Visualization of Swift Ion Tracks in Suspended Local Diamondized Few-Layer Graphene
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, T.; James, P.F. A study of the transformation of diamond to graphite. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1964, 277, 260–269. [Google Scholar]
- Cartigny, P.; Palot, M.; Thomassot, E.; Harris, J.W. Diamond Formation: A Stable Isotope Perspective. Annu. Rev. Earth Planet. Sci. 2014, 42, 699–732. [Google Scholar] [CrossRef]
- Shirey, S.B.; Shigley, J.E. Recent Advances in Understanding the Geology of Diamonds. Gems Gemol. 2014, 49, 188–222. [Google Scholar] [CrossRef]
- Frondel, C.; Marvin, U.B. Lonsdaleite, a Hexagonal Polymorph of Diamond. Nature 1967, 214, 587–589. [Google Scholar] [CrossRef]
- Marchand, A.P. Chemistry: Diamondoid hydrocarbons—Delving into nature’s bounty. Science 2003, 299, 52–53. [Google Scholar] [CrossRef]
- Amari, S.; Lewis, R.S.; Anders, E. Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite. Geochim. Cosmochim. Acta 1994, 58, 459–470. [Google Scholar] [CrossRef]
- Wang, J.B.; Yang, G.W. Phase transformation between diamond and graphite in preparation of diamonds by pulsed-laser induced liquid-solid interface reaction. J. Phys. Condens. Matter 1999, 11, 7089–7094. [Google Scholar] [CrossRef]
- Yogesh, G.K.; Shukla, S.; Sastikumar, D.; Koinkar, P. Progress in pulsed laser ablation in liquid (PLAL) technique for the synthesis of carbon nanomaterials: A review. Appl. Phys. A 2021, 127, 810. [Google Scholar] [CrossRef]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. [Google Scholar] [CrossRef]
- Liu, Q.; Duan, Y.; Ma, H.; Long, X.; Han, Y. Review on the exploration of condensed carbon formation mechanism in detonation products. AIP Adv. 2020, 10, 050701. [Google Scholar] [CrossRef]
- Daulton, T.L.L.; Kirk, M.A.A.; Lewis, R.S.S.; Rehn, L.E.E. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl. Instrum. Methods Phys. Res. Sect. B 2001, 175, 12–20. [Google Scholar] [CrossRef]
- Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181–1221. [Google Scholar] [CrossRef]
- Dunlop, A.; Jaskierowicz, G.; Ossi, P.M.; Della-Negra, S. Transformation of graphite into nanodiamond following extreme electronic excitations. Phys. Rev. B 2007, 76, 155403. [Google Scholar] [CrossRef]
- Meguro, T.; Hida, A.; Suzuki, M.; Koguchi, Y.; Takai, H.; Yamamoto, Y.; Maeda, K.; Aoyagi, Y. Creation of nanodiamonds by single impacts of highly charged ions upon graphite. Appl. Phys. Lett. 2001, 79, 3866–3868. [Google Scholar] [CrossRef]
- Ritter, R.; Kowarik, G.; Meissl, W.; Süss, L.; Maunoury, L.; Lebius, H.; Dufour, C.; Toulemonde, M.; Aumayr, F. Nano-structure formation due to impact of highly charged ions on HOPG. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 2897–2900. [Google Scholar] [CrossRef]
- Daulton, T.L.; Lewis, R.S.; Rehn, L.E.; Kirk, M.A. Heavy-Ion Irradiation Induced Diamond Formation in Carbonaceous Materials. MRS Proc. 1998, 540, 189. [Google Scholar] [CrossRef]
- Sun, Y.; Kvashnin, A.G.; Sorokin, P.B.; Yakobson, B.I.; Billups, W.E. Radiation-Induced Nucleation of Diamond from Amorphous Carbon: Effect of Hydrogen. J. Phys. Chem. Lett. 2014, 5, 1924–1928. [Google Scholar] [CrossRef] [PubMed]
- Emelin, E.V.; Cho, H.D.; Korepanov, V.I.; Varlamova, L.A.; Erohin, S.V.; Kim, D.Y.; Sorokin, P.B.; Panin, G.N. Formation of Diamane Nanostructures in Bilayer Graphene on Langasite under Irradiation with a Focused Electron Beam. Nanomaterials 2022, 12, 4408. [Google Scholar] [CrossRef] [PubMed]
- Chernozatonskii, L.A.; Demin, V.A.; Lambin, P. Bilayered graphene as a platform of nanostructures with folded edge holes. Phys. Chem. Chem. Phys. 2016, 18, 27432–27441. [Google Scholar] [CrossRef]
- Chernozatonskii, L.A.; Demin, V.A.; Kvashnin, D.G. Fully Hydrogenated and Fluorinated Bigraphenes–Diamanes: Theoretical and Experimental Studies. J. Carbon Res. 2021, 7, 17–21. [Google Scholar] [CrossRef]
- Karki, B.; Vasudevan, B.; Uniyal, A.; Pal, A.; Srivastava, V. Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor. Optik 2022, 270, 169947. [Google Scholar] [CrossRef]
- Salehnezhad, Z.; Soroosh, M.; Farmani, A. Design and numerical simulation of a sensitive plasmonic-based nanosensor utilizing MoS2 monolayer and graphene. Diam. Relat. Mater. 2023, 131, 109594. [Google Scholar] [CrossRef]
- Bagheri, F.; Soroosh, M.; Haddadan, F.; Seifi-Kavian, Y. Design and simulation of a compact graphene-based plasmonic D flip-flop. Opt. Laser Technol. 2022, 155, 108436. [Google Scholar] [CrossRef]
- Guirguis, A.; Maina, J.W.; Zhang, X.; Henderson, L.C.; Kong, L.; Shon, H.; Dumée, L.F. Applications of nano-porous graphene materials critical review on performance and challenges. Mater. Horiz. 2020, 7, 1218. [Google Scholar] [CrossRef]
- Antonova, I.V.; Nebogatikova, N.A.; Erohin, S.V.; Prenas, V.A.; Smovzh, D.V.; Suprun, E.A.; Volodin, V.A.; Olejniczak, A.; Sorokin, P.B. Nanostructuring of CVD graphene by high-energy heavy ions. Diam. Relat. Mater. 2022, 123, 108880. [Google Scholar] [CrossRef]
- Nebogatikova, N.A.; Antonova, I.V.; Erohin, S.V.; Kvashnin, D.G.; Olejniczak, A.; Volodin, V.A.; Skuratov, A.V.; Krasheninnikov, A.V.; Sorokin, P.B.; Chernozatonskii, L.A. Nanostructuring few-layer graphene films with swift heavy ions for electronic application: Tuning of electronic and transport properties. Nanoscale 2018, 10, 14499–14509. [Google Scholar] [CrossRef]
- Smovzh, D.V.; Kostogrud, I.A.; Boyko, E.V.; Matochkin, P.E.; Bezrukov, I.A.; Krivenko, A.S. Synthesis of graphene by chemical vapor deposition and its transfer to polymer. J. Appl. Mech. Tech. Phys. 2020, 61, 888–897. [Google Scholar] [CrossRef]
- Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Skuratov, V.A.; Bujnarowski, G.; Kovalev, Y.S.; O’Connell, J.; Havanscak, K. In situ and postradiation analysis of mechanical stress in Al2O3:Cr induced by swift heavy-ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2010, 268, 3023–3026. [Google Scholar] [CrossRef]
- Shiell, T.B.; McCulloch, D.G.; Bradby, J.E.; Haberl, B.; Boehler, R.; McKenzie, D.R. Nanocrystalline hexagonal diamond formed from glassy carbon. Sci. Rep. 2016, 6, 37232. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-K.; Kim, J.G.; Hembram, K.P.S.S.; Kim, Y.I.; Min, B.K.; Park, Y.; Lee, J.K.; Moon, D.J.; Lee, W.; Lee, S.G.; et al. The Nature of Metastable AA’ Graphite: Low Dimensional Nano- and Single-Crystalline Forms. Sci. Rep. 2016, 6, 39624. [Google Scholar] [CrossRef]
- Choucair, M.; Stride, J.A. The gram-scale synthesis of carbon onions. Carbon N. Y. 2012, 50, 1109–1115. [Google Scholar] [CrossRef]
- Tang, H.; Yuan, X.; Yu, P.; Hu, Q.; Wang, M.; Yao, Y.; Wu, L.; Zou, Q.; Ke, Y.; Zhao, Y.; et al. Revealing the formation mechanism of ultrahard nanotwinned diamond from onion carbon. Carbon N. Y. 2018, 129, 159–167. [Google Scholar] [CrossRef]
- Yang, G.W.W.; Wang, J.B.B. Pulsed-laser-induced transformation path of graphite to diamond via an intermediate rhombohedral graphite. Appl. Phys. A Mater. Sci. Process. 2001, 72, 475–479. [Google Scholar] [CrossRef]
- Garvie, L.A.J.; Nemeth, P.; Buseck, P.R. Transformation of graphite to diamond via a topotactic mechanism. Am. Mineral. 2014, 99, 531–538. [Google Scholar] [CrossRef]
- Welz, S.; Gogotsi, Y.; McNallan, M.J. Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys. 2003, 93, 4207–4214. [Google Scholar] [CrossRef]
- Lyutovich, Y.; Banhart, F. Low-pressure transformation of graphite to diamond under irradiation. Appl. Phys. Lett. 1999, 74, 659–660. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef]
- Osswald, S.; Mochalin, V.N.; Havel, M.; Yushin, G.; Gogotsi, Y. Phonon confinement effects in the Raman spectrum of nanodiamond. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 80, 075419. [Google Scholar] [CrossRef]
- Abdu, Y.A.; Hawthorne, F.C.; Varela, M.E. Infrared Spectroscopy of Carbonaceous-chondrite Inclusions in the Kapoeta Meteorite: Discovery of Nanodiamonds with New Spectral Features and Astrophysical Implications. Astrophys. J. 2018, 856, L9. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, J.C.; Wilde, G. The size dependence of the diamond-graphite transition. J. Phys. Condens. Matter 2000, 12, 5623–5627. [Google Scholar] [CrossRef]
- Pimenta Martins, L.G.; Silva, D.L.; Smith, J.S.; Lu, A.Y.; Su, C.; Hempel, M.; Occhialini, C.; Ji, X.; Pablo, R.; Alencar, R.S.; et al. Hard, transparent, sp3-containing 2D phase formed from few-layer graphene under compression. Carbon N. Y. 2021, 173, 744–757. [Google Scholar] [CrossRef]
- Won, K.; Lee, C.; Jung, J.; Kwon, S.; Gebredingle, Y.; Lim, J.G.; Kim, M.K.; Jeong, M.S.; Lee, C. Raman Scattering Measurement of Suspended Graphene under Extreme Strain Induced by Nanoindentation. Adv. Mater. 2022, 34, 2200946. [Google Scholar] [CrossRef]
- Erohin, S.V.; Ruan, Q.; Sorokin, P.B.; Yakobson, B.I. Nano-Thermodynamics of Chemically Induced Graphene–Diamond Transformation. Small 2020, 16, 2004782. [Google Scholar] [CrossRef]
- Varlamova, L.A.; Erohin, S.V.; Sorokin, P.B. The Role of Structural Defects in the Growth of Two-Dimensional Diamond from Graphene. Nanomaterials 2022, 12, 3983. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.P. Edging towards an understanding of CH/CH2 on nano-diamonds. Astron. Astrophys. 2022, 657, A127. [Google Scholar] [CrossRef]
- Krasheninnikov, A.V.; Nordlund, K. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 2010, 107, 3. [Google Scholar] [CrossRef]
- Toulemonde, M.; Dufour, C.; Meftah, A.; Paumier, E. Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Methods Phys. Res. Sect. B 2000, 166, 903–912. [Google Scholar] [CrossRef]
- Khaliullin, R.Z.; Eshet, H.; Kühne, T.D.; Behler, J.; Parrinello, M. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat. Mater. 2011, 10, 693–697. [Google Scholar] [CrossRef] [Green Version]
Peak Name and Position, cm−1 | Peaks Area, % | Interpretation | |
---|---|---|---|
Virgin | Irradiated 1 | ||
G-peak, 1580–1584 | 87 | 57 | sp2, difference between the G-peak positions can be caused by internal mechanical stress in the films. |
D-peak, 1354–1355 | 13 | 11 | sp3 |
1447–1451 | - | 21 | Amorphous carbon modes having both sp2 and sp3 hybridization, defects and heteroatoms |
1515–1518 | - | 9 | |
D’-peak, 1618–1619 | - | 2 | A peak is observed for multigraphene near the edges [39] or locally stressed regions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nebogatikova, N.A.; Antonova, I.V.; Gutakovskii, A.K.; Smovzh, D.V.; Volodin, V.A.; Sorokin, P.B. Visualization of Swift Ion Tracks in Suspended Local Diamondized Few-Layer Graphene. Materials 2023, 16, 1391. https://doi.org/10.3390/ma16041391
Nebogatikova NA, Antonova IV, Gutakovskii AK, Smovzh DV, Volodin VA, Sorokin PB. Visualization of Swift Ion Tracks in Suspended Local Diamondized Few-Layer Graphene. Materials. 2023; 16(4):1391. https://doi.org/10.3390/ma16041391
Chicago/Turabian StyleNebogatikova, Nadezhda A., Irina V. Antonova, Anton K. Gutakovskii, Dmitriy V. Smovzh, Vladimir A. Volodin, and Pavel B. Sorokin. 2023. "Visualization of Swift Ion Tracks in Suspended Local Diamondized Few-Layer Graphene" Materials 16, no. 4: 1391. https://doi.org/10.3390/ma16041391
APA StyleNebogatikova, N. A., Antonova, I. V., Gutakovskii, A. K., Smovzh, D. V., Volodin, V. A., & Sorokin, P. B. (2023). Visualization of Swift Ion Tracks in Suspended Local Diamondized Few-Layer Graphene. Materials, 16(4), 1391. https://doi.org/10.3390/ma16041391