Investigation on the Electrical Conductivity of Graphene/Cement Composites by Alternating Current Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Composite Preparation
2.2. Electrical and Electrochemical Tests of Cement/Graphene Composites
2.3. Microscale Characterization of Graphene/Cement Composites
3. Results and Discussion
3.1. Electrical Conductivity Measured by DC Measurement
3.2. Electrical Conductivity Measured by AC Method
3.3. Evaluation of Contribution of Graphene Particles in High Frequency
3.4. SEM Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, P.; Gu, P.; Beaudoin, J. Electrical percolation phenomena in cement composites containing conductive fibres. J. Mater. Sci. 1996, 31, 4093–4097. [Google Scholar] [CrossRef]
- Bai, S.; Jiang, L.; Xu, N.; Jin, M.; Jiang, S. Enhancement of mechanical and electrical properties of graphene/cement composite due to improved dispersion of graphene by addition of silica fume. Constr. Build. Mater. 2018, 164, 433–441. [Google Scholar] [CrossRef]
- Azhari, F.; Banthia, N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cem. Concr. Compos. 2012, 34, 866–873. [Google Scholar] [CrossRef]
- Papanikolaou, I.; Litina, C.; Zomorodian, A.; Al-Tabbaa, A. Effect of Natural Graphite Fineness on the Performance and Electrical Conductivity of Cement Paste Mixes for Self-Sensing Structures. Materials 2020, 13, 5833. [Google Scholar] [CrossRef]
- Chung, D.D.L. Electrically conductive cement-based materials. Adv. Cem. Res. 2004, 16, 167–176. [Google Scholar] [CrossRef]
- Černý, V.; Yakovlev, G.; Drochytka, R.; Baránek, Š.; Mészárosová, L.; Melichar, J.; Hermann, R. Impact of Carbon Particle Character on the Cement-Based Composite Electrical Resistivity. Materials 2021, 14, 7505. [Google Scholar] [CrossRef]
- Yuan, D.; Jiang, W.; Tong, Z.; Gao, J.; Xiao, J.; Ye, W. Prediction of Electrical Conductivity of Fiber-Reinforced Cement-Based Composites by Deep Neural Networks. Materials 2019, 12, 3868. [Google Scholar] [CrossRef]
- Xu, J.; Yao, W.; Wang, R. Nonlinear conduction in carbon fiber reinforced cement mortar. Cem. Concr. Compos. 2011, 33, 444–448. [Google Scholar] [CrossRef]
- Lee, N.; Kim, S.; Park, G. The Effects of Multi-Walled Carbon Nanotubes and Steel Fibers on the AC Impedance and Electromagnetic Shielding Effectiveness of High-Performance, Fiber-Reinforced Cementitious Composites. Materials 2019, 12, 3591. [Google Scholar] [CrossRef]
- Collins, F.; Lambert, J.; Duan, W.H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube–OPC paste mixtures. Cem. Concr. Compos. 2012, 34, 201–207. [Google Scholar] [CrossRef]
- Chen, B.; Wu, K.; Yao, W. Conductivity of carbon fiber reinforced cement-based composites. Cem. Concr. Compos. 2004, 26, 291–297. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef] [PubMed]
- Izadifar, M.; Thissen, P.; Abadi, R.; Jam, A.N.; Gohari, S.; Burvill, C.; Rabczuk, T. Fracture toughness of various percentage of doping of boron atoms on the mechanical properties of polycrystalline graphene: A molecular dynamics study. Phys. E Low-Dimens. Syst. Nanostructures 2019, 114, 113614. [Google Scholar] [CrossRef]
- Gong, K.; Pan, Z.; Korayem, A.; Qiu, L.; Li, D.; Collins, F.; Wang, C.M.; Duan, W.H. Reinforcing Effects of Graphene Oxide on Portland Cement Paste. J. Mater. Civ. Eng. 2015, 27, A4014010. [Google Scholar] [CrossRef]
- Lu, Z.; Hou, D.; Meng, L.; Sun, G.; Lu, C.; Li, Z. Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties. RSC Adv. 2015, 5, 100598–100605. [Google Scholar] [CrossRef]
- Bai, S.; Jiang, L.; Jiang, Y.; Jin, M.; Jiang, S.; Tao, D. Research on electrical conductivity of graphene/cement composites. Adv. Cem. Res. 2020, 32, 45–52. [Google Scholar] [CrossRef]
- Goracci, G.; Dolado, J.S. Elucidation of Conduction Mechanism in Graphene Nanoplatelets (GNPs)/Cement Composite Using Dielectric Spectroscopy. Materials 2020, 13, 275. [Google Scholar] [CrossRef]
- Xu, N.; Jiang, L.; Zhou, H.; Chu, H.; Jiang, P. Influence of Carbonation on the Electrical Conductivity of Graphene/Cement Composite. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2021, 36, 804–810. [Google Scholar] [CrossRef]
- Krystek, M.; Ciesielski, A.; Samorì, P. Graphene-Based Cementitious Composites: Toward Next-Generation Construction Technologies. Adv. Funct. Mater. 2021, 31, 2101887. [Google Scholar] [CrossRef]
- Chiarello, M.; Zinno, R. Electrical conductivity of self-monitoring CFRC. Cem. Concr. Compos. 2005, 27, 463–469. [Google Scholar] [CrossRef]
- Wansom, S.; Janjaturaphan, S. Evaluation of fiber orientation in plant fiber-cement composites using AC-impedance spectroscopy. Cem. Concr. Res. 2013, 45, 37–44. [Google Scholar] [CrossRef]
- Wansom, S.; Kidner, N.J.; Woo, L.Y.; Mason, T.O. AC-impedance response of multi-walled carbon nanotube/cement composites. Cem. Concr. Comp. 2006, 28, 509–519. [Google Scholar] [CrossRef]
- Foygel, M.; Morris, R.D.; Anez, D.; French, S.; Sobolev, V.L. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Phys. Rev. B 2005, 71, 104201. [Google Scholar] [CrossRef]
- Stau, D.; Aharony, A. Introduction to Percolation Theory; Taylor and Francis: London, UK, 1992. [Google Scholar]
SiO2 | Al2O3 | CaO | FeO | MgO | K2O | Na2O | TiO2 | MnO | Loss | |
---|---|---|---|---|---|---|---|---|---|---|
OPC | 22.30 | 4.95 | 64.23 | 3.13 | 1.58 | 0.62 | 0.13 | 1.10 | 0.13 | 2.35 |
Purity | Thickness | Diameter | Layers | Single Rate | Specific Surface Area |
---|---|---|---|---|---|
(wt.%) | (nm) | (μm) | (%) | (m2·g−1) | |
>90 | 1.0–1.77 | 10–50 | 1–5 | >30 | 360–450 |
Threshold Value (%) | a | t | Fitted Equation | R2 |
---|---|---|---|---|
0.8 | 0.0459 | 3.6569 | 0.9199 | |
1.0 | 0.0983 | 3.1603 | 0.8624 | |
1.3 | 0.1886 | 1.4457 | 0.7630 |
Graphene Content | Ln Measured Conductivity | Ln Predicted Conductivity | Relative Error |
---|---|---|---|
(%) | (Ω−1·m−1) | (Ω−1·m−1) | (%) |
0.03 | −13.7188 | −13.5978 | −0.8820 |
0.08 | −13.6477 | −13.5972 | 0.3700 |
0.20 | −12.9234 | −13.5805 | 5.0845 |
0.70 | −11.4578 | −11.9748 | 4.5122 |
1.20 | −6.6987 | −6.8965 | 2.9528 |
1.60 | −3.8671 | −3.7651 | 2.6376 |
2.10 | −2.0134 | −1.9645 | 2.4287 |
2.70 | −1.0988 | −1.1771 | 7.1259 |
3.00 | −0.9198 | −0.9986 | 8.5670 |
Point | C (%) | O (%) | Ca (%) | Si (%) | Al (%) |
---|---|---|---|---|---|
1 | 4.71 | 50.29 | 34.41 | 9.88 | 0.71 |
2 | 3.41 | 49.29 | 35.88 | 10.61 | 0.81 |
3 | 82.69 | 12.50 | 2.87 | 1.54 | 0.40 |
4 | 7.96 | 48.45 | 33.46 | 8.97 | 1.16 |
5 | 85.69 | 9.50 | 3.15 | 1.38 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, M.; Li, W.; Ma, Y.; Zeng, H.; Huang, M.; Lu, C.; Yang, G. Investigation on the Electrical Conductivity of Graphene/Cement Composites by Alternating Current Method. Materials 2023, 16, 1436. https://doi.org/10.3390/ma16041436
Jin M, Li W, Ma Y, Zeng H, Huang M, Lu C, Yang G. Investigation on the Electrical Conductivity of Graphene/Cement Composites by Alternating Current Method. Materials. 2023; 16(4):1436. https://doi.org/10.3390/ma16041436
Chicago/Turabian StyleJin, Ming, Wenwei Li, Yuefeng Ma, Haoyu Zeng, Minghui Huang, Chao Lu, and Guo Yang. 2023. "Investigation on the Electrical Conductivity of Graphene/Cement Composites by Alternating Current Method" Materials 16, no. 4: 1436. https://doi.org/10.3390/ma16041436
APA StyleJin, M., Li, W., Ma, Y., Zeng, H., Huang, M., Lu, C., & Yang, G. (2023). Investigation on the Electrical Conductivity of Graphene/Cement Composites by Alternating Current Method. Materials, 16(4), 1436. https://doi.org/10.3390/ma16041436