Hydrogen Storage Performance of Mg/MgH2 and Its Improvement Measures: Research Progress and Trends
Abstract
:1. Introduction
2. Improvement of Hydrogen Storage Performance of Mg/MgH2 by Alloying Treatment
3. Improvement of Hydrogen Storage Performance of Mg/MgH2 by Nanosizing
4. Improvement of Hydrogen Storage Performance of Mg/MgH2 by Catalyst Doping
4.1. Nickel (Ni)-Based Catalysts
4.2. Iron (Fe)-Based Catalysts
4.3. Titanium (Ti)-Based Catalysts
4.4. Vanadium(V)-Based Catalysts
4.5. Manganese (Mn)-Based Catalyst
4.6. Summary of Catalytic Approach
- (1)
- Catalyst particle size, doping amount and ball milling time are important factors to improve the hydrogen storage performance of Mg/MgH2; however, catalyst materials with small particle size, high doping amount and long ball milling time should not be pursued blindly, and the pros and cons need to be weighed otherwise it may be counterproductive.
- (2)
- For the enhancement of the hydrogen storage performance of Mg/MgH2, the active substances (Mg2Ni/Mg2NiH4, Fe, multivalent titanium, V, Mg0.9Mn0.1O, etc.) generated in the reaction between metal-based catalysts and Mg/MgH2 have an important positive impact. Usually, multi-element catalysts have better catalytic effects than single metal catalysts because the synergy between multiple active substances formed by multiple elements can complement each other and together enhance the kinetic performance of Mg/MgH2.
- (3)
- A single metal-based catalyst is certainly excellent, but it is difficult to enhance the cycling performance of Mg/MgH2, while the combination of carbon material and catalyst can effectively limit the particle size and inhibit its growth and agglomeration, thus further enhancing the kinetic and cycling performance of Mg/MgH2. Here, titanium-based MXenes have to be mentioned, which can be used not only as catalysts to improve the kinetic performance of Mg/MgH2, but also as carriers of catalytic substances to improve the kinetic and cyclic performance of Mg/MgH2. Regardless of the use, the catalytic effect of titanium-based MXenes on Mg/MgH2 comes mainly from the in situ generation of a variety of active substances, such as metal Ti and multivalent Ti species. Therefore, titanium-based MXenes are of great significance for the improvement of hydrogen storage performance of Mg/MgH2, which will be one of the main research titanium-based catalysts and materials for supporting active substances in the future.
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Lu, Y.; Luo, Q.; Yang, X.; Yang, Y.; Tan, J.; Dong, Z.; Dang, J.; Li, J.; Chen, Y.; et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials. J. Magnes. Alloys 2021, 9, 1922–1941. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, S.; Hashmi, S.A.R.; Kim, K.-H. MXenes: Emerging 2D materials for hydrogen storage. Nano Energy 2021, 85, 105989. [Google Scholar] [CrossRef]
- Hoang, T.K.A.; Antonelli, D.M. Exploiting the Kubas Interaction in the Design of Hydrogen Storage Materials. Adv. Mater. 2009, 21, 1787–1800. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Ma, H.; Lu, C.; Luo, H.; Wang, X.; Huang, X.; Lan, Z.; Guo, J. Aluminum hydride for solid-state hydrogen storage: Structure, synthesis, thermodynamics, kinetics, and regeneration. J. Energy Chem. 2021, 52, 428–440. [Google Scholar] [CrossRef]
- Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G. The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements. Catal. Today 2007, 120, 246–256. [Google Scholar] [CrossRef]
- Klebanoff, L.E.; Ott, K.C.; Simpson, L.J.; O’Malley, K.; Stetson, N.T. Accelerating the Understanding and Development of Hydrogen Storage Materials: A Review of the Five-Year Efforts of the Three DOE Hydrogen Storage Materials Centers of Excellence. Metall. Mater. Trans. E 2014, 1, 81–117. [Google Scholar] [CrossRef]
- Møller, K.T.; Jensen, T.R.; Akiba, E.; Li, H.-w. Hydrogen—A sustainable energy carrier. Prog. Nat. Sci. Mater. Int. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Lochan, R.C.; Head-Gordon, M. Computational studies of molecular hydrogen binding affinities: The role of dispersion forces, electrostatics, and orbital interactions. Phys. Chem. Chem. Phys. 2006, 8, 1357–1370. [Google Scholar] [CrossRef] [PubMed]
- Klontzas, E.; Tylianakis, E.; Froudakis, G.E. On the Enhancement of Molecular Hydrogen Interactions in Nanoporous Solids for Improved Hydrogen Storage. J. Phys. Chem. Lett. 2011, 2, 1824–1830. [Google Scholar] [CrossRef]
- Romanos, J.; Beckner, M.; Prosniewski, M.; Rash, T.; Lee, M.; Robertson, J.D.; Firlej, L.; Kuchta, B.; Pfeifer, P. Boron-neutron Capture on Activated Carbon for Hydrogen Storage. Sci. Rep. 2019, 9, 2971. [Google Scholar] [CrossRef] [Green Version]
- Blankenship, T.S.; Balahmar, N.; Mokaya, R. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nat. Commun. 2017, 8, 1545. [Google Scholar] [CrossRef] [PubMed]
- Blankenship, L.S.; Mokaya, R. Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity. Energy Environ. Sci. 2017, 10, 2552–2562. [Google Scholar] [CrossRef]
- Ahmed, A.; Liu, Y.; Purewal, J.; Tran, L.D.; Wong-Foy, A.G.; Veenstra, M.; Matzger, A.J.; Siegel, D.J. Balancing gravimetric and volumetric hydrogen density in MOFs. Energy Environ. Sci. 2017, 10, 2459–2471. [Google Scholar] [CrossRef]
- Sigal, A.; Rojas, M.I.; Leiva, E.P. Is hydrogen storage possible in metal-doped graphite 2D systems in conditions found on Earth? Phys. Rev. Lett. 2011, 107, 158701. [Google Scholar] [CrossRef]
- Lee, H.; Ihm, J.; Cohen, M.L.; Louie, S.G. Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Lett. 2010, 10, 793–798. [Google Scholar] [CrossRef]
- Bronoel, G.; Sarradin, J.; Bonnemay, M.; Percheron, A.; Achard, J.C.; Schlapbach, L. A new hydrogen storage electrode. Int. J. Hydrogen Energy 1976, 1, 251–254. [Google Scholar] [CrossRef]
- Georgiadis, M.C.; Kikkinides, E.S.; Makridis, S.S.; Kouramas, K.; Pistikopoulos, E.N. Design and optimization of advanced materials and processes for efficient hydrogen storage. Comput. Chem. Eng. 2009, 33, 1077–1090. [Google Scholar] [CrossRef]
- Singh, U.R.; Bhogilla, S. Performance analysis of LaNi5 added with expanded natural graphite for hydrogen storage system. Int. J. Hydrogen Energy 2022, in press. [CrossRef]
- Dashbabu, D.; Kumar, E.A.; Jain, I.P. Thermodynamic analysis of a metal hydride hydrogen compressor with aluminium substituted LaNi5 hydrides. Int. J. Hydrogen Energy 2022, in press. [CrossRef]
- Rusman, N.A.A.; Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 12108–12126. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, Z.; Zheng, J.; Li, X.; Akiba, E.; Li, H.-W. Perspectives and challenges of hydrogen storage in solid-state hydrides. Chinese J. Chem. Eng. 2021, 29, 1–12. [Google Scholar] [CrossRef]
- Li, C.; Peng, P.; Zhou, D.W.; Wan, L. Research progress in LiBH4 for hydrogen storage: A review. Int. J. Hydrogen Energy 2011, 36, 14512–14526. [Google Scholar] [CrossRef]
- Ali, N.A.; Sazelee, N.A.; Ismail, M. An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials. Int. J. Hydrogen Energy 2021, 46, 31674–31698. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Gao, M.; Pan, H. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications. Chem. Rec. 2016, 16, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Ismail, M.; Ali, N.A.; Sazelee, N.A.; Muhamad, S.U.; Suwarno, S.; Idris, N.H. CoFe2O4 synthesized via a solvothermal method for improved dehydrogenation of NaAlH4. Int. J. Hydrogen Energy 2022, 47, 41320–41328. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, D.; Fan, G.; Chen, Y.; Fan, Y.; Liu, B. N-doped carbon coated Ti3C2 MXene as a high-efficiency catalyst for improving hydrogen storage kinetics and stability of NaAlH4. Renew. Energy 2022, 188, 778–787. [Google Scholar] [CrossRef]
- Bogdanović, B.; Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials1Invited paper presented at the International Symposium on Metal–Hydrogen Systems. J. Alloys Compd. 1997, 253–254, 1–9. [Google Scholar] [CrossRef]
- Ahmad, M.A.N.; Sazelee, N.A.; Ali, N.A.; Ismail, M. Enhancing the dehydrogenation properties of LiAlH4 using K2NiF6 as additive. Int. J. Hydrogen Energy 2022, 47, 24843–24851. [Google Scholar] [CrossRef]
- Kytsya, A.; Berezovets, V.; Verbovytskyy, Y.; Bazylyak, L.; Kordan, V.; Zavaliy, I.; Yartys, V.A. Bimetallic Ni-Co nanoparticles as an efficient catalyst of hydrogen generation via hydrolysis of NaBH4. J. Alloys Compd. 2022, 908, 164484. [Google Scholar] [CrossRef]
- Samatya Ölmez, S.; Balbay, A.; Saka, C. Phosphorus doped carbon nanodots particles based on pomegranate peels for highly active dehydrogenation of sodium borohydride in methanol. Int. J. Hydrogen Energy 2022, 47, 31647–31655. [Google Scholar] [CrossRef]
- Ye, J.; Xia, G.; Yu, X. In-situ constructed destabilization reaction of LiBH4 wrapped with graphene toward stable hydrogen storage reversibility. Mater. Today Energy 2021, 22, 100885. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.Z.; Zhang, Y.; Liu, D.M.; Wang, C.Y.; Si, T.Z.; Li, Y.T.; Zhang, Q.A. Coupling of nanoconfinement with metallic catalysis in supported NaAlH4 for low-temperature hydrogen storage. J. Power Sources 2021, 491, 229611. [Google Scholar] [CrossRef]
- Sui, Y.; Yuan, Z.; Zhou, D.; Zhai, T.; Li, X.; Feng, D.; Li, Y.; Zhang, Y. Recent progress of nanotechnology in enhancing hydrogen storage performance of magnesium-based materials: A review. Int. J. Hydrogen Energy 2022, 47, 30546–30566. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Hou, Q.; Guo, X.; Xu, G. Improvement of Mg-Based Hydrogen Storage Materials by Metal Catalysts: Review and Summary. ChemistrySelect 2021, 6, 8809–8829. [Google Scholar] [CrossRef]
- Ding, X.; Chen, R.; Zhang, J.; Cao, W.; Su, Y.; Guo, J. Recent progress on enhancing the hydrogen storage properties of Mg-based materials via fabricating nanostructures: A critical review. J. Alloys Compd. 2022, 897, 163137. [Google Scholar] [CrossRef]
- Hou, Q.; Yang, X.; Zhang, J. Review on Hydrogen Storage Performance of MgH2: Development and Trends. ChemistrySelect 2021, 6, 1589–1606. [Google Scholar] [CrossRef]
- Hitam, C.N.C.; Aziz, M.A.A.; Ruhaimi, A.H.; Taib, M.R. Magnesium-based alloys for solid-state hydrogen storage applications: A review. Int. J. Hydrogen Energy 2021, 46, 31067–31083. [Google Scholar] [CrossRef]
- Korablov, D.; Besenbacher, F.; Jensen, T.R. Kinetics and thermodynamics of hydrogenation-dehydrogenation for Mg-25%TM (TM = Ti, Nb or V) composites synthesized by reactive ball milling in hydrogen. Int. J. Hydrogen Energy 2018, 43, 16804–16814. [Google Scholar] [CrossRef]
- Khan, D.; Zou, J.; Zeng, X.; Ding, W. Hydrogen storage properties of nanocrystalline Mg2Ni prepared from compressed 2MgH2Ni powder. Int. J. Hydrogen Energy 2018, 43, 22391–22400. [Google Scholar] [CrossRef]
- Passing, M.; Pistidda, C.; Capurso, G.; Jepsen, J.; Metz, O.; Dornheim, M.; Klassen, T. Development and experimental validation of kinetic models for the hydrogenation/dehydrogenation of Mg/Al based metal waste for energy storage. J. Magnes. Alloys 2022, 10, 2761–2774. [Google Scholar] [CrossRef]
- Song, F.; Yao, J.; Yong, H.; Wang, S.; Xu, X.; Chen, Y.; Zhang, L.; Hu, J. Investigation of ball-milling process on microstructure, thermodynamics and kinetics of Ce–Mg–Ni-based hydrogen storage alloy. Int. J. Hydrogen Energy 2022, in press. [CrossRef]
- Bu, W.; Peng, W.; Liu, Q.; Luo, J.; Dai, X. Hydrogen storage properties of Pr-Mg-Ni- based alloys prepared by vacuum induction melting. Vacuum 2022, 197, 110865. [Google Scholar] [CrossRef]
- Bu, W.; Liu, Q.; Peng, W.; Zhang, T.; Dai, X. Hydrogen storage characteristics, kinetics and thermodynamics of Gd-Mg-Ni-based alloys. Int. J. Hydrogen Energy 2022, in press. [CrossRef]
- Pan, S.X.; Zhang, J.; Zhou, X.J.; Jin, R.S.; He, J.H.; Chen, J.N.; Lu, X.Z.; Chen, X.M. Investigation on hydrogen storage properties of as-cast, extruded and swaged Mg–Y–Zn alloys. Int. J. Hydrogen Energy 2022, 47, 34545–34554. [Google Scholar] [CrossRef]
- Yu, Y.; Ji, Y.; Zhang, S.; Wang, S.; Chen, Y.; yong, H.; Liu, B.; Zhang, Y. Microstructure characteristics, hydrogen storage thermodynamic and kinetic properties of Mg–Ni–Y based hydrogen storage alloys. Int. J. Hydrogen Energy 2022, 47, 27059–27070. [Google Scholar] [CrossRef]
- Zhong, H.C.; Wang, H.; Liu, J.W.; Sun, D.L.; Zhu, M. Altered desorption enthalpy of MgH2 by the reversible formation of Mg(In) solid solution. Scr. Mater. 2011, 65, 285–287. [Google Scholar] [CrossRef]
- Lu, Y.; Asano, K.; Schreuders, H.; Kim, H.; Sakaki, K.; Machida, A.; Watanuki, T.; Dam, B. Nanostructural Perspective for Destabilization of Mg Hydride Using the Immiscible Transition Metal Mn. Inorg. Chem. 2021, 60, 15024–15030. [Google Scholar] [CrossRef]
- Schefer, J.; Fischer, P.; Hälg, W.; Stucki, F.; Schlapbach, L.; Didisheim, J.J.; Yvon, K.; Andresen, A.F. New structure results for hydrides and deuterides of the hydrogen storage material Mg2Ni. J. Less Common Met. 1980, 74, 65–73. [Google Scholar] [CrossRef]
- von Waldkirch, T.; Seiler, A.; Zürcher, P.; Mathieu, H.J. Mg-based hydrogen storage materials: Surface segregation in Mg2Cu and related catalytic effects. Mater. Res. Bull. 1980, 15, 353–362. [Google Scholar] [CrossRef]
- Varin, R.A.; Czujko, T.; Wronski, Z. Particle size, grain size and γ-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. Nanotechnology 2006, 17, 3856–3865. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, R.; Yang, J.; Zhao, W.; Zheng, J.; Tian, W.; Li, X. Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction. Int. J. Hydrogen Energy 2011, 36, 4967–4975. [Google Scholar] [CrossRef]
- Norberg, N.S.; Arthur, T.S.; Fredrick, S.J.; Prieto, A.L. Size-Dependent Hydrogen Storage Properties of Mg Nanocrystals Prepared from Solution. J. Am. Chem. Soc. 2011, 133, 10679–10681. [Google Scholar] [CrossRef]
- Au, Y.S.; Obbink, M.K.; Srinivasan, S.; Magusin, P.C.M.M.; de Jong, K.P.; de Jongh, P.E. The Size Dependence of Hydrogen Mobility and Sorption Kinetics for Carbon-Supported MgH2 Particles. Adv. Funct. Mater. 2014, 24, 3604–3611. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, S.; Xiao, X.; Chen, M.; Sun, C.; Yao, Z.; Hu, Z.; Chen, L. Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH2 for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy 2019, 61, 540–549. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, Y.; Ma, T.; Li, K.; Ye, F.; Wang, X.; Jiao, L.; Yuan, H.; Wang, Y. Facile synthesis of small MgH2 nanoparticles confined in different carbon materials for hydrogen storage. J. Alloys Compd. 2020, 825, 153953. [Google Scholar] [CrossRef]
- Aguey-Zinsou, K.F.; Ares Fernandez, J.R.; Klassen, T.; Bormann, R. Using MgO to improve the (de)hydriding properties of magnesium. Mater. Res. Bull. 2006, 41, 1118–1126. [Google Scholar] [CrossRef]
- Liu, W.; Aguey-Zinsou, K.-F. Size effects and hydrogen storage properties of Mg nanoparticles synthesised by an electroless reduction method. J. Mater. Chem. A 2014, 2, 9718–9726. [Google Scholar] [CrossRef]
- Lu, Y.; Li, J.; Ye, T.-N.; Kobayashi, Y.; Sasase, M.; Kitano, M.; Hosono, H. Synthesis of Rare-Earth-Based Metallic Electride Nanoparticles and Their Catalytic Applications to Selective Hydrogenation and Ammonia Synthesis. ACS Catal. 2018, 8, 11054–11058. [Google Scholar] [CrossRef]
- de Jongh, P.E.; Wagemans, R.W.P.; Eggenhuisen, T.M.; Dauvillier, B.S.; Radstake, P.B.; Meeldijk, J.D.; Geus, J.W.; de Jong, K.P. The Preparation of Carbon-Supported Magnesium Nanoparticles using Melt Infiltration. Chem. Mater. 2007, 19, 6052–6057. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite. J. Alloys Compd. 1999, 291, 295–299. [Google Scholar] [CrossRef]
- Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 1999, 292, 247–252. [Google Scholar] [CrossRef]
- Shahi, R.R.; Tiwari, A.P.; Shaz, M.A.; Srivastava, O.N. Studies on de/rehydrogenation characteristics of nanocrystalline MgH2 co-catalyzed with Ti, Fe and Ni. Int. J. Hydrogen Energy 2013, 38, 2778–2784. [Google Scholar] [CrossRef]
- Yang, X.; Hou, Q.; Yu, L.; Zhang, J. Improvement of the hydrogen storage characteristics of MgH2 with a flake Ni nano-catalyst composite. Dalton Trans. 2021, 50, 1797–1807. [Google Scholar] [CrossRef] [PubMed]
- El-Eskandarany, M.S.; Al-Matrouk, H.; Shaban, E.; Al-Duweesh, A. Superior catalytic effect of nanocrystalline big-cube Zr2Ni metastable phase for improving the hydrogen sorption/desorption kinetics and cyclability of MgH2 powders. Energy 2015, 91, 274–282. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Shaban, E.; Al-Matrouk, H.; Behbehani, M.; Alkandary, A.; Aldakheel, F.; Ali, N.; Ahmed, S.A. Structure, morphology and hydrogen storage kinetics of nanocomposite MgH2/10 wt% ZrNi5 powders. Mater. Today Energy 2017, 3, 60–71. [Google Scholar] [CrossRef]
- Ding, Z.; Zhang, L.; Fu, Y.; Wang, W.; Wang, Y.; Bi, J.; Li, Y.; Han, S. Enhanced kinetics of MgH2 via in situ formed catalysts derived from MgCCo1.5Ni1.5. J. Alloys Compd. 2020, 822, 153621. [Google Scholar] [CrossRef]
- Zhang, J.; He, L.; Yao, Y.; Zhou, X.J.; Yu, L.P.; Lu, X.Z.; Zhou, D.W. Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2. Renew. Energy 2020, 154, 1229–1239. [Google Scholar] [CrossRef]
- Zhang, J.; He, L.; Yao, Y.; Zhou, X.-j.; Jiang, L.-k.; Peng, P. Hydrogen storage properties of magnesium hydride catalyzed by Ni-based solid solutions. Trans. Nonferrous Met. Soc. China 2022, 32, 604–617. [Google Scholar] [CrossRef]
- Liu, G.; Qiu, F.; Li, J.; Wang, Y.; Li, L.; Yan, C.; Jiao, L.; Yuan, H. NiB nanoparticles: A new nickel-based catalyst for hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 2012, 37, 17111–17117. [Google Scholar] [CrossRef]
- Zhang, Q.; Zang, L.; Huang, Y.; Gao, P.; Jiao, L.; Yuan, H.; Wang, Y. Improved hydrogen storage properties of MgH2 with Ni-based compounds. Int. J. Hydrogen Energy 2017, 42, 24247–24255. [Google Scholar] [CrossRef]
- Xie, X.; Ma, X.; Liu, P.; Shang, J.; Li, X.; Liu, T. Formation of Multiple-Phase Catalysts for the Hydrogen Storage of Mg Nanoparticles by Adding Flowerlike NiS. ACS Appl. Mater. Interfaces 2017, 9, 5937–5946. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Zhang, J.; Guo, X.; Yang, X. Improved MgH2 kinetics and cyclic stability by fibrous spherical NiMoO4 and rGO. J. Taiwan Inst. Chem. E. 2022, 134, 104311. [Google Scholar] [CrossRef]
- Meng, Q.; Huang, Y.; Ye, J.; Xia, G.; Wang, G.; Dong, L.; Yang, Z.; Yu, X. Electrospun carbon nanofibers with in-situ encapsulated Ni nanoparticles as catalyst for enhanced hydrogen storage of MgH2. J. Alloys Compd. 2021, 851, 156874. [Google Scholar] [CrossRef]
- Duan, C.; Tian, Y.; Wang, X.; Wu, M.; Fu, D.; Zhang, Y.; Lv, W.; Su, Z.; Xue, Z.; Wu, Y. Ni-CNTs as an efficient confining framework and catalyst for improving dehydriding/rehydriding properties of MgH2. Renew. Energy 2022, 187, 417–427. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, J.; XinTao, G.; Xu, G.; Yang, X. Synthesis of low-cost biomass charcoal-based Ni nanocatalyst and evaluation of their kinetic enhancement of MgH2. Int. J. Hydrogen Energy 2022, 47, 15209–15223. [Google Scholar] [CrossRef]
- Zeng, L.; Lan, Z.; Li, B.; Liang, H.; Wen, X.; Huang, X.; Tan, J.; Liu, H.; Zhou, W.; Guo, J. Facile synthesis of a Ni3S2@C composite using cation exchange resin as an efficient catalyst to improve the kinetic properties of MgH2. J. Magnes. Alloys 2021, in press. [CrossRef]
- El-Eskandarany, M.S.; Shaban, E.; Ali, N.; Aldakheel, F.; Alkandary, A. In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles. Sci. Rep. 2016, 6, 37335. [Google Scholar] [CrossRef]
- Dan, L.; Wang, H.; Liu, J.; Ouyang, L.; Zhu, M. H2 Plasma Reducing Ni Nanoparticles for Superior Catalysis on Hydrogen Sorption of MgH2. ACS Appl. Energy Mater. 2022, 5, 4976–4984. [Google Scholar] [CrossRef]
- Motavalli, A.; Rajabi, M. Catalytic effect of melt-spun Ni3FeMn alloy on hydrogen desorption properties of nanocrystalline MgH2 synthesized by mechanical alloying. Int. J. Hydrogen Energy 2014, 39, 17047–17053. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Al-Matrouk, H.; Behbehani, M.; Shaban, E.; Alkandary, A.; Aldakheel, F.; Al-Saidi, M. Amorphous-versus big cube- Zr2Ni for improving the kinetics of hydrogenation/dehydrogenation behaviors for MgH2 powders. Mater. Chem. Phys. 2018, 203, 17–26. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, L.; Yao, Z.; Yan, N.; Sun, Z.; Yang, X.; Zhu, X.; Hu, S.; Chen, L. Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2. Int. J. Hydrogen Energy 2019, 44, 21955–21964. [Google Scholar] [CrossRef]
- Santos, S.F.; Ishikawa, T.T.; Botta, W.J.; Huot, J. MgH2 + FeNb nanocomposites for hydrogen storage. Mater. Chem. Phys. 2014, 147, 557–562. [Google Scholar] [CrossRef]
- Liu, J.; Ma, Z.; Liu, Z.; Tang, Q.; Zhu, Y.; Lin, H.; Zhang, Y.; Zhang, J.; Liu, Y.; Li, L. Synergistic effect of rGO supported Ni3Fe on hydrogen storage performance of MgH2. Int. J. Hydrogen Energy 2020, 45, 16622–16633. [Google Scholar] [CrossRef]
- Singh, S.; Bhatnagar, A.; Shukla, V.; Vishwakarma, A.K.; Soni, P.K.; Verma, S.K.; Shaz, M.A.; Sinha, A.S.K.; Srivastava, O.N. Ternary transition metal alloy FeCoNi nanoparticles on graphene as new catalyst for hydrogen sorption in MgH2. Int. J. Hydrogen Energy 2020, 45, 774–786. [Google Scholar] [CrossRef]
- Gao, S.; Wang, X.; Liu, H.; He, T.; Wang, Y.; Li, S.; Yan, M. CNTs decorated with CoFeB as a dopant to remarkably improve the dehydrogenation/rehydrogenation performance and cyclic stability of MgH2. Int. J. Hydrogen Energy 2020, 45, 28964–28973. [Google Scholar] [CrossRef]
- Ismail, M. Influence of different amounts of FeCl3 on decomposition and hydrogen sorption kinetics of MgH2. Int. J. Hydrogen Energy 2014, 39, 2567–2574. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, L.; Li, Y.; Guo, S.; Yu, H.; Wang, W.; Ren, K.; Zhang, W.; Han, S. Effect of ternary transition metal sulfide FeNi2S4 on hydrogen storage performance of MgH2. J. Magnes. Alloys 2022, in press. [CrossRef]
- Song, M.; Zhang, L.; Zheng, J.; Yu, Z.; Wang, S. Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2. Int. J. Miner. Metall. Mater. 2022, 29, 1464–1473. [Google Scholar] [CrossRef]
- Zhou, D.; Cui, K.; Zhou, Z.; Liu, C.; Zhao, W.; Li, P.; Qu, X. Enhanced hydrogen-storage properties of MgH2 by Fe–Ni catalyst modified three-dimensional graphene. Int. J. Hydrogen Energy 2021, 46, 34369–34380. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, J.; Zheng, Z.A.; Yang, X.; Ding, Z. Ni3Fe/BC nanocatalysts based on biomass charcoal self-reduction achieves excellent hydrogen storage performance of MgH2. Dalton Trans. 2022, 51, 14960–14969. [Google Scholar] [CrossRef]
- Ren, S.; Fu, Y.; Zhang, L.; Cong, L.; Xie, Y.; Yu, H.; Wang, W.; Li, Y.; Jian, L.; Wang, Y.; et al. An improved hydrogen storage performance of MgH2 enabled by core-shell structure Ni/Fe3O4@MIL. J. Alloys Compd. 2022, 892, 162048. [Google Scholar] [CrossRef]
- Song, M.; Zhang, L.; Yao, Z.; Zheng, J.; Shang, D.; Chen, L.; Li, H. Unraveling the degradation mechanism for the hydrogen storage property of Fe nanocatalyst-modified MgH2. Inorg. Chem. Front. 2022, 9, 3874–3884. [Google Scholar] [CrossRef]
- Shan, J.; Li, P.; Wan, Q.; Zhai, F.; Zhang, J.; Li, Z.; Liu, Z.; Volinsky, A.A.; Qu, X. Significantly improved dehydrogenation of ball-milled MgH2 doped with CoFe2O4 nanoparticles. J. Power Sources 2014, 268, 778–786. [Google Scholar] [CrossRef]
- Gattia, D.M.; Jangir, M.; Jain, I.P. Study on nanostructured MgH2 with Fe and its oxides for hydrogen storage applications. J. Alloys Compd. 2019, 801, 188–191. [Google Scholar] [CrossRef]
- Shahi, R.R.; Bhatnagar, A.; Pandey, S.K.; Dixit, V.; Srivastava, O.N. Effects of Ti-based catalysts and synergistic effect of SWCNTs-TiF3 on hydrogen uptake and release from MgH2. Int. J. Hydrogen Energy 2014, 39, 14255–14261. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Yu, H.; Lu, Z.; He, J.; Zheng, J.; Wu, F.; Chen, L. Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes. Chem. Eng. J. 2021, 422, 130101. [Google Scholar] [CrossRef]
- Hu, C.; Zheng, Z.; Si, T.; Zhang, Q. Enhanced hydrogen desorption kinetics and cycle durability of amorphous TiMgVNi3-doped MgH2. Int. J. Hydrogen Energy 2022, 47, 3918–3926. [Google Scholar] [CrossRef]
- Pandey, S.K.; Bhatnagar, A.; Shukla, V.; Kesarwani, R.; Deshpandey, U.; Yadav, T.P. Catalytic mechanism of TiO2 quantum dots on the de/re-hydrogenation characteristics of magnesium hydride. Int. J. Hydrogen Energy 2021, 46, 37340–37350. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, Z.; Zhang, M.; Gao, M.; Hu, J.; Du, F.; Liu, Y.; Pan, H. A novel solid-solution MXene (Ti0.5V0.5)3C2 with high catalytic activity for hydrogen storage in MgH2. Materialia 2018, 1, 114–120. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Z.; Jian, N.; Hu, J.; Du, F.; Yao, J.; Gao, M.; Liu, Y.; Pan, H. A novel complex oxide TiVO3.5 as a highly active catalytic precursor for improving the hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 2018, 43, 23327–23335. [Google Scholar] [CrossRef]
- Gao, H.; Shi, R.; Liu, Y.; Zhu, Y.; Zhang, J.; Li, L.; Hu, X. Facet-dependent catalytic activity of two-dimensional Ti3C2Tx MXene on hydrogen storage performance of MgH2. J. Magnes. Alloys 2022, in press. [CrossRef]
- Soni, P.K.; Bhatnagar, A.; Shukla, V.; Shaz, M.A. Improved de/re-hydrogenation properties of MgH2 catalyzed by graphene templated Ti–Ni–Fe nanoparticles. Int. J. Hydrogen Energy 2022, 47, 21391–21402. [Google Scholar] [CrossRef]
- Verma, S.K.; Bhatnagar, A.; Shukla, V.; Soni, P.K.; Pandey, A.P.; Yadav, T.P.; Srivastava, O.N. Multiple improvements of hydrogen sorption and their mechanism for MgH2 catalyzed through TiH2@Gr. Int. J. Hydrogen Energy 2020, 45, 19516–19530. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao, X.; Luo, B.; Liu, M.; Chen, M.; Chen, L. Superior de/hydrogenation performances of MgH2 catalyzed by 3D flower-like TiO2@C nanostructures. J. Energy Chem. 2020, 46, 191–198. [Google Scholar] [CrossRef]
- Gao, H.; Shi, R.; Zhu, J.; Liu, Y.; Shao, Y.; Zhu, Y.; Zhang, J.; Li, L.; Hu, X. Interface effect in sandwich like Ni/Ti3C2 catalysts on hydrogen storage performance of MgH2. Appl. Surf. Sci. 2021, 564, 150302. [Google Scholar] [CrossRef]
- Gao, H.; Shi, R.; Shao, Y.; Liu, Y.; Zhu, Y.; Zhang, J.; Hu, X.; Li, L.; Ba, Z. One-step self-assembly of TiO2/MXene heterostructures for improving the hydrogen storage performance of magnesium hydride. J. Alloys Compd. 2022, 895, 162635. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Wang, Y.; Jiao, L.; Yuan, H. Catalytic effects of different Ti-based materials on dehydrogenation performances of MgH2. J. Alloys Compd. 2015, 645, S509–S512. [Google Scholar] [CrossRef]
- Pukazhselvan, D.; Sandhya, K.S.; Ramasamy, D.; Shaula, A.; Fagg, D.P. Transformation of Metallic Ti to TiH2 Phase in the Ti/MgH2 Composite and Its Influence on the Hydrogen Storage Behavior of MgH2. ChemPhysChem 2020, 21, 1195–1201. [Google Scholar] [CrossRef]
- Ren, C.; Fang, Z.Z.; Zhou, C.; Lu, J.; Ren, Y.; Zhang, X.; Luo, X. In situ X-ray diffraction study of dehydrogenation of MgH2 with Ti-based additives. Int. J. Hydrogen Energy 2014, 39, 5868–5873. [Google Scholar] [CrossRef]
- Khodaparast, V.; Rajabi, M. Hydrogen Desorption Properties of MgH2-5 wt% Ti-Mn-Cr Composite via Combined Melt Spinning and Mechanical Alloying. Procedia Mater. Sci. 2015, 11, 611–615. [Google Scholar] [CrossRef]
- Haghparast, M.R.; Rajabi, M. Hydrogen Desorption Properties of MgH2-5 at% Ti-Cr-Mn-Fe-V Composite Via Combined Vacuum Arc Remelting and Mechanical Alloying. Procedia Mater. Sci. 2015, 11, 605–610. [Google Scholar] [CrossRef]
- Zou, R.; Adedeji Bolarin, J.; Lei, G.; Gao, W.; Li, Z.; Cao, H.; Chen, P. Microwave-assisted reduction of Ti species in MgH2-TiO2 composite and its effect on hydrogen storage. Chem. Eng. J. 2022, 450, 138072. [Google Scholar] [CrossRef]
- Ren, L.; Zhu, W.; Li, Y.; Lin, X.; Xu, H.; Sun, F.; Lu, C.; Zou, J. Oxygen Vacancy-Rich 2D TiO2 Nanosheets: A Bridge Toward High Stability and Rapid Hydrogen Storage Kinetics of Nano-Confined MgH2. Nano-Micro Lett. 2022, 14, 144. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Du, Y.; Liao, W. Catalytic effect of Ti2C MXene on the dehydrogenation of MgH2. Int. J. Hydrogen Energy 2019, 44, 6787–6794. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Y.; Zhang, M. Excellent catalytic activity of two-dimensional Ti2C and Ti2CT2 (T = O, F, OH) monolayers on hydrogen storage of MgH2: First-principles calculations. Int. J. Hydrogen Energy 2021, 46, 33176–33185. [Google Scholar] [CrossRef]
- Wu, Z.; Fang, J.; Liu, N.; Wu, J.; Kong, L. The Improvement in Hydrogen Storage Performance of MgH2 Enabled by Multilayer Ti3C2. Micromachines 2021, 12, 1190. [Google Scholar] [CrossRef]
- Gao, H.; Shi, R.; Liu, Y.; Zhu, Y.; Zhang, J.; Hu, X.; Li, L. Enhanced hydrogen storage performance of magnesium hydride with incompletely etched Ti3C2Tx: The nonnegligible role of Al. Appl. Surf. Sci. 2022, 600, 154140. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, Z.; Cai, Z.; Yan, N.; Lu, X.; Zhu, X.; Chen, L. Enhanced hydrogen storage properties of MgH2 by the synergetic catalysis of Zr0.4Ti0.6Co nanosheets and carbon nanotubes. Appl. Surf. Sci. 2020, 504, 144465. [Google Scholar] [CrossRef]
- Liu, G.; Wang, L.; Hu, Y.; Sun, C.; Leng, H.; Li, Q.; Wu, C. Enhanced catalytic effect of TiO2@rGO synthesized by one-pot ethylene glycol-assisted solvothermal method for MgH2. J. Alloys Compd. 2021, 881, 160644. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, G.; Zhang, D.; Fan, Y.; Liu, B. Striking enhanced effect of PrF3 particles on Ti3C2 MXene for hydrogen storage properties of MgH2. J. Alloys Compd. 2022, 914, 165291. [Google Scholar] [CrossRef]
- Peng, C.; Yang, C.; Zhang, Q. Few-layer MXene Ti3C2Tx supported Ni@C nanoflakes as a catalyst for hydrogen desorption of MgH2. J. Mater. Chem. A 2022, 10, 12409–12417. [Google Scholar] [CrossRef]
- da Conceição, M.O.T.; Brum, M.C.; dos Santos, D.S. The effect of V, VCl3 and VC catalysts on the MgH2 hydrogen sorption properties. J. Alloys Compd. 2014, 586, S101–S104. [Google Scholar] [CrossRef]
- Milošević, S.; Kurko, S.; Pasquini, L.; Matović, L.; Vujasin, R.; Novaković, N.; Novaković, J.G. Fast hydrogen sorption from MgH2–VO2(B) composite materials. J. Power Sources 2016, 307, 481–488. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Ahmed, S.A.; Shaban, E. Metallic Glassy V45Zr20Ni20Cu10Al3Pd2 Alloy Powders for Superior Hydrogenation/Dehydrogenation Kinetics of MgH2. Mater. Today: Proc. 2018, 5, 13718–13725. [Google Scholar]
- Pang, Y.; Wang, Y.; Yang, J.; Zheng, S. Engineering dual-functional VB2 nanoparticles in MgH2 for highly efficient hydrogen storage. Compos. Commun. 2021, 26, 100781. [Google Scholar] [CrossRef]
- Meng, Y.; Ju, S.; Chen, W.; Chen, X.; Xia, G.; Sun, D.; Yu, X. Design of Bifunctional Nb/V Interfaces for Improving Reversible Hydrogen Storage Performance of MgH2. Small Struct. 2022, 3, 2200119. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, Z.; Jian, N.; Gao, M.; Hu, J.; Du, F.; Pan, H.; Liu, Y. Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2. J. Mater. Chem. A 2018, 6, 16177–16185. [Google Scholar] [CrossRef]
- Zang, J.; Wang, S.; Hu, R.; Man, H.; Zhang, J.; Wang, F.; Sun, D.; Song, Y.; Fang, F. Ni, beyond thermodynamic tuning, maintains the catalytic activity of V species in Ni3(VO4)2 doped MgH2. J. Mater. Chem. A 2021, 9, 8341–8349. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, L.; Yan, N.; Zheng, J.; Bian, T.; Yang, Z.; Su, S. Realizing Hydrogen De/Absorption Under Low Temperature for MgH2 by Doping Mn-Based Catalysts. Nanomaterials 2020, 10, 1745. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.-y.; Wu, F.-y.; Sun, Z.; Zheng, J.-g.; Zhang, L.-t.; Chen, L.-x. Mn nanoparticles enhanced dehydrogenation and hydrogenation kinetics of MgH2 for hydrogen storage. Trans. Nonferrous Met. Soc. China 2021, 31, 3469–3477. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, X.; Sun, Z.; Yan, N.; Yu, H.; Lu, Z.; Zhu, X. Superior catalytic effect of facile synthesized LaNi4.5Mn0.5 submicro-particles on the hydrogen storage properties of MgH2. J. Alloys Compd. 2020, 844, 156069. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, Z.; Yao, Z.; Yang, L.; Yan, N.; Lu, X.; Xiao, B.; Zhu, X.; Chen, L. Excellent catalysis of Mn3O4 nanoparticles on the hydrogen storage properties of MgH2: An experimental and theoretical study. Nanoscale Adv. 2020, 2, 1666–1675. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Nong, J.; Wen, X.; Liang, H.; Guo, J.; Zhou, W.; Huang, X.; Liu, H.; Ning, H.; Lan, Z. Facile and low-cost synthesis of carbon-supported manganese monoxide nanocomposites and evaluation of their superior catalytic effect toward magnesium hydride. J. Alloys Compd. 2021, 887, 161380. [Google Scholar] [CrossRef]
- Wang, P.; Tian, Z.; Wang, Z.; Xia, C.; Yang, T.; Ou, X. Improved hydrogen storage properties of MgH2 using transition metal sulfides as catalyst. Int. J. Hydrogen Energy 2021, 46, 27107–27118. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, Q.; Chang, J.; Zhang, D.; Peng, Y.; Yang, X. Improvement of hydrogen storage performance of MgH2 by MnMoO4 rod composite catalyst. Solid State Sci. 2021, 121, 106750. [Google Scholar] [CrossRef]
- Meena, P.; Singh, R.; Sharma, V.K.; Jain, I.P. Role of NiMn9.3Al4.0Co14.1Fe3.6 alloy on dehydrogenation kinetics of MgH2. J. Magnes. Alloys 2018, 6, 318–325. [Google Scholar] [CrossRef]
System | Hydrogen Absorption Conditions | Hydrogen Absorption Capacity (wt.%) | Dehydrogenation Conditions | Dehydrogenation Capacity (wt.%) | Dehydrogenation Ea (kJ/mol) | Ref. | Year |
---|---|---|---|---|---|---|---|
Mg/MgH2 | >300 °C/>3 MPa | ~7.6 | >300 °C | ~7.6 | 160 | [35] | 2021 |
0.75Mg-0.25Ti | 270–375 °C | ~4.2 | 270–375 °C | ~4.2 | 53.6 | [39] | 2018 |
0.75Mg-0.25V | 300–360 °C | ~4 | 300–360 °C | ~4 | 96.3 | [39] | 2018 |
0.75Mg-0.25Nb | 300–350 °C | ~3.8 | 300–350 °C | ~3.8 | 141.3 | [39] | 2018 |
Mg2Ni | 375 °C/5 min | 3.44 | —— | —— | 209.65 | [40] | 2018 |
Mg-Al | 260–375 °C | 5.8 | —— | —— | 164–169 | [41] | 2022 |
Mg90Ce3Ni7 | 100 °C/30 min | >3.5 | 280 °C/10 min | >5 | 72.2 | [42] | 2022 |
Pr-Mg-Ni | 100 °C/60 min | 3.38 | 280 °C/13.7 min | ~4.0 | —— | [43] | 2022 |
Gd5Mg80Ni15 | 100 °C/40 min | >3 | 280 °C/10 min | >4.8 | 75.07 | [44] | 2022 |
Mg-Y-Zn | 320 °C/60 min | >5.0 | 360 °C/23 min | 6.31 | —— | [45] | 2022 |
Mg-Ni-Y | 300 °C/60 min | 6 | 360 °C/5 min | 6 | 91.8 | [46] | 2022 |
Preparation Methods | Particle Size (nm) | Hydrogen Absorption Conditions | Hydrogen Absorption Capacity (wt.%) | Dehydrogenati on Conditions | Dehydrogenation Capacity (wt.%) | Dehydrogenation Ea (kJ/mol) | Ref. | Year |
---|---|---|---|---|---|---|---|---|
Ball milling | 500–600 | —— | —— | —— | —— | —— | [51] | 2006 |
Gas-phase reaction | ~40 | 4 MPa/287 °C/10 min | >5 | 377 °C/10 min | 5 | 114 | [52] | 2011 |
Chemical reduction | 38 | 300 °C/7 min | ~6.2 | —— | —— | 160 | [53] | 2011 |
Chemical reduction | 32 | 300 °C/2.3 min | ~6.2 | —— | —— | 131 | [53] | 2011 |
Chemical reduction | 25 | 300 °C/1 min | ~6.2 | —— | —— | 126 | [53] | 2011 |
MgH2/CAs | 6–20 | 1.8 MPa/300 °C/15 min | ~1.5 | —— | —— | —— | [54] | 2014 |
MgH2@BCNTs | 15–20 | 8 MPa/250 °C/5 min | 5.79 | 275 °C/60 min | 5.70 | 97.94 | [55] | 2019 |
MgH2@CCNTs | 15–20 | 8 MPa/250 °C/15 min | 5.79 | 275 °C/60 min | 3.18 | —— | [55] | 2019 |
MgH2@CSC | 23 | 2 MPa/250 °C/5 min | ~5.0 | 325 °C/10 min | 5.4 | 120.19 | [56] | 2020 |
Catalysts | Hydrogen Absorption Conditions | Hydrogen Absorption Capacity (wt.%) | Dehydrogenation Conditions | Dehydrogenation Capacity (wt.%) | Dehydrogenation Ea (kJ/mol) | Ref. | Year |
---|---|---|---|---|---|---|---|
5 wt.%Ni | 1.5 MPa/270 °C/15 min | 5.0 | 340 °C | —— | 72.81 | [63] | 2013 |
5 wt.%Ni | 3 MPa/125 °C/20 min | 4.6 | 300 °C/3 min | 6.7 | 83.9 | [64] | 2021 |
10 wt.%Zr2Ni | 250 °C/1.9 min | 5.1 | 250 °C/10.2 min | 5.9 | —— | [65] | 2015 |
10 wt.%ZrNi5 | 275 °C/1 min | 5.3 | 275 °C/10 min | 5.2 | 110.06 | [66] | 2017 |
MgCCo1.5Ni1.5 | 3 MPa/150 °C/60 min | 5.5 | 325 °C/10 min | 5 | 39.6 | [67] | 2020 |
Ni-50%Cu | 3 MPa/250 °C/30 min | 4.37 | 300 °C/15 min | 5.14 | —— | [68] | 2020 |
Ni-25%Cu | 250 °C/3 min | 3.73 | 300 °C/10 min | 4.42 | —— | [69] | 2022 |
10 wt.%NiB | —— | —— | 300 °C/10 min | 6.0 | 59.7 | [70] | 2012 |
5 wt.%Ni3C | —— | —— | 300 °C/20 min | 6.2 | 97.8 | [71] | 2017 |
5 wt.%NiS | 150 °C/10 min | 3.5 | 300 °C/10 min | 3.1 | 64.71 | [72] | 2017 |
10 wt.%NiMoO4 | 3 MPa/125 °C/10 min | 4.4 | 300 °C/3 min | 6.0 | 119.47 | [73] | 2022 |
10 wt.%Ni@C | 300 °C/1.3 min | 4.78 | 300 °C/10 min | 4.8 | 93.08 | [74] | 2021 |
CNTs-Ni | 6 MPa/200 °C/30 min | 7.2 | 300 °C/15 min | 7.29 | 74.8 | [75] | 2022 |
10 wt.%Ni/BC-3 | 3 MPa/125 °C/60 min | 5 | 300 °C/3.5 min | 6.04 | 72.41 | [76] | 2022 |
Ni3S2@C-4 | 150 °C/10 min | 6.08 | 300 °C/8 min | 6 | 115.2 | [77] | 2021 |
10 wt.%NiMoO4/rGO | 3 MPa/125 °C/10 min | 4.2 | 300 °C/3 min | 6.0 | —— | [73] | 2022 |
Catalysts | Hydrogen Absorption Conditions | Hydrogen Absorption Capacity (wt.%) | Dehydrogenation Conditions | Dehydrogenation Capacity (wt.%) | Dehydrogenation Ea (kJ/mol) | Ref. | Year |
---|---|---|---|---|---|---|---|
5 wt.%Fe | 1.52 MPa/270 °C/15 min | 4.98 | 310 °C | —— | 60.88 | [63] | 2013 |
5 wt.%FeNS | 3.2 MPa/300 °C/0.5 min | 5.87 | 300 °C/10 min | 5.44 | 40.7 | [82] | 2019 |
7 wt.%FeNb granule | 2 MPa/350 °C/2 min | 5.5 | 350 °C/2 min | 1.2 | —— | [83] | 2014 |
5 wt.%Ni3Fe | 3 MPa/100 °C/8.3 min | 2.2 | 250 °C/20 min | 3.4 | 82.1 | [84] | 2020 |
5 wt.%FeCoNi | 1.5 MPa/290 °C/1.65 min | 4.40 | 290 °C/8.5 min | 4.47 | 90.24 | [85] | 2020 |
10 wt.%CoFeB | 5 MPa/150 °C/10 min | 5.6 | 300 °C/30 min | 5.8 | 90.9 | [86] | 2020 |
10 wt.%FeCl3 | 3 MPa/300 °C/2 min | 5.21 | 320 °C/10 min | 5.45 | 130 | [87] | 2014 |
FeNi2S4 | 3 MPa/200 °C/1 min | 4.7 | 300 °C/60 min | 1.92 | 65.5 | [88] | 2022 |
5 wt.%FeOOH | 3.2 MPa/200 °C/60 min | 4.4 | 300 °C/60 min | 5.5 | 128.6 | [89] | 2022 |
5 wt.%Fe/rGO | 3 MPa/100 °C/8.3 min | 0.5 | 250 °C/20 min | 0.8 | 126.3 | [84] | 2020 |
5 wt.%Ni3Fe/rGO | 3 MPa/100 °C/1.3 min | 6 | 250 °C/20 min | 4.8 | 59.3 | [84] | 2020 |
5 wt.%FeCoNi@GS | 1.5 MPa/290 °C/1.65 min | 6.01 | 290 °C/8.5 min | 6.14 | 85.14 | [85] | 2020 |
10 wt.%CoFeB/CNTs | 5 MPa/150 °C/10 min | 6.2 | 300 °C/30 min | 6.5 | 83.2 | [86] | 2020 |
10 wt.%Fe–Ni@3DG | 5 MPa/300 °C/1.7 min | ~6.2 | 300 °C/8.3 min | ~5.2 | 83.8 | [90] | 2021 |
10 wt.%Ni3Fe/BC | 3 MPa/150 °C/10 min | 5.35 | 300 °C/7 min | 6.48 | 102.01 | [91] | 2022 |
10 wt.%FeOOH NDs@G | 3.2 MPa/200 °C/60 min | 6.0 | 300 °C/60 min | 6.6 | 125.04 | [89] | 2022 |
Ni/Fe3O4@MIL | 3 MPa/150 °C/60 min | ~5.42 | 350 °C/8 min | ~4.8 | 97.94 | [92] | 2022 |
Catalysts | Hydrogen Absorption Conditions | Hydrogen Absorption Capacity (wt.%) | Dehydrogenation Conditions | Dehydrogenation Capacity (wt.%) | Dehydrogenation Ea (kJ/mol) | Ref. | Year |
---|---|---|---|---|---|---|---|
5 wt.%Ti | 1.5 MPa/270 °C/15 min | 4.3 | 320 °C | —— | 62.20 | [63] | 2013 |
7 wt.%Ti | 1.2 MPa/270 °C/8 min | 3.8 | —— | —— | —— | [96] | 2014 |
10 wt.%TiFe | 3 MPa/125 °C/60 min | 5.3 | 300 °C/10 min | 6.6 | 80.9 | [97] | 2021 |
10 wt.%TiMgVNi3 | —— | —— | 325 °C/10 min | 5.19 | 94.4 | [98] | 2022 |
7 wt.%TiO2 | 1.2 MPa/270 °C/8 min | 4.2 | —— | —— | —— | [96] | 2014 |
7 wt.%TiCl3 | 1.2 MPa/270 °C/8 min | 4.5 | —— | —— | —— | [96] | 2014 |
7 wt.%TiF3 | 1.2 MPa/270 °C/8 min | 5 | 300 °C/6 min | ~2.7 | —— | [96] | 2014 |
TiO2:QDs | 225 °C/1.2 min | ~5 | 300 °C/4.5 min | 6.0 | —— | [99] | 2021 |
10 wt.%(Ti0.5V0.5)3C2 | 5 MPa/120 °C/0.08 min | 4.8 | 300 °C/7 min | 6.0 | 77.3 | [100] | 2018 |
10 wt.%TiVO3.5 | 5 MPa/100 °C/0.08 min | 3.9 | 250 °C/10 min | 5.0 | 62.4 | [101] | 2018 |
5 wt.%F-Ti3C2Tx | 3 MPa/125 °C/20 min | ~4.57 | 275 °C/16.7 min | ~5.95 | 78.2 | [102] | 2022 |
5 wt.%E-F-Ti3C2Tx | 3 MPa/125 °C/20 min | ~3.46 | 275 °C/16.7 min | ~4.97 | 89.6 | [102] | 2022 |
Ti-Ni-Fe@Gr | 1.5 MPa/300 °C/0.83 min | 5.60 | 300 °C/8 min | 5.70 | —— | [103] | 2022 |
Ti@Gr | 1.5 MPa/300 °C/0.83 min | 5.30 | 300 °C/8 min | 4.40 | —— | [103] | 2022 |
TiH2@Gr | 1.5 MPa/300 °C/2.5 min | 5.64 | 300 °C/15 min | 5.48 | 88.89 | [104] | 2020 |
TiO2@Gr | 1.5 MPa/300 °C/2.5 min | 5.59 | 300 °C/15 min | 4.87 | 98.00 | [104] | 2020 |
fl-TiO2@C | 150 °C/40 min | 6.3 | 250 °C/7 min | 6.0 | 67.10 | [105] | 2020 |
5 wt.%Ni/Ti3C2-WE | 3 MPa/200 °C/0.83 min | 5.6 | 275 °C/10 min | 6.25 | 91.64 | [106] | 2021 |
5 wt.%6M-TiO2/FL-Ti3C2Tx | 3 MPa/175 °C/20 min | 5.90 | 300 °C/10 min | 5.98 | 96.7 | [107] | 2022 |
Catalysts | Hydrogen Absorption Conditions | Hydrogen Absorption Capacity (wt.%) | Dehydrogenation Conditions | Dehydrogenation Capacity (wt.%) | Dehydrogenation Ea (kJ/mol) | Ref. | Year |
---|---|---|---|---|---|---|---|
5 wt.%V | 1 MPa/300 °C/2.5 min | 4.0 | 350 °C/5 min | 3.0 | —— | [123] | 2014 |
5 wt.%VC | 1 MPa/300 °C/2.5 min | 5.0 | 350 °C/5 min | 5.5 | 63 | [123] | 2014 |
5 wt.%VCl3 | 1 MPa/300 °C/2.5 min | 5.4 | 350 °C/5 min | 6.0 | 47 | [123] | 2014 |
VO2(B) | 350 °C/4.2 min | 4.7 | 350 °C/2.2 min | 4.9 | 60 | [124] | 2016 |
10 wt.% metallic glassy V45Zr20Ni20Cu10Al3Pd2 | 180 °C/1.67 min | 5.35 | 180 °C/3 min | 5.5 | —— | [125] | 2018 |
10 wt.%VB2 | —— | —— | 300 °C/5 min | 6.01 | 80.06 | [126] | 2021 |
10 wt.%V2O5 | 3 MPa/50 °C/30 min | 3.59 | 260 °C/10 min | ~5.0 | —— | [127] | 2022 |
10 wt.%V4Nb18O55 | 3 MPa/50 °C/30 min | 4.06 | 260 °C/10 min | ~5.5 | —— | [127] | 2022 |
10 wt.%VNbO | 3 MPa/50 °C/30 min | 4.34 | 260 °C/5 min | ~6.0 | 78.2 | [127] | 2022 |
9 wt.%V2O3@C | 5 MPa/150 °C/13.3 min | 6.0 | 275 °C/10 min | 6.0 | 70 | [128] | 2018 |
Catalysts | Hydrogen Absorption Conditions | Hydrogen Absorption Capacity (wt.%) | Dehydrogenation Conditions | Dehydrogenation Capacity (wt.%) | Dehydrogenation Ea (kJ/mol) | Ref. | Year |
---|---|---|---|---|---|---|---|
10 wt.%submicron-Mn | 3 MPa/100 °C/30 min | 3.0 | 300 °C/8 min | 6.6 | —— | [130] | 2020 |
10 wt.%nano-Mn | 3 MPa/100 °C/30 min | 3.3 | 300 °C/5 min | 6.7 | —— | [131] | 2021 |
10 wt.%submicron-LaNi4.5Mn0.5 | 3 MPa/150 °C/10 min | 4.1 | 300 °C/6 min | 6.6 | —— | [132] | 2020 |
10 wt.%Mn3O4 | 3 MPa/100 °C/10 min | 5.0 | 300 °C/8 min | 6.8 | —— | [133] | 2020 |
10 wt.%MnO | 200 °C/20 min | ~4.5 | 300 °C/60 min | ~6.0 | 103.9 | [134] | 2021 |
MnS | 100 °C/60 min | 2.6 | 300 °C/30 min | 4.6 | 93.7 | [135] | 2021 |
10 wt.%MnMoO4 | 3 MPa/150 °C/10 min | 4.0 | 300 °C/10 min | 6.03 | 109.9 | [136] | 2021 |
10 wt.%MnO@C | 150 °C/10 min | ~5.8 | 300 °C/10 min | ~6.0 | 94.6 | [134] | 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, W.; Zhang, J.; Hou, Q. Hydrogen Storage Performance of Mg/MgH2 and Its Improvement Measures: Research Progress and Trends. Materials 2023, 16, 1587. https://doi.org/10.3390/ma16041587
Yang X, Li W, Zhang J, Hou Q. Hydrogen Storage Performance of Mg/MgH2 and Its Improvement Measures: Research Progress and Trends. Materials. 2023; 16(4):1587. https://doi.org/10.3390/ma16041587
Chicago/Turabian StyleYang, Xinglin, Wenxuan Li, Jiaqi Zhang, and Quanhui Hou. 2023. "Hydrogen Storage Performance of Mg/MgH2 and Its Improvement Measures: Research Progress and Trends" Materials 16, no. 4: 1587. https://doi.org/10.3390/ma16041587
APA StyleYang, X., Li, W., Zhang, J., & Hou, Q. (2023). Hydrogen Storage Performance of Mg/MgH2 and Its Improvement Measures: Research Progress and Trends. Materials, 16(4), 1587. https://doi.org/10.3390/ma16041587