Imparting Waterproofing Properties to Leather by Polymer Nanoemulsion Based on Long-Chain Alkyl Acrylate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Reactive Emulsifier
2.3. Synthesis of Polymer Nanoemulsions
2.4. Application of Polymer Nanoemulsions in Fatliquoring
2.5. Characterization
2.5.1. FT-IR
2.5.2. H NMR
2.5.3. Surface Properties of C12-Na
2.5.4. Emulsifying Capacity of C12-Na
2.5.5. Particle Size and Zeta Potential Measurement
2.5.6. Stability
2.5.7. Absorption of Polymeric Emulsion into the Chromed Leather
2.5.8. Physical and Mechanical Properties
2.5.9. Contact Angle Measurements
2.5.10. Water Penetration Test
2.5.11. Scanning Electron Microscope (SEM)
3. Results and Discussion
3.1. The Preparation of C12-Na
3.2. Characterization of PLA and PSA
3.3. The Stability of PLA and PSA
3.4. The Absorption of PLA and PSA into the Chromed Leather
3.5. Physical Properties and Morphology of the Fatliquored Leather
3.6. Waterproofness of the Fatliquored Leather
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carlos, R.S.; Blanca, J.F.; María, P.C.B.; Elena, B.G.; Elena, O.C.; Francisca, A.A. Organosilicon-based plasma nanocoating on crust leather for water-repellent footwear. Materials 2022, 15, 7255. [Google Scholar]
- Xu, W.; Hao, L.F. Preparation of carboxylated polysiloxane and its application in leather waterproofing. Funct. Mater. Nanotechnol. 2012, 496, 519–522. [Google Scholar] [CrossRef]
- Ayyappan, V.G.; Prakash, D.; Jaisankar, S.; Sadhukhan, N.; Alam, M.; Samanta, D. Nanoconjugates of methacrylic polymers: Synthesis, characterization, and immobilization to leather. J. Appl. Polym. Sci. 2019, 137, 48627. [Google Scholar] [CrossRef]
- Baquero, G.; Sorolla, S.; Cuadros, R.; Ollé, L.; Bacardit, A. Analysis of the environmental impacts of waterproofing versus conventional vegetable tanning process-a life cycle analysis study. J. Clean. Prod. 2021, 325, 129344. [Google Scholar] [CrossRef]
- Ramon, P. Factors influencing the waterproofing behavior of retanning-fatliquoring polymers. Part Ⅱ. J. Am. Leather Chem. Assoc. 2004, 99, 461–467. [Google Scholar]
- Su, S.H.; Wang, J.; Li, C.; Pan, Z.; Pan, M. Short-branched fluorinated polyurethane coating exhibiting good comprehensive performance and potential UV degradation in leather waterproofing modification. Coatings 2021, 11, 395. [Google Scholar] [CrossRef]
- Luo, Z.Y.; Fan, H.J.; Lu, Y.; Shi, B. Fluorine-containing aqueous copolymer emulsion for waterproof leather. J. Soc. Leather Technol. Chem. 2008, 92, 107–113. [Google Scholar]
- Jin, L.Q.; Wei, Y.W.; Yang, H. Progress of polymer compound tanning adding agent. Leather Chem. 2018, 35, 27–36. [Google Scholar]
- Wang, X.C.; Wang, W.N.; Liu, X.H.; Wang, Y.Y. Amphoteric functional polymers for leather wet finishing auxiliaries: A review. Polym. Advan. Technol. 2021, 32, 1951–1964. [Google Scholar] [CrossRef]
- Wei, C.; Wang, X.C.; Wang, W.N.; Sun, S.W.; Liu, X.H. Bifunctional amphoteric polymer-based ecological integrated retanning/fatliquoring agents for leather manufacturing: Simplifying processes and reducing pollution. J. Clean. Prod. 2022, 369, 133229. [Google Scholar] [CrossRef]
- Yu, D.S.; Du, J.X.; Tan, R. Preparation of ternary emulsion copolymerization of acrylate amphiphilic polymers and its retanning and fat-retanning properties. Leather Sci. Eng. 2020, 30, 1–6. [Google Scholar]
- Thomas, S.; Patricia, M.L.; Anton, G.E.A. Leather treatment selected amphiphilic copolymers. U.S. Patent 5,316,860, 31 May 1994. [Google Scholar]
- Song, M.Z.; Zhang, J.B.; Geng, J.G. Preparation of silicone waterproof lipid additive agent. China Leather 2010, 39, 41–44. [Google Scholar]
- Du, J.X.; Lu, S.; Peng, B.Y. Amphiphilic acrylate copolymer fatliquor for ecological leather: Influence of molecular weight on performances. J. Appl. Polym. Sci. 2016, 133, 43440. [Google Scholar] [CrossRef]
- Du, J.X.; Huang, C.; Peng, B.Y. Influence of hydrophobic side chain structure on the performance of amphiphilic acrylate copolymers in leather-making. J. Soc. Leather Technol. Chem. 2016, 100, 67–72. [Google Scholar]
- Zou, X.L.; Wu, H.J.; Ye, Q.Q. Synthesis and properties of maleic acid monoester-methacylate-mathacrylic acid terpolymer as reatnning fat-liquor agent. Petrochem. Technol. 2009, 38, 1327–1330. [Google Scholar]
- Zou, X.L.; Lan, Y.J.; Li, J. Synthesis and characterization of maleic acid diester polymer and its retanning and fatting effect. Fine Chem. 2009, 26, 1128–1131. [Google Scholar]
- Asua, J.M. Challenges for industrialization of miniemulsion polymerization. Prog. Poly. Sci. 2014, 39, 1797–1826. [Google Scholar] [CrossRef]
- Thickett, S.C.; Teo, G.H. Recent advances in colloidal nanocomposite design via heterogeneous polymerization techniques. Polym. Chem. 2019, 10, 2906–2924. [Google Scholar] [CrossRef]
- Kumar, P.P.; Nayak, R.R.; Kanjilal, S. Synthesis and surface properties of a novel sodium 3-(3-Alkyloxy-3-oxopropoxy)-3-oxopropane-1-sulfonate at the air–water interface. J. Surfactants Deterg. 2015, 18, 689–695. [Google Scholar] [CrossRef]
- Li, P.; Xu, H.; Xie, H.Y.; Zhang, H.H.; Du, L.; Xu, J. Synthesis and properties of iconate diester sodium sulfonate type gemini surfactants. Chem. Ind. Eng. Prog. 2017, 36, 3047–3052. [Google Scholar]
- Liu, X.C.; Huo, Y.Q.; Bai, L.; Niu, J. Effect of ionic head group on properties of anionic-nonionic surfactants. Text. Auxili. 2018, 35, 39–42. [Google Scholar]
- Janardhanan, R.; Vijayabaskar, V.; Reddy, B. Preparation of a new itaconate based amphoteric surfactant for fatliquor application. J. Am. Leather Chem. Assoc. 2012, 107, 231–242. [Google Scholar]
- Reich, G. From collagen to leather—The theoretical background. Basf Serv. Cent. Media Commun. 2007, 43–63. [Google Scholar]
- Jun, L.Q.; Wei, Y.W.; Wang, Y.L. Preparation and application of an amphiphilic acrylic copolymer as a retanning agent. J. Soc. Leather Technol. Chem. 2014, 98, 222–228. [Google Scholar]
- Wu, X.; Qiang, X.; Liu, D.; Yu, L.; Wang, X. An eco-friendly tanning process to wet-white leather based on amino acids. J. Clean. Prod. 2020, 270, 122399. [Google Scholar] [CrossRef]
- Qiang, X.H.; Ma, L.L.; Zhe, Y.; Zhang, H. Preparation of comb-Like amphiphilic styrene maleic anhydride copolymer derivatives and their modification to surface of chrome-tanned collagen fiber. J. Surfactants Deterg. 2013, 16, 321–326. [Google Scholar] [CrossRef]
- Li, X.F. Development of Waterproofing Fatliquoring Agent and Its Application in Production of Second-Layer Suede Leather. Master’s Thesis, Qilu University of Technology, Jinan, China, 2021. [Google Scholar]
Ingredients (g) | PLA | PSA |
---|---|---|
Deionized water | 100 | 100 |
C12-Na | 1 | 1 |
Lauryl acrylate (LA) | 18 | 0 |
Stearyl acrylate (SA) | 0 | 18 |
Azobis (4-cyanovalic acid) | 1 | 1 |
Sodium bicarbonate | 0.25 | 0.25 |
Product | Quantity (%) a | Temperature (°C) | Time (min) | pH | |
---|---|---|---|---|---|
Neutralisation | Water | 200 | 30 | 40 | |
Sodium formate | 2 | ||||
Sodium bicarbonate | 1.2 | 90 | 6~6.5 | ||
Washing | drain | ||||
Fatliquoring | Water | 150 | 50 | ||
sulfonated oil or nanoemulsion | 5 b | 90 | |||
Formic acid | 2 | 30 | 3.8~4.0 drain | ||
Fixation | Water | 200 | 30 | ||
Chromium salt | 2 | 30 | drain | ||
Washing | 10 |
Scheme | Thickness Increment Rate (%) | Tensile Strength (MPa) | Tearing Strength (N/mm) | Softness (mm) a | Yellowing Resistance |
---|---|---|---|---|---|
PLA | 14.90 ± 0.92 | 9.30 ± 0.12 | 80.42 ± 4.9 | 4.84 ± 0.013 | 4.5 |
PSA | 24.41 ± 2.1 | 11.23 ± 1.2 | 83.58 ± 5.1 | 5.94 ± 0.013 | 4 |
SS | −1.71 ± 0.22 | 8.68 ± 0.57 | 34.76 ± 4.2 | 9.34 ± 0.066 | 1.5 |
Sample | Maeser Flexes |
---|---|
PLA | 13928 ± 578 |
PSA | 19492 ± 784 |
Sulfonated oil SS | 205 ± 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Xu, W.; Wen, H.; Wang, Y.; Zhang, F. Imparting Waterproofing Properties to Leather by Polymer Nanoemulsion Based on Long-Chain Alkyl Acrylate. Materials 2023, 16, 1464. https://doi.org/10.3390/ma16041464
Jin L, Xu W, Wen H, Wang Y, Zhang F. Imparting Waterproofing Properties to Leather by Polymer Nanoemulsion Based on Long-Chain Alkyl Acrylate. Materials. 2023; 16(4):1464. https://doi.org/10.3390/ma16041464
Chicago/Turabian StyleJin, Liqiang, Wenbin Xu, Hongmei Wen, Yulu Wang, and Feifei Zhang. 2023. "Imparting Waterproofing Properties to Leather by Polymer Nanoemulsion Based on Long-Chain Alkyl Acrylate" Materials 16, no. 4: 1464. https://doi.org/10.3390/ma16041464
APA StyleJin, L., Xu, W., Wen, H., Wang, Y., & Zhang, F. (2023). Imparting Waterproofing Properties to Leather by Polymer Nanoemulsion Based on Long-Chain Alkyl Acrylate. Materials, 16(4), 1464. https://doi.org/10.3390/ma16041464