Green Synthesis of Iridium Nanoparticles from Winery Waste and Their Catalytic Effectiveness in Water Decontamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Extract Preparation
2.3. Total Phenolic (TP) Content and Antioxidant Activity of GM Extracts
2.4. Evaluation of Reducing Agents
2.5. Synthesis of Iridium Nanoparticles (Ir-NPs)
2.6. Characterization Studies
2.7. Catalytic Activities of Ir-NPs and Kinetic Studies
3. Results
3.1. Grape Marc Extracts Preparation and Characterization
3.2. Synthesis and Characterization of Iridium Nanoparticles
3.3. Catalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shanker, U.; Rani, M.; Jassal, V. Degradation of hazardous organic dyes in water by nanomaterials. Environ. Chem. Lett. 2017, 15, 623–642. [Google Scholar] [CrossRef]
- Azad, M.; Khan, G.A.; Ismail, F.; Ahmed, W. Facile and efficient dye degradation using silver nanoparticles immobilized cotton substrates. Inorg. Chem. Commun. 2022, 145, 109987. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [Green Version]
- Hammami, I.; Alabdallah, N.M.; Al Jomaa, A.; Kamoun, M. Gold nanoparticles: Synthesis properties and applications. J. King Saud. Univ. Sci. 2021, 33, 101560. [Google Scholar] [CrossRef]
- Calderón-Jiménez, B.; Johnson, M.E.; Montoro Bustos, A.R.; Murphy, K.E.; Winchester, M.R.; Vega Baudrit, J.R. Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Front. Chem. 2017, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Cui, M.-L.; Chen, Y.-S.; Xie, Q.-F.; Yang, D.-P.; Han, M.-Y. Synthesis, properties and applications of noble metal iridium nanomaterials. Coord. Chem. Rev. 2019, 387, 450–462. [Google Scholar] [CrossRef]
- Das, A.; Natarajan, K.; Tiwari, S.; Ganguli, A.K. Nanostructures synthesized by the reverse microemulsion method and their magnetic properties. Mater. Res. Express 2020, 7, 104001. [Google Scholar] [CrossRef]
- Deshmukh, R.D.; Composto, R.J. Surface segregation and formation of silver nanoparticles created in situ in poly(methyl methacrylate) films. Chem. Mater. 2007, 19, 745–754. [Google Scholar] [CrossRef]
- Samant, P.; Fernandes, J.B. In situ FTIR studies for the enhanced activity of Pt(HY) and Pt-Ru(HY) zeolite catalysts for electrooxidation of methanol in fuel cells. Chem. Phys. Lett. 2020, 745, 137277–137282. [Google Scholar] [CrossRef]
- Rostam-Tapeh-Esmaeil, E.; Golshan, M.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. Synthesis of copper and copper oxide nanoparticles with different morphologies using aniline as reducing agent. Solid State Commun. 2021, 334–335, 114364–114373. [Google Scholar] [CrossRef]
- Vega-Baudrit, J.; Gamboa, S.M.; Rojas, E.R.; Martinez, V.V. Synthesis and characterization of silver nanoparticles and their application as an antibacterial agent. Int. J. Biosens. Bioelectron. 2019, 5, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Samberg, M.E.; Orndorff, P.E.; Monteiro-Riviere, N.A. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology 2011, 5, 244–253. [Google Scholar] [CrossRef]
- Del Sole, R.; Mele, G.; Bloise, E.; Mergola, L. Green aspects in molecularly imprinted polymers by biomass waste utilization. Polymers 2021, 13, 2430. [Google Scholar] [CrossRef] [PubMed]
- Tarannum, N.; Divya, N.; Gautam, Y.K. Facile green synthesis and applications of silver nanoparticles: A state-of-the-art review. RSC Adv. 2019, 9, 34926–34948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinescu, L.; Ficai, D.; Oprea, O.; Marin, A.; Ficai, A.; Andronescu, E.; Holban, A.-M. Optimized synthesis approaches of metal nanoparticles with antimicrobial application. J. Nanomater. 2020, 2020, 6651207. [Google Scholar] [CrossRef]
- Castillo-Henríquez, L.; Alfaro-Aguilar, K.; Ugalde-Álvarez, J.; Vega-Fernández, L.; Montes de Oca-Vásquez, G.; Vega-Baudrit, J.R. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials 2020, 10, 1763. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, M.A.; Guzmán, O.N.; Solís, N.M.; Vega-Baudrit, J. Recycling and elimination of wastes obtained from agriculture by using nanotechnology: Nanosensors. Int. J. Biosen. Bioelectron. 2017, 3, 368–375. [Google Scholar] [CrossRef]
- Rautela, A.; Rani, J.; Debnath (Das), M. Green synthesis of silver nanoparticles from tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol. 2019, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Balalakshmi, C.; Gopinath, K.; Govindarajanc, M.; Lokesh, R.; Arumugam, A.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Green synthesis of gold nanoparticles using a cheap sphaeranthus indicus extract: Impact on plant cells and the aquatic crustacean artemia nauplii. Coord. Chem. Rev. 2019, 387, 450–462. [Google Scholar] [CrossRef]
- Sasidharan, D.; Namitha, T.R.; Johnson, S.P.; Jose, V.; Mathew, P. Synthesis of silver and copper oxide nanoparticles using myristica fragrans fruit extract: Antimicrobial and catalytic applications. Sustain. Chem. Pharm. 2020, 16, 100255. [Google Scholar] [CrossRef]
- Alkhalaf, M.I.; Hussein, R.H.; Hamza, A. Green synthesis of silver nanoparticles by nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J. Biol. Sci. 2020, 27, 2410–2419. [Google Scholar] [CrossRef] [PubMed]
- Sk, I.; Khan, M.A.; Haque, A.; Ghosh, S.; Roy, D.; Homechuadhuri, S.; Alam, A. Synthesis of gold and silver nanoparticles using malva verticillata leaves extract: Study of gold nanoparticles catalysed reduction of nitro-schiff bases and antibacterial activities of silver nanoparticles. Curr. Res. Green Sustain. Chem. 2020, 3, 100006. [Google Scholar] [CrossRef]
- Zia, M.; Gul, S.; Akhtar, J.; Haq, I.U.; Abbasi, B.H.; Hussain, A.; Naz, S.; Chaudhary, M.F. Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities. IET Nanobiotechnol. 2017, 11, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorization: A review of grape marc utilization for value-added products. Water Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef]
- Yamamoto, H.; Maity, P.; Takahata, R.; Yamazoe, S.; Koyasu, K.; Kurashige, W.; Negishi, Y.; Tsukuda, T. Monodisperse iridium clusters protected by phenylacetylene: Implication for size-dependent evolution of binding sites. J. Phys. Chem. C 2017, 121, 10936–11094. [Google Scholar] [CrossRef]
- Skiba, M.; Vorobyova, V. Green synthesis of silver nanoparticles using grape pomace extract prepared by plasma-chemical assisted extraction method. Mol. Cryst. Liq. Cryst. 2018, 674, 142–151. [Google Scholar] [CrossRef]
- Krishnaswamy, K.; Vali, H.; Orsat, V. Value-adding to grape waste: Green synthesis of gold nanoparticles. J. Food Eng. 2014, 142, 210–220. [Google Scholar] [CrossRef]
- Bastos-Arrieta, J.; Antonio Florido, A.; Pérez-Ràfols, C.; Serrano, N.; Fiol, N.; Poch, J.; Villaescusa, I. Green synthesis of Ag nanoparticles using grape stalk waste extract for the modification of screen-printed electrodes. Nanomaterials 2018, 8, 946. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Zhou, J.; Zhao, Y.; Song, Q. Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H2O2 and xanthine. Sens. Actuators B Chem. 2017, 243, 203–210. [Google Scholar] [CrossRef]
- Cui, M.; Huang, X.; Zhang, X.; Xie, Q.; Yang, D. Ultra-small iridium nanoparticles as active catalysts for the selective and efficient reduction of nitroarenes. New J. Chem. 2020, 44, 18274–18280. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Antony, A.; Farid, M. Effect of temperatures on polyphenols during extraction. Appl. Sci. 2017, 12, 2107. [Google Scholar] [CrossRef]
- Lafka, T.-I.; Vassilia Sinanoglou, V.; Lazos, E.S. On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem. 2007, 104, 1206–1214. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Yammine, S.; Delsart, C.; Vitrac, X.; Mietton Peuchot, M.; Ghidossi, R. Characterisation of polyphenols and antioxidant potential of red and white pomace by-product extracts using subcritical water extraction. OENO One 2020, 54, 263–278. [Google Scholar] [CrossRef]
- Castrica, M.; Rebucci, R.; Giromini, C.; Tretola, M.; Cattaneo, D.; Baldi, A. Total phenolic content and antioxidant capacity of agri-food waste and by-products. Ital. J. Anim. Sci. 2019, 18, 336–341. [Google Scholar] [CrossRef]
- Lapornik, B.; Prošek, M.; Wondra, A.G. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 2005, 71, 214–222. [Google Scholar] [CrossRef]
- Wang, H.; Ye, Y.-H.; Wang, H.-H.; Liu, J.; Liu, Y.-J.; Jiang, B.-W. HPLC-QTOF-MS/MS profiling, antioxidant, and α-glucosidase inhibitory activities of pyracantha fortuneana fruit extracts. J. Food Biochem. 2019, 43, e12821. [Google Scholar] [CrossRef]
- Teixeira, N.; Mateus, N.; de Freitas, V.; Oliveira, G. Wine industry by-product: Full polyphenolic characterization of grape stalks. Food Chem. 2018, 268, 110–117. [Google Scholar] [CrossRef]
- Larrauri, J.A.; Rupérez, P.; Saura-Calixto, F. Effect of drying temperature on the stability of polyphenols and antioxidant activity of red grape pomace peels. J. Agric. Food Chem. 1997, 45, 1390–1393. [Google Scholar] [CrossRef]
- Kobayashi, H.; Yamauchi, M.; Kitagawa, H. Finding hydrogen-storage capability in iridium induced by the nanosize effect. J. Am. Chem. Soc. 2012, 134, 6893–6895. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, M.; Yousefvand, A.; Hosseini, H.A.; Mirhosseini, S.A. Green synthesis of silver nanoparticles using nisin and its antibacterial activity against pseudomonas aeruginosa. Adv. Biomed. Res. 2022, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.; Ramesh, V.; Thivaharan, V. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab. J. Chem. 2017, 10, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z. Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustain. Chem. Eng. 2013, 1, 1551–1554. [Google Scholar] [CrossRef]
- Pujol, D.; Liu, C.; Fiol, N.; Olivella, M.À.; Gominho, J.; Villaescusa, I.; Pereira, H. Chemical characterization of different granulometric fractions of grape stalks waste. Ind. Crops Prod. 2013, 50, 494–500. [Google Scholar] [CrossRef]
- Lionetto, F.; Del Sole, R.; Cannoletta, D.; Vasapollo, G.; Maffezzoli, A. Monitoring wood degradation during weathering by cellulose crystallinity. Materials 2012, 5, 1910–1922. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Ali Shah, L.; et al. Methylene blue: Its properties, uses, toxicity and photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Suvith, V.S.; Philiph, D. Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 118, 526–532. [Google Scholar] [CrossRef]
- Vidhu, A.A.; Philiph, D. Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 117, 102–108. [Google Scholar] [CrossRef]
- Mowry, S.; Ogreen, P.J. Kinetics of methylene blue reduction by ascorbic acid. J. Chem. Edu. 1999, 76, 970–973. [Google Scholar] [CrossRef]
- Bonet, F.; Delmas, V.; Grugeon, S.; Herrera Urbina, R.; Silvert, P.-Y. Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. NanoStruct. Mat. 1999, 11, 1277–1284. [Google Scholar] [CrossRef]
- Chakrapani, K.; Sampath, S. Spontaneous assembly of iridium nanochain-like structures: Surface enhanced Raman scattering activity using visible light. Chem. Commun. 2014, 50, 3061–3063. [Google Scholar] [CrossRef] [PubMed]
- Dhanalakshmi, M.; Lakshmi Prabavathi, S.; Saravanakumar, K.; Filip Jones, B.; Muthuraj, V. Iridium nanoparticles anchored WO3 nanocubes as an efficient photocatalyst for removal of refractory contaminants (crystal violet and methylene blue). Chem.Phys. Lett. 2020, 745, 137285. [Google Scholar] [CrossRef]
- Cui, M.; Zhao, Y.; Wang, C.; Song, Q. Synthesis of 2.5 nm colloidal iridium nanoparticles with strong surface enhanced Raman scattering activity. Microchim. Acta 2016, 183, 2047–2053. [Google Scholar] [CrossRef]
- Ismail, M.; Khan, M.I.; Khan, M.A.; Akhtar, K.; Asiri, A.M.; Khan, S.B. Plant-supported silver nanoparticles: Efficient, economically viable and easily recoverable catalyst for the reduction of organic pollutant. Appl. Organomet. Chem. 2019, 33, e4971. [Google Scholar] [CrossRef]
Extract | Temperature of Extraction (°C) | pH | TP Content (g GAE/100 g DM) | Antioxidant Activity (g GAE/100 g DM) | Reducing Sugars (g/L) |
---|---|---|---|---|---|
GM1 | 45 | 3.65 | 1.89 ± 0.10 | 14.9 ± 1.6 | 3.7 ± 0.9 |
GM2 | 65 | 3.50 | 2.85 ± 0.11 | 22.6 ± 1.7 | 6.9 ± 0.2 |
GM3 | 80 | 3.50 | 4.41 ± 0.15 | 38.0 ± 2.5 | 10.3 ± 0.7 |
GM4 | 100 | 3.60 | 6.35 ± 0.13 | 46.9 ± 1.9 | 12.9 ± 0.8 |
Nanoparticles Dispersion | Grape Marc Extract | TEM Size (nm) | Hydrodynamic Diameter (nm) | Zeta Potential (mV) |
---|---|---|---|---|
Ir-NP1 | GM1 | 4.4 ± 2.0 | 214 ± 110 | −18.6 ± 0.2 |
Ir-NP2 | GM2 | 4.0 ± 1.5 | 184 ± 64 | −14.3 ± 1.4 |
Ir-NP3 | GM3 | 3.5 ± 1.0 7.5 ± 1.0 | 177 ± 56 | −5.8 ± 0.8 |
Ir-NP4 | GM4 | 3.0 ± 0.5 17.0 ± 7.0 | 193 ± 56 | −7.6 ± 0.6 |
Sample | k (min −1) ± SD | R2 |
---|---|---|
Reference | 0.011 ± 0.007 | 0.940 |
GM1 | 0.033 ± 0.002 | 0.979 |
GM2 | 0.148 ± 0.038 | 0.954 |
GM3 | 0.078 ± 0.012 | 0.965 |
GM4 | 0.020 ± 0.002 | 0.940 |
Ir-NP1 | 0.174 ± 0.002 | 0.954 |
Ir-NP2 | 0.527 ± 0.012 | 0.953 |
Ir-NP3 | 0.238 ± 0.029 | 0.966 |
Ir-NP4 | 0.082 ± 0.002 | 0.964 |
Metal NPs | Reducing Agent | Stabilizer | Size (nm) | Application | Literature |
---|---|---|---|---|---|
Ir-NPs | Ethylene glycol | PVP | 3 | - | [53] |
Ir-NPs | NaBH4 | Ascorbic acid | 3.8 | - | [54] |
Ir/WO3 | NaBH4 | - | About 200 | MB catalytic degradation | [55] |
Ir-NPs | NaBH4 | Tannic acid | 3.5 | Detection of H2O2 and xanthine | [30] |
Ir-NPs | NaBH4 | trisodium citrate | 2.5 | Detection of Sudan red I | [56] |
Ir-NPs | GM extracts | GM extracts | 3–4.5 | MB reduction | This work |
Au-NPs | seed, skin, and stalk grapes extracts | Extracts of seed, skin, and stalk of grapes | 20–25 | - | [28] |
Ag-NPs | Grape stalk extracts | Grape stalk extracts | 27.7 | Electrochemical determination of Pb(II) and Cd(II) | [29] |
Fe-NPs | Eucalyptus leaves extract | Eucalyptus leaves extract | 40–60 | Removal of Acid black 194 | [46] |
Ag-NPs | Grape and tomato juices | Grape and tomato juices | 10–30 | antibacterial and protein kinase inhibition activity | [24] |
Ir-NPs | NaBH4 | Tannic acid | 3.5 | Nitroarenes reduction | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mergola, L.; Carbone, L.; Stomeo, T.; Del Sole, R. Green Synthesis of Iridium Nanoparticles from Winery Waste and Their Catalytic Effectiveness in Water Decontamination. Materials 2023, 16, 2060. https://doi.org/10.3390/ma16052060
Mergola L, Carbone L, Stomeo T, Del Sole R. Green Synthesis of Iridium Nanoparticles from Winery Waste and Their Catalytic Effectiveness in Water Decontamination. Materials. 2023; 16(5):2060. https://doi.org/10.3390/ma16052060
Chicago/Turabian StyleMergola, Lucia, Luigi Carbone, Tiziana Stomeo, and Roberta Del Sole. 2023. "Green Synthesis of Iridium Nanoparticles from Winery Waste and Their Catalytic Effectiveness in Water Decontamination" Materials 16, no. 5: 2060. https://doi.org/10.3390/ma16052060
APA StyleMergola, L., Carbone, L., Stomeo, T., & Del Sole, R. (2023). Green Synthesis of Iridium Nanoparticles from Winery Waste and Their Catalytic Effectiveness in Water Decontamination. Materials, 16(5), 2060. https://doi.org/10.3390/ma16052060