C-S-H Seeds Accelerate Early Age Hydration of Carbonate-Activated Slag and the Underlying Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiments
3. Results
3.1. Performance of Samples with C-S-H Seeds
3.2. Hydration of SCAS Binder with C-S-H Seeds
3.3. Role of C-S-H Seeds on the Hydration Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adesina, A. Performance and sustainability overview of sodium carbonate activated slag materials cured at ambient temperature. Resour. Environ. Sustain. 2021, 3, 100016. [Google Scholar] [CrossRef]
- Du, C.; Tan, H.; Jian, S.; Wang, J.; Shi, T. Compressive strength and hydration process of sodium carbonate-activated superfine slag/marble powder binders. J. Build. Eng. 2021, 43, 103121. [Google Scholar] [CrossRef]
- Ling, X.; Schollbach, K.; Liu, G.; Brouwers, H.J.H. The utilization of waste incineration filter dust (WIFD) in sodium carbonate activated slag mortars. Constr. Build. Mater. 2021, 313, 125494. [Google Scholar] [CrossRef]
- Kiiashko, A.; Chaouche, M.; Frouin, L. Effect of phosphonate addition on sodium carbonate activated slag properties. Cem. Concr. Compos. 2021, 119, 103986. [Google Scholar] [CrossRef]
- Ke, X.; Bernal, S.A.; Provis, J.L. Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cem. Concr. Res. 2016, 81, 24–37. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Puertas, F. Setting of alkali-activated slag cement. Influence of activator nature. Adv. Cem. Res. 2001, 13, 115–121. [Google Scholar] [CrossRef]
- Chen, Z.; Ye, H. The role of CaO and MgO incorporation in chloride resistance of sodium carbonate-activated slag. Cem. Concr. Compos. 2022, 132, 104625. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L.; Myers, R.J.; San Nicolas, R.; van Deventer, J.S. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Mater. Struct. 2014, 48, 517–529. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J.G. Early age strength and workability of slag pastes activated by NaOH and Na2CO3. Cem. Concr. Res. 1998, 28, 655–664. [Google Scholar] [CrossRef]
- Yuan, B.; Yu, Q.L.; Brouwers, H.J.H. Reaction kinetics, reaction products and compressive strength of ternary activators activated slag designed by Taguchi method. Mater. Des. 2015, 86, 878–886. [Google Scholar] [CrossRef]
- Yuan, B.; Yu, Q.L.; Brouwers, H.J.H. Evaluation of slag characteristics on the reaction kinetics and mechanical properties of Na2CO3 activated slag. Constr. Build. Mater. 2017, 131, 334–346. [Google Scholar] [CrossRef]
- Yuan, B.; Yu, Q.L.; Brouwers, H.J.H. Time-dependent characterization of Na2CO3 activated slag. Cem. Concr. Compos. 2017, 84, 188–197. [Google Scholar] [CrossRef]
- John, E.; Matschei, T.; Stephan, D. Nucleation seeding with calcium silicate hydrate—A review. Cem. Concr. Res. 2018, 113, 74–85. [Google Scholar] [CrossRef]
- Owens, K.; Russell, M.I.; Donnelly, G.; Kirk, A.; Basheer, P.A.M.; Russell, M.I.; Donnelly, G.; Kirk, A.; Basheer Use, P.A.M.; Owens, K.; et al. Use of nanocrystal seeding chemical admixture in improving Portland cement strength development: Application for precast concrete industry Use of nanocrystal seeding chemical admixture in improving Portland cement strength development: Application for precast concrete industry. Adv. Appl. Ceramics 2014, 6753, 478–484. [Google Scholar] [CrossRef]
- Parambil, J.V.; Heng, J.Y.Y. Seeding in Crystallisation. In Engineering Crystallography: From Molecule to Crystal to Functional Form; NATO Science for Peace and Security Series A: Chemistry and Biology; Roberts, K.J., Docherty, R., Tamura, R., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 235–245. ISBN 978-94-024-1117-1. [Google Scholar]
- Petermann, J.C.; Saeed, A.; Hammons, M.I. Alkali-Activated Geopolymers: A Literature Review. Air Force Res. Lab. 2012, 1–99. [Google Scholar]
- Wang, B.; Yao, W.; Stephan, D. Preparation of calcium silicate hydrate seeds by means of mechanochemical method and its effect on the early hydration of cement. Adv. Mech. Eng. 2019, 11, 1687814019840586. [Google Scholar] [CrossRef]
- Izadifar, M.; Ukrainczyk, N.; Salah Uddin, K.M.; Middendorf, B.; Koenders, E. Dissolution of Portlandite in Pure Water: Part 2 Atomistic Kinetic Monte Carlo (KMC) Approach. Materials 2022, 15, 1442. [Google Scholar] [CrossRef]
- Izadifar, M.; Ukrainczyk, N.; Salah Uddin, K.M.; Middendorf, B.; Koenders, E. Dissolution of β-C2S Cement Clinker: Part 2 Atomistic Kinetic Monte Carlo (KMC) Upscaling Approach. Materials 2022, 15, 6716. [Google Scholar] [CrossRef]
- Land, G.; Stephan, D. The effect of synthesis conditions on the efficiency of CSH seeds to accelerate cement hydration. Cem. Concr. Compos. 2018, 87, 73–78. [Google Scholar] [CrossRef]
- Wang, F.; Kong, X.; Jiang, L.; Wang, D. The acceleration mechanism of nano-C-S-H particles on OPC hydration. Constr. Build. Mater. 2020, 249, 118734. [Google Scholar] [CrossRef]
- John, E.; Epping, J.D.; Stephan, D. The influence of the chemical and physical properties of CSH seeds on their potential to accelerate cement hydration. Constr. Build. Mater. 2019, 228, 116723. [Google Scholar] [CrossRef]
- Theobald, M.; Plank, J. C–S–H–Polycondensate nanocomposites as effective seeding materials for Portland composite cements. Cem. Concr. Compos. 2022, 125, 104278. [Google Scholar] [CrossRef]
- Golewski, G.L.; Szostak, B. Strengthening the very early-age structure of cementitious composites with coal fly ash via incorporating a novel nanoadmixture based on CSH phase activators. Constr. Build. Mater. 2021, 312, 125426. [Google Scholar] [CrossRef]
- Golewski, G.L.; Szostak, B. Application of the CSH phase nucleating agents to improve the performance of sustainable concrete composites containing fly ash for use in the precast concrete industry. Materials 2021, 14, 6514. [Google Scholar] [CrossRef]
- Puligilla, S.; Chen, X.; Mondal, P. Does synthesized CSH seed promote nucleation in alkali activated fly ash-slag geopolymer binder? Mater. Struct. 2019, 52, 65. [Google Scholar] [CrossRef]
- Richardson, I.G.; Brough, A.R.; Groves, G.W.; Dobson, C.M. The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase. Cem. Concr. Res. 1994, 24, 813–829. [Google Scholar] [CrossRef]
- Dung, N.T.; Hooper, T.J.N.; Unluer, C. Improving the carbonation resistance of Na2CO3-activated slag mixes via the use of reactive MgO and nucleation seeding. Cem. Concr. Compos. 2021, 115, 103832. [Google Scholar] [CrossRef]
- Bernal, S.A.; San Nicolas, R.; Myers, R.J.; de Gutiérrez, R.M.; Puertas, F.; van Deventer, J.S.; Provis, J.L. MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem. Concr. Res. 2014, 57, 33–43. [Google Scholar] [CrossRef]
- Mija, H.H.; Jeffrey, J.T.; Hamlin, M. Jennings Influence of nucleation seeding on the hydration kinetics and compressive strength of alkali activated slag paste. Cem. Concr. Res. 2011, 41, 842–846. [Google Scholar] [CrossRef]
Mixture | GGBS | C-S-H Seeds Dosage | Na2CO3 Dosage | Water-To-Solid Ratio |
---|---|---|---|---|
L0 | 100 | 0 | 4% | 0.4 |
C2 | 2% | |||
C4 | 4% | |||
C6 | 6% |
Temperature/°C | 0–160 | 0–160 | 160–530 | 620–730 |
---|---|---|---|---|
Decomposition of Products | C-A-S-H Gels and Free Water | Added C-S-H Seeds | Hydrotalcite | Carbonates |
L0 | 2.78 | 0 | 2.43 | 0.69 |
C2 | 6.05 | 0.27 | 5.97 | 0.95 |
C4 | 6.42 | 0.54 | 6.23 | 1.00 |
C6 | 6.23 | 0.80 | 6.48 | 1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, B.; Wang, H.; Jin, D.; Chen, W. C-S-H Seeds Accelerate Early Age Hydration of Carbonate-Activated Slag and the Underlying Mechanism. Materials 2023, 16, 1394. https://doi.org/10.3390/ma16041394
Yuan B, Wang H, Jin D, Chen W. C-S-H Seeds Accelerate Early Age Hydration of Carbonate-Activated Slag and the Underlying Mechanism. Materials. 2023; 16(4):1394. https://doi.org/10.3390/ma16041394
Chicago/Turabian StyleYuan, Bo, Hengkun Wang, Dianshi Jin, and Wei Chen. 2023. "C-S-H Seeds Accelerate Early Age Hydration of Carbonate-Activated Slag and the Underlying Mechanism" Materials 16, no. 4: 1394. https://doi.org/10.3390/ma16041394
APA StyleYuan, B., Wang, H., Jin, D., & Chen, W. (2023). C-S-H Seeds Accelerate Early Age Hydration of Carbonate-Activated Slag and the Underlying Mechanism. Materials, 16(4), 1394. https://doi.org/10.3390/ma16041394