Microstructural and Electrochemical Influence of Zn in MgCaZn Biodegradable Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Mg–Ca–Zn Biodegradable Alloys
2.2. Microstructural Analysis
2.3. Corrosion Resistance
3. Results and Discussion
3.1. Microstructural Analysis
3.2. XRD Analysis
3.3. Electrochemical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Baltatu, M.S.; Vizureanu, P.; Sandu, A.V.; Florido-Suarez, N.; Saceleanu, M.V.; Mirza-Rosca, J.C. New Titanium Alloys, Promising Materials for Medical Devices. Materials 2021, 14, 5934. [Google Scholar] [CrossRef] [PubMed]
- Spataru, M.C.; Cojocaru, F.D.; Sandu, A.V.; Solcan, C.; Duceac, I.A.; Baltatu, M.S.; Voiculescu, I.; Geanta, V.; Vizureanu, P. Assessment of the effects of Si addition to a new TiMoZrTa system. Materials 2021, 14, 7610. [Google Scholar] [CrossRef]
- Savin, A.; Vizureanu, P.; Prevorovsky, Z.; Chlada, M.; Krofta, J.; Baltatu, M.S.; Istrate, B.; Steigmann, R. Noninvasive Evaluation of Special Alloys for Prostheses Using Complementary Methods. IOP Conf. Ser. Mater. Sci. Eng. 2018, 374, 012030. [Google Scholar] [CrossRef]
- Zhao, J.; Haowei, M.; Saberi, A.; Heydari, Z.; Baltatu, M.S. Carbon Nanotube (CNT) Encapsulated Magnesium-Based Nanocomposites to Improve Mechanical, Degradation and Antibacterial Performances for Biomedical Device Applications. Coatings 2022, 12, 1589. [Google Scholar] [CrossRef]
- Liu, C.; Ren, Z.; Xu, Y.; Pang, S.; Zhao, X.; Zhao, Y. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review. Scanning 2018, 2018, 9216314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; He, C.; Dianyu, E.; Yang, W.; Qi, F.; Xie, D.; Shen, L.; Peng, S.; Shuai, C. Mg bone implant: Features, developments and perspectives. Mater. Design 2020, 185, 108259. [Google Scholar] [CrossRef]
- Venezuela, J.; Dargusch, M.S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 2019, 87, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Blawert, C.; Zheludkevich, M.L. The Corrosion Performance and Mechanical Properties of Mg-Zn Based Alloys—A Review. Corros. Mater. Degrad. 2020, 1, 92–158. [Google Scholar] [CrossRef]
- Ali, M.; Hussein, M.A.; Al-Aqeeli, N. Magnesium-Based Composites and Alloys for Medical Applications: A Review of Mechanical and Corrosion Properties. J. Alloys Compd. 2019, 792, 1162–1190. [Google Scholar] [CrossRef]
- Ramkumar, R.; Arunkumar, G.; Radhakrishnan, K.; Kajendra Kumar, S.V. Studies on Mechanical, Microstructure and Corrosion Properties on Bio-Degradable Mg-Zn Alloys. Mater. Today Proc. 2021, 37, 3550–3553. [Google Scholar] [CrossRef]
- Jin, C.; Liu, Z.; Yu, W.; Qin, C.; Yu, H.; Wang, Z. Biodegradable Mg–Zn–Ca-Based Metallic Glasses. Materials 2022, 15, 2172. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, P.; Cao, X.Q.; Misra, R.D.K.; Wang, W.; Chen, K.-Z. Tin-induced microstructural changes and associated corrosion resistance of biodegradable Mg–Zn alloy. Rare Met. 2022, 41, 883–888. [Google Scholar] [CrossRef]
- Tian, Y.; Miao, H.-W.; Niu, J.; Huang, H.; Kang, B.; Zeng, H.; Ding, W.-J.; Yuan, G.Y. Effects of annealing on mechanical properties and degradation behavior of biodegradable JDBM magnesium alloy wires. Trans. Nonferr. Metals Soc. China 2021, 31, 2615–2625. [Google Scholar] [CrossRef]
- Saberi, A.; Bakhsheshi-Rad, H.R.; Karamian, E.; Kasiri-Asgarani, M.; Ghomi, H. A Study on the Corrosion Behavior and Biological Properties of Polycaprolactone/ Bredigite Composite Coating on Biodegradable Mg-Zn-Ca-GNP Nanocomposite. Prog. Org. Coat. 2020, 147, 105822. [Google Scholar] [CrossRef]
- Bommala, V.K.; Krishna, M.G.; Rao, C.T. Magnesium Matrix Composites for Biomedical Applications: A Review. J. Magnes. Alloy. 2019, 7, 72–79. [Google Scholar] [CrossRef]
- Istrate, B.; Munteanu, C.; Geanta, V.; Baltatu, S.; Focsaneanu, S.; Earar, K. Microstructural Analysis of Biodegradable Mg-0.9Ca-1.2Zr Alloy. IOP Conf. Ser. Mater. Sci. Eng. 2016, 147, 012033. [Google Scholar] [CrossRef] [Green Version]
- Istrate, B.; Munteanu, C.; Antoniac, I.-V.; Lupescu, Ș.-C. Current Research Studies of Mg–Ca–Zn Biodegradable Alloys Used as Orthopedic Implants—Review. Crystals 2022, 12, 1468. [Google Scholar] [CrossRef]
- Liu, L.J.; Schlesinger, M. Corrosion of Magnesium and its Alloys. Corros. Sci. 2009, 51, 1733–1737. [Google Scholar] [CrossRef]
- Bița, A.-I.; Antoniac, I.; Miculescu, M.; Stan, G.E.; Leonat, L.; Antoniac, A.; Constantin, B.; Forna, N. Electrochemical and In Vitro Biological Evaluation of Bio-Active Coatings Deposited by Magnetron Sputtering onto Biocompatible Mg-0.8Ca Alloy. Materials 2022, 15, 3100. [Google Scholar] [CrossRef]
- Antoniac, I.; Adam, R.; Biță, A.; Miculescu, M.; Trante, O.; Petrescu, I.M.; Pogărășteanu, M. Comparative Assessment of In Vitro and In Vivo Biodegradation of Mg-1Ca Magnesium Alloys for Orthopedic Applications. Materials 2020, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Nanda, I.P.; Hassim, M.H.; Idris, M.H.; Jahare, M.H.; Abdulmalik, S.S.; Arafat, A. Mechanical and Degradation Properties of Zinc Adopted Magnesium Alloys for Biomedical Application. IOP Conf. Ser. Mater. Sci. Eng. 2019, 602, 012094. [Google Scholar] [CrossRef]
- Antoniac, I.; Miculescu, M.; Mănescu (Păltânea), V.; Stere, A.; Quan, P.H.; Păltânea, G.; Robu, A.; Earar, K. Magnesium-Based Alloys Used in Orthopedic Surgery. Materials 2022, 15, 1148. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Ramasamy, P.; Das, M.; Mandal, D.; Renk, O.; Calin, M.; Eckert, J.; Bera, S. New Mg-Ca-Zn amorphous alloys: Biocompatibility, wettability and mechanical properties. Materialia 2020, 12, 100799. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, X.; Huang, Q.; Li, Y.; Yang, Y. Effect of the microstructure parameters on the corrosion characteristics of Mg-Zn-Ca alloy with columnar structure. J. Magnes. Alloy. 2022; in press. ISSN 2213-9567. [Google Scholar] [CrossRef]
- Zander, D.; Zumdick, N.A. Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg–Ca–Zn alloys. Corros. Sci. 2015, 93, 222–233. [Google Scholar] [CrossRef]
- Lupescu, S.; Istrate, B.; Munteanu, C.; Minciuna, M.G.; Focsaneanu, S.; Earar, K. Characterization of Some Master Mg-X System (Ca, Mn, Zr, Y) Alloys Used in Medical Applications. Rev. Chim. 2017, 68, 1408–1413. [Google Scholar] [CrossRef]
- Istrate, B.; Munteanu, C.; Cimpoesu, R.; Cimpoesu, N.; Popescu, O.D.; Vlad, M.D. Microstructural, Electrochemical and In Vitro Analysis of Mg-0.5Ca-xGd Biodegradable Alloys. Appl. Sci. 2021, 11, 981. [Google Scholar] [CrossRef]
- Sindilar, E.-V.; Munteanu, C.; Pasca, S.A.; Mihai, I.; Henea, M.E.; Istrate, B. Long Term Evaluation of Biodegradation and Biocompatibility In-Vivo the Mg-0.5Ca-xZr Alloys in Rats. Crystals 2021, 11, 54. [Google Scholar] [CrossRef]
- Roman, A.-M.; Voiculescu, I.; Cimpoeșu, R.; Istrate, B.; Chelariu, R.; Cimpoeșu, N.; Zegan, G.; Panaghie, C.; Lohan, N.M.; Axinte, M.; et al. Microstructure, Shape Memory Effect, Chemical Composition and Corrosion Resistance Performance of Biodegradable FeMnSi-Al Alloy. Crystals 2023, 13, 109. [Google Scholar] [CrossRef]
- Kubok, K.; Lityńska, L.; Wojewoda-Budka, J.; Goral, A.; Dębski, A. Investigation of Structures in As-Cast Alloys from the Mg-Zn-Ca System. Arch. Metall. Mater. 2013, 58, 299–333. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed.; National Association of Corrosion Engineers: Houston, TX, USA, 1974. [Google Scholar]
- Witte, F.; Kaese, V.; Haferkamp, H.; Switzer, E.; Meyer-Lindenberg, A.; Wirth, C.J.; Windhagen, H. In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response. Biomaterials 2005, 26, 3557–3563. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, N.; Shi, Y.; Niu, J.; Mao, L.; Li, H.; Xiong, M.; Yuan, G. Influence of proteins and cells on in vitro corrosion of Mg–Nd–Zn–Zr alloy. Corros. Sci. 2014, 85, 477–481. [Google Scholar] [CrossRef]
- Bornapour, M.; Celikin, M.; Pekguleryuz, M. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure. Mater. Sci. Eng. C 2015, 46, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Zohdy, K.M.; El-Sherif, R.M.; El-Shamy, A.M. Efect of pH fuctuations on the biodegradability of nanocomposite Mg-alloy in simulated bodily fuids. Chem. Pap. 2023, 77, 1317–1337. [Google Scholar] [CrossRef]
- Tahmasebifar, A. Surface Morphology Investigation of a Biodegradable Magnesium Alloy. Ph.D. Thesis, Middle East Technical University, Ankara, Türkiye, 2015. [Google Scholar]
- Zheng, Y.; Li, Y.; Chen, J.; Zou, Z. Effects of tensile and compressive deformation on corrosion behaviour of a Mg–Zn alloy. Corros. Sci. 2015, 90, 445–450. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, H.; Hou, P.; Ni, J.; Han, P.; Zhang, X. Enhanced corrosion resistance and antibacterial property of Zn doped DCPD coating on biodegradable Mg. Mater. Lett. 2016, 180, 42–46. [Google Scholar] [CrossRef]
- Willumeit, R.; Fischer, J.; Feyerabend, F.; Hort, N.; Bismayer, U.; Heidrich, S.; Mihailova, B. Chemical surface alteration of biodegradable magnesium exposed to corrosion media. Acta Biomater. 2011, 7, 2704–2715. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, T.; Hoagland, W.; Benson, D.; Dong, Z.; Chen, S.; Chou, D.T.; Hong, D.; Wu, J.; Kumta, P.N.; et al. Visual H2 sensor for monitoring biodegradation of magnesium implants in vivo. Acta Biomater. 2016, 45, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Bakhsheshi-Rad, H.R.; Abdellahi, M.; Hamzah, E.; Ismail, A.F.; Bah- Manpour, M. Modelling corrosion rate of biodegradable magnesium-based alloys: The case study of Mg-Zn-RE-xCa (x = 0, 0.5, 1.5, 3 and 6 wt%) alloys. J. Alloy. Compd. 2016, 687, 630–642. [Google Scholar] [CrossRef]
- Wang, L.; He, J.; Yu, J.; Arthanari, S.; Lee, H.; Zhang, H.; Lu, L.; Huang, G.; Xing, B.; Wang, H.; et al. Review: Degradable Magnesium Corrosion Control for Implant Applications. Materials 2022, 15, 6197. [Google Scholar] [CrossRef]
- Murni, N.S.; Dambatta, M.S.; Yeap, S.K.; Froemming, G.R.; Hermawan, H. Cytotoxicity evaluation of biodegradable Zn–3Mg alloy toward normal human osteoblast cells. Mater. Sci. Eng. C 2015, 49, 560–566. [Google Scholar] [CrossRef]
- Vasluianu, R.I.; Forna, N.C.; Baciu, E.R.; Zaltariov, M.; Vasiliu, L.; Murariu, A. In vitro evaluation of enamel surface treated with fluoride after bleaching and etching erosive processes. Rev. Chim. 2018, 69, 1714–1717. [Google Scholar] [CrossRef]
- Avedesian, M.M.; Baker, H. Magnesium and Magnesium Alloys; ASM International, Materials Park: Geauga, OH, USA, 1999. [Google Scholar]
Alloy | Mg [g] | Mg–15Ca [g] | Mg–20Zn [g] |
---|---|---|---|
Mg–0.5Ca–0.5Zn | 94.17 | 3.33 | 2.5 |
Mg–0.5Ca–1.5Zn | 89.17 | 3.33 | 7.5 |
Mg–0.5Ca–3Zn | 81.67 | 3.33 | 15 |
Alloy | Mg [wt.%] | Ca [wt.%] | Zn [wt.%] |
---|---|---|---|
Mg–0.5Ca–0.5Zn | 99.05 | 0.43 | 0.52 |
Mg–0.5Ca–1.5Zn | 98.10 | 0.51 | 1.39 |
Mg–0.5Ca–3Zn | 96.22 | 0.63 | 3.15 |
Compound | Space Group | Crystal System | a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | Cell Volume (106 µm3) | RIR |
---|---|---|---|---|---|---|---|---|---|---|
Mg | P63/mmc | Hexagonal | 3.2420 | 3.2420 | 5.2660 | 90 | 90 | 120 | 47.93 | 4.10 |
Mg2Ca | P63/mmc | Hexagonal | 5.8350 | 5.8350 | 18.8970 | 90 | 90 | 120 | 557.19 | 2.37 |
MgZn2 | P63/mmc | Hexagonal | 5.1500 | 5.1500 | 8.4800 | 90 | 90 | 120 | 194.78 | 3.67 |
Ca2Mg6Zn3 | P63/mmc | Hexagonal | 9.7250 | 9.7250 | 10.148 | 90 | 90 | 120 | - | - |
Immersion Time/State of the Samples | Mg0.5Ca0.5Zn | Mg0.5Ca1.5Zn | Mg0.5Ca3Zn |
---|---|---|---|
Initial mass (mg) | 399.9 | 533.4 | 449.5 |
Mass after immersion (mg) | 405.1 (+5.2) | 529.6 (−3.8) | 450.8 (+1.3) |
Mass after ultrasonic cleaning (mg) | 385.3 (−14.6) | 527.3 (−6.1) | 447 (−2.5) |
CR (mm/year) | 3.62 | 1.30 | 0.63 |
Elements/ Sample | O [%] | Mg [%] | C [%] | Cl [%] | Na [%] | P [%] | Ca [%] | Zn [%] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt. | at. | wt. | at. | wt. | at. | wt. | at. | wt. | at. | wt. | at. | wt. | at. | wt. | at. | |
Mg0.5Ca0.5Zn | 58.55 | 64.39 | 25.91 | 18.76 | 8.9 | 13.03 | 3.56 | 1.77 | 1.86 | 1.42 | 0.86 | 0.49 | 0.22 | 0.1 | 0.14 | 0.04 |
Mg0.5Ca1.5Zn | 58.64 | 64.11 | 25.09 | 18.06 | 9.45 | 13.77 | 2.75 | 1.36 | 2.74 | 2.09 | 0.76 | 0.43 | 0.09 | 0.04 | 0.1 | 0.05 |
Mg0.5Ca3.0Zn | 47.55 | 56.61 | 14.53 | 11.39 | 8.38 | 13.28 | 12.16 | 6.53 | 9.12 | 7.56 | 5.01 | 3.08 | 0.09 | 0.04 | 0.22 | 0.06 |
Detector Error % | 3.8 | 1.7 | 2.2 | 0.14 | 0.25 | 0.07 | 0.05 | 0.04 |
Chemical Elements/Alloy | Cl % | O % | Na % | C % | Mg % | P % | Ca % | Zn % | K % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt. | at. | wt. | at. | wt. | at. | wt. | at. | wt. | at. | wt. | at | wt. | at. | wt. | at. | wt. | at. | |
Mg–0.5Ca–0.5Zn | 34.46 | 20.22 | 32.52 | 42.29 | 15.52 | 14.05 | 9.81 | 16.99 | 6.96 | 5.95 | 0.68 | 0.45 | 0.03 | 0.02 | 0.02 | 0.01 | - | - |
Mg–0.5Ca–1.5Zn | 10.60 | 5.67 | 48.47 | 57.49 | 7.81 | 6.45 | 8.06 | 12.73 | 16.21 | 12.66 | 5.98 | 3.66 | 0.16 | 0.07 | 0.21 | 0.01 | 2.51 | 1.22 |
Mg–0.5Ca–3.0Zn | 6.91 | 3.74 | 48.63 | 58.34 | 7.47 | 6.23 | 6.99 | 11.18 | 15.31 | 12.09 | 9.75 | 6.04 | 0.02 | 0.01 | 0.28 | 0.08 | 4.63 | 2.27 |
EDS det. error % | 1.34 | 5.0 | 1.21 | 3.01 | 0.48 | 0.06 | 0.08 | 0.01 | 0.12 |
Alloy/Electro-Corrosion Parameters | Ecorr (I = 0) [mV] | Icorr [µA/cm] | Rp [kohm cm2] | Vcorr [mm/Y] | βc [mV/dec] | βa [mV/dec] |
---|---|---|---|---|---|---|
Mg–0.5Ca–0.5Zn | −1781 | 49.37 | 0.885 | 7.96 | −156 | 418 |
Mg–0.5Ca–1.5Zn | −1589 | 41.83 | 1.23 | 8.11 | −380 | 404 |
Mg–0.5Ca–3.0Zn | −1458 | 32.26 | 1.47 | 7.03 | −276 | 287 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Istrate, B.; Munteanu, C.; Bălțatu, M.-S.; Cimpoeșu, R.; Ioanid, N. Microstructural and Electrochemical Influence of Zn in MgCaZn Biodegradable Alloys. Materials 2023, 16, 2487. https://doi.org/10.3390/ma16062487
Istrate B, Munteanu C, Bălțatu M-S, Cimpoeșu R, Ioanid N. Microstructural and Electrochemical Influence of Zn in MgCaZn Biodegradable Alloys. Materials. 2023; 16(6):2487. https://doi.org/10.3390/ma16062487
Chicago/Turabian StyleIstrate, Bogdan, Corneliu Munteanu, Madălina-Simona Bălțatu, Ramona Cimpoeșu, and Nicoleta Ioanid. 2023. "Microstructural and Electrochemical Influence of Zn in MgCaZn Biodegradable Alloys" Materials 16, no. 6: 2487. https://doi.org/10.3390/ma16062487
APA StyleIstrate, B., Munteanu, C., Bălțatu, M.-S., Cimpoeșu, R., & Ioanid, N. (2023). Microstructural and Electrochemical Influence of Zn in MgCaZn Biodegradable Alloys. Materials, 16(6), 2487. https://doi.org/10.3390/ma16062487