A New Strategy on Designing Fluxes for Aluminum Alloy Melt Refinement
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Sample Preparation
2.2. Methods
3. Results and Discussion
3.1. Thermophysical Parameters of the Fluxes
3.1.1. The Melting Points of Fluxes
3.1.2. The Phase Compositions of the Fluxes
3.2. Physical Properties of Fluxes
High-Temperature Contact Angle for Fluxes and Alumina
3.3. Thermodynamics of Flux Refinement
- Stage 1: the inclusions approaching the melt–flux interface;
- Stage 2: inclusions crossing the aluminum melt–flux interface;
- Stage 3: inclusions transferring from the interface to the interior of the molten flux.
3.4. The Results of Flux Refinement
4. Conclusions
- (1)
- The melting points of all ten fluxes were lower than the refining temperature (760 °C). The flux with the highest melting point was flux #9, with a melting point of 660 °C. The lowest melting point was flux #4, at 412.1 °C.
- (2)
- Among the 10 fluxes, the phases of fluxes #2, #4, and #5 changed significantly after melting, with the main components of flux #2 changing from Na2CO3 and Na2SO4 to NaF, Na2CO3, and Na3FSO4. Flux #4 changed from KCl and MgCl2 to MgF2 and KMgCl3(H2O)6.
- (3)
- The contact angles between all four groups of fluxes and aluminum oxide at the refining temperature (760 °C) were less than 90°, proving that they were all capable of wetting with oxide inclusions at the refining temperature; flux #10 had the smallest contact angle of 12.78°. The thermodynamic analysis confirms that the flux can spontaneously adsorb inclusions within the aluminum melt.
- (4)
- All the fluxes can refine AA6111 alloy melt, and flux #10 has the best effect, with a removal rate of 62.5%. After refining by flux #10, the alloy microstructure is significantly cleaner than before refinement, with the pores and inclusions content of the sample reduced to 1.11% from 2.96%. The refinement effectiveness is even better than the flux STJ–A3.
- (5)
- The refining efficiency of different fluxes is highly dependent on their chemical composition, melting temperature, and wettability with aluminum oxide. The flux has a significantly lower melting temperature than the temperature of refinement is a prerequisite to enable the fluxes to have a great refining effect in the melt. When the flux is used for refining alloys with a high hydrogen content, the exothermic component of the flux should be increased accordingly. When the flux is used for refining alloys with high oxide inclusions, components that improve the wettability of the flux and inclusions should be added appropriately.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stefano, C.; Giulio, T. Preparation and Melting of Scrap in Aluminum Recycling: A Review. Metals 2018, 8, 249. [Google Scholar] [CrossRef] [Green Version]
- Zhi, X.H.; Wang, Y.Q.; Zhang, Y.; Li, B.B.; Ou-Yang, Y.W. Study of local buckling performance of 7075-T6 high-strength aluminium alloy H-section stub columns. Thin-Walled Struct. 2022, 180, 109925–109938. [Google Scholar] [CrossRef]
- Joo, M.R.; Jeon, J.H.; Lee, S.J. High-ductility aluminium alloys including small sub-grains with wide low angle boundary. J. Alloys Compd. 2023, 934, 167868–167878. [Google Scholar] [CrossRef]
- Atxaga, G.; Arroyo, A.; Canflanca, B. Hot stamping of aerospace aluminium alloys: Automotive technologies for the aeronautics industry. J. Manuf. Process. 2022, 81, 817–827. [Google Scholar] [CrossRef]
- Hudson, S.W.; Apelian, D. Inclusion Detection in Molten Aluminum: Current Art and New Avenues for In Situ Analysis. Int. J. Met. 2016, 10, 289–305. [Google Scholar] [CrossRef]
- Song, G.Y.; Song, B.; Yang, Y.H.; Yang, Z.B.; Xin, W.B. Separating Behavior of Nonmetallic Inclusions in Molten Aluminum Under Super-Gravity Field. Metall. Mater. Trans. B 2015, 46, 2190–2197. [Google Scholar] [CrossRef]
- Song, G.Y.; Song, B.; Yang, Z.B.; Yang, Y.H.; Zhang, J. Removal of Inclusions from Molten Aluminum by Supergravity Filtration. Metall. Mater. Trans. B 2016, 47, 3435–3445. [Google Scholar] [CrossRef]
- Wu, J.X.; Djavanroodi, F.; Gode, C.; Attarilar, S.; Ebrahimi, M. Melt refining and purification processes in Al alloys: A comprehensive study. Mater. Res. Express 2022, 9, 032001–032016. [Google Scholar] [CrossRef]
- Wang, H.S.; Fu, G.S.; Cheng, C.Z.; Song, L.L.; Wang, L.D. Molecular mechanics and dynamics simulation of hydrogen diffusion in aluminum melt. China Foundry 2017, 14, 478–484. [Google Scholar] [CrossRef] [Green Version]
- Voigt, C.; Jäckel, E.; Taina, F.; Zienert, T.; Salomon, A.; Wolf, G.; Aneziris, C.G.; Brun, P.L. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration. Metall. Mater. Trans. B 2017, 48, 497–505. [Google Scholar] [CrossRef]
- Damoah, L.N.W.; Zhang, L.F. Removal of Inclusions from Aluminum Through Filtration. Metall. Mater. Trans. B 2010, 41, 886–907. [Google Scholar] [CrossRef]
- Dewan, M.A.; Rhamdhani, M.A.; Mitchell, J.B.; Davidson, C.J.; Brooks, G.A.; Easton, M.; Grandfield, J.F. Control and Removal of Impurities from Al Melts: A Review. Mater. Sci. Forum 2011, 693, 149–160. [Google Scholar] [CrossRef]
- Fikssen, V. Increasing the efficiency of refining and modification of aluminum alloys when using electromagnetic factors. Magnetohydrodynamics 2022, 58, 151–156. [Google Scholar] [CrossRef]
- He, Y.J.; Li, Q.L.; Liu, W. Separating Effect of a Novel Combined Magnetic Field on Inclusions in Molten Aluminum Alloy. Metall. Mater. Trans. B 2012, 43, 1149–1155. [Google Scholar] [CrossRef]
- Gyarmati, G.; Fegyverneki, G.; Mende, T.; Tokár, M. The effect of fluxes on the melt quality of AlSi7MgCu Alloy. Int. J. Eng. Manag. Sci. 2019, 4, 372–380. [Google Scholar] [CrossRef]
- Tenorio, J.A.S.; Carboni, M.C.; Espinosa, D.C.R. Recycling of aluminum–effect of fluoride additions on the salt viscosity and on the alumina dissolution. J. Light Met. 2001, 1, 195–198. [Google Scholar] [CrossRef]
- Prillhofer, R.; Prillhofer, B. Treatment of residues during aluminium recycling. In Proceedings of the TMS Annu Meet, Berlin/Heidelberg, Germany, March 2008; pp. 857–862. [Google Scholar] [CrossRef]
- Li, C.; Li, J.G.; Mao, Y.Z.; Ji, J.C. Mechanism to remove oxide inclusions from molten aluminum by solid fluxes refining method. China Foundry 2017, 14, 233–243. [Google Scholar] [CrossRef]
- Utigard, T.A. The properties and uses of fluxes in molten aluminum processing. Jom 1998, 50, 38–43. [Google Scholar] [CrossRef]
- Shi, M.; Li, Y. Performance Improvement in Aluminum Alloy Treated by Salt Flux with Different Fluorides. J. Mater. Eng. Perform. 2022, 1–8. [Google Scholar] [CrossRef]
- Mashhadi, H.A.; Moloodi, A.; Golestanipour, M.; Karimi, E.Z.V. Recycling of aluminium alloy turning scrap via cold pressing and melting with salt flux. J. Mater. Process. Technol. 2009, 209, 3138–3142. [Google Scholar] [CrossRef]
- Capuzzi, S.; Timelli, G.; Capra, L.; Romano, L. Study of fluxing in Al refining process by rotary and crucible furnaces. Int. J. Sustain. Eng. 2019, 12, 38–46. [Google Scholar] [CrossRef]
- Turakhudjaeva, S.; Turakhujaeva, A.; Saidmakhamadov, N. Methods for Reducing Metal Oxidation When Melting Aluminum Alloys. Int. J. Innov. Eng. Res. Technol. 2020, 7, 77–82. [Google Scholar]
- Utigard, T.A.; Roy, R.R.; Friesen, K. The roles of molten salts in the treatment of aluminum. Can. Metall. Q. 2001, 40, 327–334. [Google Scholar] [CrossRef]
- Besson, S.; Pichat, A.; Xolin, E.; Chartrand, P.; Friedrich, B. Improving coalescence in Al-Recycling by salt optimization. In Proceedings of the European Metallurgical Conference, Düsseldorf, Germany, 27 June–1 July 2011; pp. 26–29. [Google Scholar]
- Majidi, O.; Shabestari, S.G.; Aboutalebi, M.R. Study of fluxing temperature in molten aluminum refining process. J. Mater. Process. Technol. 2007, 182, 450–455. [Google Scholar] [CrossRef]
- Chen, Y.J. Ultrasonic evaluation of the quality of A356.2 alloy by fluxing treatment. Mater. Trans. 2010, 51, 803–809. [Google Scholar] [CrossRef] [Green Version]
- Wan, B.B.; Li, W.F.; Liu, F.F.; Lu, T.W.; Jin, S.X.; Wang, K.; Yi, A.H.; Tian, J.; Chen, W.P. Determination of fluoride component in the multifunctional refining flux used for recycling aluminum scrap. J. Mater. Res. Technol. 2020, 9, 3447–3459. [Google Scholar] [CrossRef]
- Hiraki, T.; Miki, T.; Nakajima, K.; Matsubae, K.; Nakamura, S.; Nagasaka, T. Thermodynamic analysis for the refining ability of salt flux for aluminum recycling. Mater. Sci. 2014, 7, 5543–5553. [Google Scholar] [CrossRef] [PubMed]
- Achebo, J.I.; Ibhadode, A.O.A. Development of a New Flux for Aluminium Gas Welding. Adv. Mater. Res. 2008, 44–46, 677–684. [Google Scholar] [CrossRef]
- Tkacheva, O.; Redkin, A.; Kataev, A.; Rudenko, A.; Dedyukhin, A.; Zaikov, Y.; Kenawy, E.R. Novel Molten Salts Media for Production of Functional Materials. MATEC Web Conf. 2016, 67, 1234–1240. [Google Scholar] [CrossRef] [Green Version]
- Ni, H.J.; Sun, B.D.; Jiang, H.Y.; Shu, D.; Lin, W.L.; Ding, W.J. Effect of JDN-I flux on DAS of A356 alloy at different cooling rate. Mater. Sci. Eng. A 2003, 348, 1–5. [Google Scholar] [CrossRef]
- Tsunekawa, M. Refining processes of molten aluminum using solid flux. J. Jpn. Inst. Light Met. 2004, 54, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Widyantoro; Dhaneswara, D.; Fatriansyah, J.F.; Firmansyah, M.R.; Prasetyo, Y. Removal of Oxide Inclusions in Aluminium Scrap Casting Process with Sodium based Fluxes. MATEC Web Conf. 2019, 269, 07002. [Google Scholar] [CrossRef] [Green Version]
- Haseli, P.; Jacob, R.; Liu, M.; Majewski, P.; Christo, F.C.; Bruno, F. Experimental phase diagram study of the binary KCl-Na2CO3 system. Thermochim. Acta 2021, 695, 178811–178821. [Google Scholar] [CrossRef]
- Dessureault, Y.; Sangster, J.; Pelton, A.D. Coupled Phase Diagram/Thermodynamic Analysis of the Nine Common-Ion Binary Systems Involving the Carbonates and Sulfates of Lithium, Sodium, and Potassium. J. Electrochem. Soc. 1990, 137, 29–41. [Google Scholar] [CrossRef]
- Oikawa, K.; Sakakibara, K.; Yamada, Y.; Anzai, K. High-Temperature Mechanical Properties of NaCl–Na2CO3 Salt-Mixture Removable Cores for Aluminum Die-Casting. Mater. Trans. 2019, 60, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Grjotheim, K.; Holm, J.L. The Phase Diagrams of the Systems NaCl-MgCl2 and KCl-MgCl2. Acta Chem. Scand. 1972, 26, 3802–3803. [Google Scholar] [CrossRef]
- Yaokawa, J.; Oikawa, K.; Anzai, K. Thermodynamic assessment of the KCl–K2CO3–NaCl–Na2CO3 system. Calphad 2007, 31, 155–163. [Google Scholar] [CrossRef]
- Babaev, B.D. System NaF–NaCl–NaNO3. Inorg. Mater. 2002, 38, 83–84. [Google Scholar] [CrossRef]
- Li, X.; Wu, S.; Wang, Y.; Xie, L.D. Experimental investigation and thermodynamic modeling of an innovative molten salt for thermal energy storage (TES). Appl. Energy 2018, 212, 516–526. [Google Scholar] [CrossRef]
- Holm, J.L. The phase diagram of the system Na3AlF6-CaF2 and the constitution of the melt in the system. Acta Chem. Scand. 1968, 22, 1004–1012. [Google Scholar] [CrossRef]
- Saxena, P.; Shukla, P.; Gaur, M.S. Thermal analysis of polymer blends and double layer by DSC. Polym. Polym. Compos. 2020, 29, S11–S18. [Google Scholar] [CrossRef]
- Rycerz, L. Practical remarks concerning phase diagrams determination on the basis of differential scanning calorimetry measurements. J. Therm. Anal. Calorim. 2013, 113, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, H.; Hamada, Y.; Takemoto, T. Estimation Method for Liquidus Temperature of Lead-Free Solder Using Differential Scanning Calorimetry Profiles. J. Electron. Mater. 2009, 38, 2610–2616. [Google Scholar] [CrossRef]
- Bruni, G.; Capsoni, D.; Milanese, C.; Cardini, A. Polymorphic quantification of dexketoprofen trometamol by differential scanning calorimetry. J. Therm. Anal. Calorim. 2022, 148, 1949–1958. [Google Scholar] [CrossRef]
- Rekhtina, M.; Dal Pozzo, A.; Stoian, D.; Armutlulu, A.; Donat, F.; Blanco, M.V.; Wang, Z.J.; Willinger, M.G.; Fedorov, A.; Abdala, P.M.; et al. Effect of molten sodium nitrate on the decomposition pathways of hydrated magnesium hydroxycarbonate to magnesium oxide probed by in situ total scattering. Nanoscale 2020, 12, 16462–16473. [Google Scholar] [CrossRef]
- Danielik, V.; Gabová, J. Phase diagram of the system Na3AlF6–NaF–Na2SO4. Thermochim. Acta 2001, 366, 79–87. [Google Scholar] [CrossRef]
- Pelton, A.D.; Talley, P.K.; Sharma, R.A. Thermodynamic evaluation of phase equilibria in the CaCl2-MgCl2-CaF2-MgF2 system. J. Phase Equilibria Diffus. 1992, 13, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Cui, R.Z.; Li, W.; Dong, Y.P.; Nie, Z. Mineral solubilities of salts in the three quaternary systems: LiCl–NaCl–MgCl2–H2O, LiCl–KCl–MgCl2–H2O and Li2SO4–K2SO4–MgSO4–H2O at 288.15 K. J. Chem. Thermodyn. 2019, 138, 127–139. [Google Scholar] [CrossRef]
- Liu, J.L.; Wang, Q.G.; Qi, Y. Atomistic simulation of the formation and fracture of oxide bifilms in cast aluminum. Acta Mater. 2019, 164, 673–682. [Google Scholar] [CrossRef]
- Cassayre, L.; Palau, P.; Chamelot, P.; Massot, L. Properties of Low-Temperature Melting Electrolytes for the Aluminum Electrolysis Process: A Review. J. Chem. Eng. Data 2010, 55, 4549–4560. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Chu, K.C.; Tsao, H.K.; Sheng, Y.J. Size-dependent behavior and failure of young′s equation for wetting of two-component nanodroplets. J. Colloid Interface Sci. 2020, 578, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J.; Rolley, E. Wetting and spreading. Rev. Mod. Phys. 2009, 81, 739–805. [Google Scholar] [CrossRef]
- Eustathopoulos, N.; Nicholas, M.G.; Drevet, B. Wettability at High Temperatures; Elsevier: Pergamon, Turkey, 1999. [Google Scholar]
- Engh, T.A.; Pedersen, T. Removal of Hydrogen from Molten Aluminium by Gas Purging. In Essential Readings in Light Metals: Volume 3 Cast Shop for Aluminum Production; Grandfield, J.F., Eskin, D.G., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 218–225. [Google Scholar] [CrossRef]
- Lv, S.S.; Zhang, Y.; Ni, H.J.; Wang, X.X.; Wu, W.Y.; Lu, C.Y. Effects of Additive and Roasting Processes on Nitrogen Removal from Aluminum Dross. Coatings 2022, 12, 730. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.T.; Fan, Z.Y. Oxidation of Aluminium Alloy Melts and Inoculation by Oxide Particles. Trans. Indian Inst. Met. 2012, 65, 653–661. [Google Scholar] [CrossRef]
Chemicals | Molecular Mass (g/mol) | Solid Density (g/cm3) | Melting Point (°C) | Boiling Point (°C) |
---|---|---|---|---|
LiCl | 43.39 | 2.068 | 605 | 1325 |
NaCl | 58.44 | 2.165 | 801 | 1413 |
KCl | 74.56 | 1.984 | 770 | 1500 |
CaCl2 | 110.99 | 2.15 | 782 | 1600 |
MgCl2 | 95.22 | 2.32 | 714 | 1412 |
AlCl3 | 133.34 | 2.44 | 190 | 177.8 |
BaCl2 | 208.25 | 3.92 | 963 | 1560 |
LiF | 25.94 | 2.635 | 845 | 1676 |
NaF | 41.99 | 2.558 | 993 | 1695 |
KF | 58.1 | 2.48 | 858 | 1505 |
CaF2 | 78.08 | 3.18 | 1423 | 2500 |
MgF2 | 62.31 | 3.18 | 1261 | 2239 |
AlF3 | 83.98 | 2.882 | – | 1291 |
Na3AlF6 | 209.94 | 2.9 | 1010 | – |
LiNO3 | 68.94 | 2.38 | 264 | 600 |
NaNO3 | 84.99 | 2.261 | 307 | 380 |
KNO3 | 101.11 | 2.109 | 339 | 400 |
Li2SO4 | 109.94 | 2.221 | 859 | high |
Na2SO4 | 142.04 | – | 897 | – |
K2SO4 | 174.27 | 2.66 | 1069 | 1689 |
CaSO4 | 136.14 | 2.61 | 1450 | high |
MgSO4 | 120.37 | 2.66 | – | 1124 |
Na2CO3 | 105.99 | 2.532 | 851 | high |
K2CO3 | 138.21 | 2.42 | 894 | high |
MgCO3 | 84.32 | 2.96 | – | 350 |
CaCO3 | 100.09 | 2.71 | 1339 | 850 |
System | Eutectic Points Concentration (mol%) | Eutectic Temperature (°C) | Ref. |
---|---|---|---|
KCl: Na2CO3 | 49.6: 50.4 | 581.76 | [35] |
Na2SO4: Na2CO3 | 37.0: 73.0 | 626 | [36] |
NaCl: Na2CO3 | 54.6: 45.4 | 632 | [37] |
KCl: MgCl2 | 63.5: 36.5 | 445 | [38] |
NaCl: MgCl2 | 58.5: 41.5 | 428 | [38] |
KCl: K2CO3 | 62.0: 38.0 | 623 | [39] |
Na2CO3: K2CO3 | 60.0: 40.0 | 713 | [39] |
Na2CO3: NaCl: KCl | 31.0: 34.0: 35.0 | 573 | [39] |
NaF: NaCl: NaNO3 | 5.0: 8.0: 87.0 | 288 | [40] |
NaF: NaCl: Na2CO3 | 21.6: 41.9: 36.5 | 576 | [41] |
CaF2: Na3AlF6 | 50: 50 | 945.5 | [42] |
Sample Numbers | Compositions (wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
KCl | Na2SO4 | Na2CO3 | NaCl | MgCl2 | K2CO3 | NaF | NaNO3 | CaF2 | Na3AlF6 | |
#1 | 43.1 | – | 43.8 | – | – | – | – | – | 3.0 | 10.0 |
#2 | – | 35.2 | 51.8 | – | – | – | – | – | 3.0 | 10.0 |
#3 | – | – | 52.3 | 34.7 | – | – | – | – | 3.0 | 10.0 |
#4 | 50.7 | – | – | – | 36.3 | – | – | – | 3.0 | 10.0 |
#5 | – | – | – | 40.4 | 46.6 | – | – | – | 3.0 | 10.0 |
#6 | 40.7 | – | – | – | – | 46.3 | – | – | 3.0 | 10.0 |
#7 | – | – | 46.5 | – | – | 40.5 | – | – | 3.0 | 10.0 |
#8 | 28.8 | – | 36.4 | 21.8 | – | – | – | – | 3.0 | 10.0 |
#9 | – | – | – | 5.0 | – | – | 2.3 | 79.7 | 3.0 | 10.0 |
#10 | – | – | 46.5 | 29.5 | – | – | 11.0 | – | 3.0 | 10.0 |
Elements | Al | Si | Mn | Mg | Fe | Zn | Ti | Cr | Cu |
---|---|---|---|---|---|---|---|---|---|
Mass fraction (wt.%) | Bal. | 0.85 | 0.25 | 0.73 | 0.38 | 0.13 | 0.08 | 0.07 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Lu, W.; Wu, X.; Yang, B.; Tan, Y.; Xu, Z.; Tang, H.; Zeng, J.; Wang, J. A New Strategy on Designing Fluxes for Aluminum Alloy Melt Refinement. Materials 2023, 16, 2322. https://doi.org/10.3390/ma16062322
Zhang G, Lu W, Wu X, Yang B, Tan Y, Xu Z, Tang H, Zeng J, Wang J. A New Strategy on Designing Fluxes for Aluminum Alloy Melt Refinement. Materials. 2023; 16(6):2322. https://doi.org/10.3390/ma16062322
Chicago/Turabian StyleZhang, Guoqing, Weihong Lu, Xiaocong Wu, Bo Yang, Yapeng Tan, Zhengbing Xu, Hongqun Tang, Jianmin Zeng, and Junsheng Wang. 2023. "A New Strategy on Designing Fluxes for Aluminum Alloy Melt Refinement" Materials 16, no. 6: 2322. https://doi.org/10.3390/ma16062322
APA StyleZhang, G., Lu, W., Wu, X., Yang, B., Tan, Y., Xu, Z., Tang, H., Zeng, J., & Wang, J. (2023). A New Strategy on Designing Fluxes for Aluminum Alloy Melt Refinement. Materials, 16(6), 2322. https://doi.org/10.3390/ma16062322