lu, C.; Lee, H.P. Large Scale Molecular Dynamics Study of Nanometric Machining of Copper. Comput. Mater. Sci. 2007, 41, 177–185. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenzi, V.; Marques, L. Molecular Dynamics Simulation of Ti Metal Cutting Using a TiN:Ag Self-Lubricating Coated Tool. Materials 2023, 16, 1344. https://doi.org/10.3390/ma16041344
Lenzi V, Marques L. Molecular Dynamics Simulation of Ti Metal Cutting Using a TiN:Ag Self-Lubricating Coated Tool. Materials. 2023; 16(4):1344. https://doi.org/10.3390/ma16041344
Chicago/Turabian StyleLenzi, Veniero, and Luís Marques. 2023. "Molecular Dynamics Simulation of Ti Metal Cutting Using a TiN:Ag Self-Lubricating Coated Tool" Materials 16, no. 4: 1344. https://doi.org/10.3390/ma16041344
APA StyleLenzi, V., & Marques, L. (2023). Molecular Dynamics Simulation of Ti Metal Cutting Using a TiN:Ag Self-Lubricating Coated Tool. Materials, 16(4), 1344. https://doi.org/10.3390/ma16041344