Selective-Area Growth Mechanism of GaN Microrods on a Plateau Patterned Substrate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ra, Y.-H.; Wang, R.; Woo, S.Y.; Djavid, M.; Sadaf, S.M.; Lee, J.; Botton, G.A.; Mi, Z. Full-Color Single Nanowire Pixels for Projection Displays. Nano Lett. 2016, 16, 4608–4615. [Google Scholar] [CrossRef]
- Roccaforte, F.; Greco, G.; Fiorenza, P.; Iucolano, F. An Overview of Normally-Off GaN-Based High Electron Mobility Transistors. Materials 2019, 12, 1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, T.; Sota, S.; Katsuragawa, M.; Komori, M.; Takeuchi, H.; Amano, H.; Akasaki, I. Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells. Jpn. J. Appl. Phys. 1997, 36, L382–L385. [Google Scholar] [CrossRef]
- Huang, C.-F.; Tang, T.-Y.; Huang, J.-J.; Shiao, W.-Y.; Yang, C.C.; Hsu, C.-W.; Chen, L.C. Prestrained effect on the emission properties of InGaN∕GaN quantum-well structures. Appl. Phys. Lett. 2006, 89, 051913. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Yeh, T.-W.; Daniel Dapkus, P. Mechanism of selective area growth of GaN nanorods by pulsed mode metalorganic chemical vapor deposition. Nanotechnology 2012, 23, 465601. [Google Scholar] [CrossRef]
- Colby, R.; Liang, Z.; Wildeson, I.H.; Ewoldt, D.A.; Sands, T.D.; García, R.E.; Stach, E.A. Dislocation Filtering in GaN Nanostructures. Nano Lett. 2010, 10, 1568–1573. [Google Scholar] [CrossRef]
- Bennett, S.E. Dislocations and their reduction in GaN. Mater. Sci. Technol. 2010, 26, 1017–1028. [Google Scholar] [CrossRef]
- Bougrioua, Z.; Gibart, P.; Calleja, E.; Jahn, U.; Trampert, A.; Ristic, J.; Utrera, M.; Nataf, G. Growth of freestanding GaN using pillar-epitaxial lateral overgrowth from GaN nanocolumns. J. Cryst. Growth 2007, 309, 113–120. [Google Scholar] [CrossRef]
- Liu, X.; Li, D.; Sun, X.; Li, Z.; Song, H.; Jiang, H.; Chen, Y. Stress-induced in situ epitaxial lateral overgrowth of high-quality GaN. CrystEngComm 2014, 16, 8058. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Lu, W.; Sone, N.; Okuda, R.; Ito, K.; Okuno, K.; Mizutani, K.; Iida, K.; Ohya, M.; Iwaya, M.; et al. Crystal Growth and Characterization of n-GaN in a Multiple Quantum Shell Nanowire-Based Light Emitter with a Tunnel Junction. ACS Appl. Mater. Interfaces 2021, 13, 37883–37892. [Google Scholar] [CrossRef]
- Hong, Y.J.; Lee, C.-H.; Yoon, A.; Kim, M.; Seong, H.-K.; Chung, H.J.; Sone, C.; Park, Y.J.; Yi, G.-C. Visible-Color-Tunable Light-Emitting Diodes. Adv. Mater. 2011, 23, 3284–3288. [Google Scholar] [CrossRef]
- Bae, S.-Y.; Lee, J.-Y.; Min, J.-H.; Lee, D.-S. Morphology Evolution of Pulsed-Flux Ga-Polar GaN Nanorod Growth by Metal Organic Vapor Phase Epitaxy and Its Nucleation Dependence. Appl. Phys. Express 2013, 6, 075501. [Google Scholar] [CrossRef]
- Bae, S.-Y.; Lekhal, K.; Lee, H.-J.; Min, J.-W.; Lee, D.-S.; Honda, Y.; Amano, H. Selective-area growth of doped GaN nanorods by pulsed-mode MOCVD: Effect of Si and Mg dopants: Selective-area growth of doped GaN nanorods by pulsed-mode MOCVD. Phys. Status Solidi B 2017, 254, 1600722. [Google Scholar] [CrossRef]
- Sekiguchi, H.; Kishino, K.; Kikuchi, A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett. 2010, 96, 231104. [Google Scholar] [CrossRef]
- Liu, K.-W.; Young, S.-J.; Chang, S.-J.; Hsueh, T.-H.; Hung, H.; Chen, S.-X.; Chen, Y.-Z. Growth of gallium nitride on silicon by molecular beam epitaxy incorporating a chromium nitride interlayer. J. Alloys Compd. 2012, 511, 1–4. [Google Scholar] [CrossRef]
- Kishino, K.; Ishizawa, S. Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns. Nanotechnology 2015, 26, 225602. [Google Scholar] [CrossRef]
- Tu, L.W.; Hsiao, C.L.; Chi, T.W.; Lo, I.; Hsieh, K.Y. Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy. Appl. Phys. Lett. 2003, 82, 1601–1603. [Google Scholar] [CrossRef]
- Hersee, S.D.; Sun, X.; Wang, X. The Controlled Growth of GaN Nanowires. Nano Lett. 2006, 6, 1808–1811. [Google Scholar] [CrossRef]
- Roshko, A.; Brubaker, M.; Blanchard, P.; Harvey, T.; Bertness, K. Selective Area Growth and Structural Characterization of GaN Nanostructures on Si(111) Substrates. Crystals 2018, 8, 366. [Google Scholar] [CrossRef] [Green Version]
- Nami, M.; Eller, R.F.; Okur, S.; Rishinaramangalam, A.K.; Liu, S.; Brener, I.; Feezell, D.F. Tailoring the morphology and luminescence of GaN/InGaN core–shell nanowires using bottom-up selective-area epitaxy. Nanotechnology 2017, 28, 025202. [Google Scholar] [CrossRef]
- Kishino, K.; Sekiguchi, H.; Kikuchi, A. Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays. J. Cryst. Growth 2009, 311, 2063–2068. [Google Scholar] [CrossRef]
- Albert, S.; Bengoechea-Encabo, A.; Sánchez-García, M.A.; Kong, X.; Trampert, A.; Calleja, E. Selective area growth of In(Ga)N/GaN nanocolumns by molecular beam epitaxy on GaN-buffered Si(111): From ultraviolet to infrared emission. Nanotechnology 2013, 24, 175303. [Google Scholar] [CrossRef]
- Bertness, K.A.; Sanders, A.W.; Rourke, D.M.; Harvey, T.E.; Roshko, A.; Schlager, J.B.; Sanford, N.A. Controlled Nucleation of GaN Nanowires Grown with Molecular Beam Epitaxy. Adv. Funct. Mater. 2010, 20, 2911–2915. [Google Scholar] [CrossRef]
- Kano, T.; Yoshida, J.; Miyagawa, R.; Mizuno, Y.; Oto, T.; Kishino, K. GaN nanocolumn arrays with diameter <30 nm prepared by two-step selective area growth. Electron. Lett. 2015, 51, 2125–2126. [Google Scholar] [CrossRef]
- Schumann, T.; Gotschke, T.; Limbach, F.; Stoica, T.; Calarco, R. Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer. Nanotechnology 2011, 22, 095603. [Google Scholar] [CrossRef]
- Calleja, E.; Ristić, J.; Fernández-Garrido, S.; Cerutti, L.; Sánchez-García, M.A.; Grandal, J.; Trampert, A.; Jahn, U.; Sánchez, G.; Griol, A.; et al. Growth, morphology, and structural properties of group-III-nitride nanocolumns and nanodisks. Phys. Status Solidi B 2007, 244, 2816–2837. [Google Scholar] [CrossRef]
- Cheung, C.L.; Nikolić, R.J.; Reinhardt, C.E.; Wang, T.F. Fabrication of nanopillars by nanosphere lithography. Nanotechnology 2006, 17, 1339–1343. [Google Scholar] [CrossRef]
- Shin, S.W.; Lee, S.G.; Lee, J.; Whang, C.N.; Lee, J.-H.; Choi, I.-H.; Kim, T.G.; Song, J.H. Ion-beam nano-patterning by using porous anodic alumina as a mask. Nanotechnology 2005, 16, 1392–1395. [Google Scholar] [CrossRef]
- Contreras, A.M.; Grunes, J.; Yan, X.-M.; Liddle, A.; Somorjai, G.A. Fabrication of platinum nanoparticles and nanowires by electron beam lithography (EBL) and nanoimprint lithography (NIL): Comparison of ethylene hydrogenation kinetics. Catal. Lett. 2005, 100, 115–124. [Google Scholar] [CrossRef]
- Brubaker, M.D.; Duff, S.M.; Harvey, T.E.; Blanchard, P.T.; Roshko, A.; Sanders, A.W.; Sanford, N.A.; Bertness, K.A. Polarity-Controlled GaN/AlN Nucleation Layers for Selective-Area Growth of GaN Nanowire Arrays on Si(111) Substrates by Molecular Beam Epitaxy. Cryst. Growth Des. 2016, 16, 596–604. [Google Scholar] [CrossRef]
- Skjolding, L.H.D.; Spégel, C.; Emnéus, J.; Montelius, L. EBL/NIL fabrication and characterization of interdigitated electrodes for potential application in combinatorial studies. MRS Proc. 2007, 1024, 1024-A02-04. [Google Scholar] [CrossRef]
- Xu, H.; Kosma, V.; Giannelis, E.; Ober, C.K.; Sakai, K. EUV photolithography: Resist progress and challenges. In Proceedings of the Extreme Ultraviolet (EUV) Lithography IX; Felix, N.M., Goldberg, K.A., Eds.; SPIE: San Jose, CA, USA, 2018; p. 2. [Google Scholar]
- Xu, H.; Kosma, V.; Sakai, K.; Giannelis, E.P.; Ober, C.K. EUV photolithography: Resist progress in metal–organic complex photoresists. J. Micro/Nanolithogr. MEMS MOEMS 2018, 18, 1. [Google Scholar] [CrossRef]
- Gačević, Ž.; Gómez Sánchez, D.; Calleja, E. Formation Mechanisms of GaN Nanowires Grown by Selective Area Growth Homoepitaxy. Nano Lett. 2015, 15, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.J.; Shim, K.; Jeong, W.S.; Kang, S.; Kim, H.; Kim, D.; Jhin, J.; Kim, J.; Byun, D. Deterministically-grown GaN microrods on a mask-free plateau patterned substrate. Vacuum 2023, 207, 111628. [Google Scholar] [CrossRef]
- Kozbial, A.; Li, Z.; Conaway, C.; McGinley, R.; Dhingra, S.; Vahdat, V.; Zhou, F.; D’Urso, B.; Liu, H.; Li, L. Study on the Surface Energy of Graphene by Contact Angle Measurements. Langmuir 2014, 30, 8598–8606. [Google Scholar] [CrossRef]
- Tsibouklis, J.; Nevell, T.G. Ultra-Low Surface Energy Polymers: The Molecular Design Requirements. Adv. Mater. 2003, 15, 647–650. [Google Scholar] [CrossRef]
- Park, S. Anti-adhesive layers on nickel stamps for nanoimprint lithography. Microelectron. Eng. 2004, 73–74, 196–201. [Google Scholar] [CrossRef]
Contact Angle, [ , Average] | Surface Energy [mN/m] | |||||
---|---|---|---|---|---|---|
Sample | RMS (n ) | Water | Diiodo-methane | Disperse Component | Polar Component | Surface Energy |
(I) AlN/sapphire | 0.09 | 58.2 | 49.5 | 34.5 | 15.5 | 50.1 |
(II) AlN//sapphire | 0.13 | 68.2 | 54.8 | 31.6 | 11.0 | 42.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, M.-j.; Jeong, W.-s.; Shim, K.-y.; Kang, S.; Kim, H.; Kim, D.-s.; Jhin, J.; Kim, J.; Byun, D. Selective-Area Growth Mechanism of GaN Microrods on a Plateau Patterned Substrate. Materials 2023, 16, 2462. https://doi.org/10.3390/ma16062462
Ahn M-j, Jeong W-s, Shim K-y, Kang S, Kim H, Kim D-s, Jhin J, Kim J, Byun D. Selective-Area Growth Mechanism of GaN Microrods on a Plateau Patterned Substrate. Materials. 2023; 16(6):2462. https://doi.org/10.3390/ma16062462
Chicago/Turabian StyleAhn, Min-joo, Woo-seop Jeong, Kyu-yeon Shim, Seongho Kang, Hwayoung Kim, Dae-sik Kim, Junggeun Jhin, Jaekyun Kim, and Dongjin Byun. 2023. "Selective-Area Growth Mechanism of GaN Microrods on a Plateau Patterned Substrate" Materials 16, no. 6: 2462. https://doi.org/10.3390/ma16062462
APA StyleAhn, M. -j., Jeong, W. -s., Shim, K. -y., Kang, S., Kim, H., Kim, D. -s., Jhin, J., Kim, J., & Byun, D. (2023). Selective-Area Growth Mechanism of GaN Microrods on a Plateau Patterned Substrate. Materials, 16(6), 2462. https://doi.org/10.3390/ma16062462