Soft Actor–Critic-Driven Adaptive Focusing under Obstacles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Architecture of the SAC-M
2.2. SAC Algorithm
2.3. Element Configuration
3. Results and Discussion
3.1. The Training Results and Unit Cell Design
3.2. Adaptive Focusing Results at Different Positions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.F.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; He, Q.; Sun, S.; Zhou, L. High-efficiency surface plasmon meta-couplers: Concept and microwave-regime realizations. Light. Sci. Appl. 2016, 5, e16003. [Google Scholar] [CrossRef]
- Li, Z.; Kim, M.H.; Wang, C.; Han, Z.; Shrestha, S.; Overvig, A.C.; Yu, N. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat. Nanotechnol. 2017, 12, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jing, L.; Zheng, B.; Hao, R.; Yin, W.; Li, E.; Soukoulis, C.M.; Chen, H. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv. Mater. 2016, 28, 6866–6871S. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Zheng, B.; Lou, J.; Shen, L.; Yang, Y.; Tang, S.; Li, E.; Qian, C.; Chen, H. Experimental realization of a superdispersion-enabled ultrabroadband terahertz cloak. Adv. Mater. 2022, 34, 2205053. [Google Scholar] [CrossRef]
- Tan, Q.; Zheng, B.; Cai, T.; Qian, C.; Zhu, R.; Li, X.; Chen, H. Broadband spin-locked metasurface retroreflector. Adv. Sci. 2022, 9, 2201397. [Google Scholar] [CrossRef]
- Cai, T.; Tang, S.; Zheng, B.; Wang, G.; Ji, W.; Qian, C.; Chen, H. Ultra-wideband chromatic aberration-free meta-mirrors. Adv. Photonics. 2021, 3, 016001. [Google Scholar]
- Lu, H.; Zheng, B.; Cai, T.; Qian, C.; Wang, Z.; Yang, Y.; Chen, H. Frequency-controlled focusing using achromatic metasurface. Adv. Opt. Mater. 2021, 9, 2001311. [Google Scholar] [CrossRef]
- Hao, H.; Ran, X.; Tang, Y.; Zheng, S.; Ruan, W. A Single-Layer focusing metasurface based on induced magnetism. Prog. Electromagn. Res. 2021, 172, 77–88. [Google Scholar] [CrossRef]
- Zang, X.; Dong, F.; Yue, F.; Zhang, C.; Xu, L.; Song, Z.; Chen, X. Polarization encoded color image embedded in a dielectric metasurface. Adv. Mater. 2018, 30, 1707499. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Zhang, Y.; Xie, X.; Yang, Y.; Han, J.; Gao, F. Enhancing directivity of terahertz photoconductive antennas using spoof surface plasmon structure. New. J. Phys. 2022, 24, 073046. [Google Scholar] [CrossRef]
- Cai, T.; Wang, G.; Tang, S.; Xu, H.; Duan, J.; Guo, H.; Zhou, L. High-efficiency and full-space manipulation of electromagnetic wave-fronts with metasurfaces. Phys. Rev. Appl. 2017, 8, 034033. [Google Scholar] [CrossRef]
- Ding, F. A Review of Multifunctional Optical Gap-Surface Plasmon Metasurfaces. Prog. Electromagn. Res. 2022, 174, 55–73. [Google Scholar] [CrossRef]
- Hu, Z.; He, N.; Sun, Y.; Jin, Y.; He, S. Wideband high-reflection chiral dielectric metasurface. Prog. Electromagn. Res. 2021, 172, 51–60. [Google Scholar] [CrossRef]
- Wu, N.; Zhang, Y.; Ma, H.; Chen, H.; Qian, H. Tunable High-Q plasmonic metasurface with multiple surface lattice resonances. Prog. Electromagn. Res. 2021, 172, 23–32. [Google Scholar] [CrossRef]
- Ee, H.-S.; Agarwal, R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano. Lett. 2016, 16, 2818–2823. [Google Scholar] [CrossRef]
- Chen, K.; Feng, Y.; Monticone, F.; Zhao, J.; Zhu, B.; Jiang, T.; Qiu, C. A reconfigurable active huygens’ metalens. Adv. Mater. 2017, 29, 1606422. [Google Scholar] [CrossRef]
- She, A.; Zhang, S.; Shian, S.; Clarke, D.R.; Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 2018, 2, eaap9957. [Google Scholar] [CrossRef]
- Wang, Q.; Rogers, E.; Gholipour, B. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 2016, 10, 60–65. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Shao, W.; Zhai, F.; Liu, B.; Wang, X.; Cui, T. Low-Cost and High-Performance 5-Bit Programmable Phased Array at Ku-Band. Prog. Electromagn. Res. 2022, 175, 29–43. [Google Scholar] [CrossRef]
- Colburn, S.; Zhan, A.; Majumdar, A. Metasurface optics for full-color computational imaging. Sci. Adv. 2018, 4, eaar2114. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, E.; Arbabi, A.; Kamali, S.M.; Horie, Y.; Faraji-Dana, M.; Faraon, A. MEMS-tunable dielectric metasurface lens. Nat. Commun. 2018, 9, 812. [Google Scholar] [CrossRef]
- Ren, Z.; Chang, Y.; Ma, Y.; Shih, K.; Dong, B.; Lee, C. Leveraging of MEMS technologies for optical metamaterials applications. Adv. Opt. Mater. 2020, 8, 1900653. [Google Scholar] [CrossRef]
- Zhu, W.; Song, Q.; Yan, L.; Zhang, W.; Wu, P.; Chin, L.K.; Zheludev, N. Optofluidics: A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Adv. Mater. 2015, 27, 4739–4743. [Google Scholar] [CrossRef] [PubMed]
- Kamali, S.M.; Arbabi, E.; Arbabi, A.; Horie, Y.; Faraon, A. Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev. 2016, 10, 1002–1008. [Google Scholar] [CrossRef]
- He, Q.; Sun, S.; Zhou, L. Tunable/reconfigurable metasurfaces: Physics and applications. Research 2019, 2019, 1849272. [Google Scholar] [CrossRef]
- Fan, Z.; Qian, C.; Jia, Y.; Wang, Z.; Ding, Y.; Wang, D.; Tian, L.; Li, E.; Cai, T.; Zheng, B.; et al. Homeostatic neuro-metasurfaces for dynamic wireless channel management. Sci. Adv. 2022, 8, eabn7905. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zheng, B.; Cai, T.; Li, X.; Liu, J.; Qian, C.; Chen, H. Machine-learning-enabled metasurface fordirection of arrival estimation. Nanophotonics 2022, 11, 2001–2010. [Google Scholar] [CrossRef]
- Qian, C.; Zheng, B.; Shen, Y.; Jing, L.; Li, E.; Shen, L.; Chen, H. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics 2020, 14, 383–390. [Google Scholar] [CrossRef]
- Jabir, B.; Falih, N. Deep learning-based decision support system for weeds detection in wheat fields. Int. J. Electr. Comput. Eng. 2022, 12, 816. [Google Scholar] [CrossRef]
- Succetti, F.; Rosato, A.; Di Luzio, F.; Ceschini, A.; Panella, M. A Fast Deep Learning Technique for Wi-Fi-Based Human Activity Recognition. Prog. Electromagn. Res. 2022, 174, 127–141. [Google Scholar] [CrossRef]
- Brahim, J.; Loubna, R.; Noureddine, F. RNN-and CNN-based weed detection for crop improvement: An overview. Foods Raw Mater. 2021, 9, 387–396. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Hassabis, D. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K.O.; Clune, J. First return, then explore. Nature 2021, 590, 580–586. [Google Scholar] [CrossRef]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hassabis, D. Mastering the game of go without human knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef]
- Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal. Process. Mag. 2017, 34, 26–38. [Google Scholar] [CrossRef]
- Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596. [Google Scholar]
- Chen, B.; Wang, D.; Li, P.; Wang, S.; Lu, H. Real-time’actor-critic’tracking. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 318–334. [Google Scholar]
- Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; Meger, D. Deep reinforcement learning that matters. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32, p. 1. [Google Scholar]
- Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Levine, S. Soft actor-critic algorithms and applications. arXiv 2018, arXiv:1812.05905. [Google Scholar]
- Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1861–1870. [Google Scholar]
- Chen, W.T.; Zhu, A.Y.; Sanjeev, V.; Khorasaninejad, M.; Shi, Z.; Lee, E.; Capasso, F. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 2018, 13, 220–226. [Google Scholar] [CrossRef] [Green Version]
Scenario | Focal Position (x, z)/mm | Object |
---|---|---|
Scenario 1 | (188, 130) | |
Scenario 2 | (150, 130) | |
Scenario 3 | (169, 100) | |
Scenario 4 | (225, 110) | |
Scenario 5 | (195, 150) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Zhu, R.; Wang, C.; Hua, T.; Zhang, S.; Chen, T. Soft Actor–Critic-Driven Adaptive Focusing under Obstacles. Materials 2023, 16, 1366. https://doi.org/10.3390/ma16041366
Lu H, Zhu R, Wang C, Hua T, Zhang S, Chen T. Soft Actor–Critic-Driven Adaptive Focusing under Obstacles. Materials. 2023; 16(4):1366. https://doi.org/10.3390/ma16041366
Chicago/Turabian StyleLu, Huan, Rongrong Zhu, Chi Wang, Tianze Hua, Siqi Zhang, and Tianhang Chen. 2023. "Soft Actor–Critic-Driven Adaptive Focusing under Obstacles" Materials 16, no. 4: 1366. https://doi.org/10.3390/ma16041366
APA StyleLu, H., Zhu, R., Wang, C., Hua, T., Zhang, S., & Chen, T. (2023). Soft Actor–Critic-Driven Adaptive Focusing under Obstacles. Materials, 16(4), 1366. https://doi.org/10.3390/ma16041366