Lanthanide and Ladder-Structured Polysilsesquioxane Composites for Transparent Color Conversion Layers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Ladder-Structured Poly(phenyl-co-glycidoxypropyl)silsesquioxane (LPGSQ64)
2.3. Fabrication of Lanthanide-Based Hybrid Polymer Composite Films
2.4. Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baney, R.H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Silsesquioxanes. Chem. Rev. 1995, 95, 1409–1430. [Google Scholar] [CrossRef]
- Choi, M.H.; Seo, J.Y.; Ahn, J.; Woo, H.Y.; Cho, S.; Hwang, S.S.; Lee, A.S.; Baek, K.-Y. Flowable Polysilsesquioxanes as Robust Solvent-free Optical Hard Coatings. React. Funct. Polym. 2021, 167, 105030. [Google Scholar] [CrossRef]
- Hamada, T.; Sugimoto, T.; Maedo, T.; Katsura, D.; Mineoi, S.; Ohshita, J. Robust and Transparent Antifogging Polysilsesquioxane Film Containing a Hydroxy Group. Langmuir 2022, 38, 5829–5837. [Google Scholar] [CrossRef]
- Choi, S.S.; Lee, A.S.; Hwang, S.S.; Baek, K.Y. Structural Control of Fully Condensed Polysilsesquioxanes: Ladderlike vs Cage Structured Polyphenylsilsesquioxanes. Macromolecules 2015, 48, 6063–6070. [Google Scholar] [CrossRef]
- Dong, F.; Ha, C.S. Multifunctional Materials Based on Polysilsesquioxanes. Macromol. Res. 2012, 20, 335–343. [Google Scholar] [CrossRef]
- Ahn, Y.; Kim, S.; Kim, M.S.; Youk, J.H.; Kim, B.-G. Ladder-Structured Polysilsesquioxane/Al2O3 Nanocomposites for Transparent Wear-Resistant Windows. Fibers Polym. 2018, 19, 1295–1302. [Google Scholar] [CrossRef]
- D’Arienzo, M.; Dirè, S.; Cobani, E.; Orsini, S.; Di Credico, B.; Antonini, C.; Callone, E.; Parrino, F.; Dalle Vacche, S.; Trusiano, G.; et al. SiO2/Ladder-Like Polysilsesquioxanes Nanocomposite Coatings: Playing with the Hybrid Interface for Tuning Thermal Properties and Wettability. Coatings 2020, 10, 913. [Google Scholar] [CrossRef]
- Jeon, H.; Lee, A.S.S.; Kim, H.J.; Cho, S.H.; Baek, K.Y.; Hwang, S.S. Preparation of Highly Emissive, Thermally Stable, UV-cured Polysilsesquioxane/ZnO Nanoparticle Composites. J. Appl. Polym. Sci. 2015, 132, 42333. [Google Scholar] [CrossRef]
- Sahu, S.P.; Cates, S.L.; Kim, H.I.; Kim, J.H.; Cates, E.L. The Myth of Visible Light Photocatalysis Using Lanthanide Upconversion Materials. Environ. Sci. Technol. 2018, 52, 2973–2980. [Google Scholar] [CrossRef]
- Zhuang, X.; Sun, R.; Zhou, D.; Liu, S.; Wu, Y.; Shi, Z.; Zhang, Y.; Liu, B.; Chen, C.; Lie, D.; et al. Synergistic Effects of Multifunctional Lanthanides Doped CsPbBrCl2 Quantum Dots for Efficient and Stable MAPbI3 Perovskite Solar Cells. Adv. Funct. Mater. 2022, 32, 2110346. [Google Scholar] [CrossRef]
- Bunzli, J.-C.G. Lanthanide-doped Nanoscintillators. Light Sci. Appl. 2022, 11, 285. [Google Scholar] [CrossRef]
- Eliseeva, S.V.; Bunzli, J.C. Lanthanide Luminescence for Functional Materials and Bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227. [Google Scholar] [CrossRef]
- Bhemarajam, J.; Swapna; Babu, M.M.; Prasad, P.S.; Prasad, M. Spectroscopic Studies on Eu3+ Ions Incorporated Bismuth Borolead Lithium Glasses for Solid State Lasers and Fiber Amplifiers. Opt. Mater. 2021, 113, 110818. [Google Scholar] [CrossRef]
- Sun, L.N.; Yu, J.B.; Zhang, H.J.; Meng, Q.G.; Ma, E.; Peng, C.Y.; Yang, K.Y. Near-infrared Luminescent Mesoporous Materials Covalently Bonded with Ternary Lanthanide [Er(III), Nd(III), Yb(III), Sm(III), Pr(III)] Complexes. Micropor. Mesopor. Mat. 2007, 98, 156–165. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Li, H. Lanthanide Organic/Inorganic Hybrid Systems: Efficient Sensors for Fluorescence Detection. Dyes Pigm. 2020, 178, 108386. [Google Scholar] [CrossRef]
- Kumar, B.P.; Vijaykumar, B.V.D.; Raghavan, C.M.; Harshavardhan, S.J.; Yi, S.S.; Gandhi, S.; Jiang, J.Z.; Jang, K.; Shin, D.S. POSS-based Luminescent Hybrid Material for enhanced Photo-emitting Properties. J. Mater. Sci. 2013, 48, 7533–7539. [Google Scholar] [CrossRef]
- Marchesi, S.; Bisio, C.; Boccaleri, E.; Carniato, F. A Luminescent Polysilsesquioxane Obtained by Self-Condensation of Anionic Polyhedral Oligomeric Silsequioxanes (POSS) and Europium (III) Ions. ChemPlusChem 2020, 85, 176–182. [Google Scholar] [CrossRef]
- Marchesi, S.; Carniato, F.; Boccaleri, E. Synthesis and Characterisation of a Novel Europium(III)-containing Heptaisobutyl-POSS. New J. Chem. 2014, 38, 2480–2485. [Google Scholar]
- Liu, F.; Fu, L.; Wang, J.; Meng, Q.; Li, H.; Guo, J.; Zhang, H. Luminescent Film with Terbium-complex-bridged Polysilsesquioxanes. New J. Chem. 2003, 27, 233–235. [Google Scholar] [CrossRef]
- Lin, N.; Li, H.; Wang, Y.; Feng, Y.; Qin, D.; Gan, Q.; Chen, S. Luminescent Triazine-Containing Bridged Polysilsesquioxanes Activated by Lanthanide Ions. Eur. J. Inorg. Chem. 2008, 2008, 4781–4785. [Google Scholar] [CrossRef]
- Marchesi, S.; Miletto, I.; Bisio, C.; Gianotti, E.; Marchese, L.; Carniato, F. Eu3+ and Tb3+ @ PSQ: Dual Luminescent Polyhedral Oligomeric Polysilsesquioxanes. Materials 2022, 15, 7996. [Google Scholar] [CrossRef] [PubMed]
- Kulakova, A.N.; Bilyachenko, A.N.; Levitsky, M.M.; Khrustalev, V.N.; Shubina, E.S.; Felix, G.; Mamontova, E.; Long, J.; Guari, Y.; Larionova, J. New Luminescent Tetranuclear Lanthanide-Based Silsesquioxane Cage-Like Architectures. Chem. Eur. J. 2020, 26, 16594–16598. [Google Scholar] [CrossRef] [PubMed]
- Choe, G.; Kim, J.; Shin, S.C.; Jeong, Y.R.; Kim, S.J.; Choi, B.S.; Nam, S.; Paoprasert, P.; Thongsai, N.; Park, E.; et al. High-k and High-temperature-resistant Polysilsesquioxane: Potential for Solution-processed Metal Oxide Semiconductor Transistors Operating at Low Voltage. Mater. Today Commun. 2023, 34, 105331. [Google Scholar] [CrossRef]
- Zhao, H.X.; Liu, L.Q.; Liu, Z.D.; Wang, Y.; Zhao, X.J.; Huang, C.Z. Highly Selective Detection of Phosphate in Very Complicated Matrixes with an Off-on Fluorescent Probe of Europium-adjusted Carbon Dots. Chem. Commun. 2011, 47, 2604–2606. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, J.; Ding, P.; Zhou, W.; Liu, L.; Guo, X.; Stuart, M.A.C.; Wang, J. Hierarchical Assemblies of Dendrimers Embedded in Networks of Lanthanide-Based Supramolecular Polyelectrolytes. Macromolecules 2019, 52, 1874–1881. [Google Scholar] [CrossRef]
- El-Enein, S.A.A.; Ali, A.M.; Abdel-Monem, Y.K.; Senna, M.H.; Madkour, M. Novel Lanthanide (III) 4-methylbenzoylhydrozide Complexes as Precursors for Lanthanide Oxide Nanophotocatalysts. RSC Adv. 2019, 9, 42010–42019. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.S.; Lee, A.S.; Lee, H.S.; Baek, K.Y.; Choi, D.H.; Hwang, S.S. Synthesis and Characterization of Ladder-like Structured polysilsesquioxane with Carbazole Group. Macromol. Res. 2011, 19, 261–265. [Google Scholar] [CrossRef]
- Kawakami, Y.; Kakihana, Y.; Miyazato, A.; Tateyama, S.; Hoque, M.A. Polyhedral Oligomeric Silsesquioxanes with Controlled Structure: Formation and Application in New Si-Based Polymer Systems. Adv. Polym. Sci. 2011, 235, 185–228. [Google Scholar]
- Armelao, L.; Quici, S.; Barigelletti, F.; Accorsi, G.; Bottaro, G.; Cavazzini, M.; Tondello, E. Design of Luminescent Lanthanide Complexes: From Molecules to Highly Efficient Photo-emitting Materials. Coordin. Chem. Rev. 2010, 254, 487–505. [Google Scholar] [CrossRef]
- Park, S.; Lee, A.S.; Do, Y.S.; Kim, J.F.; Hwang, S.S.; Lee, Y.M.; Lee, J.H.; Lee, J.S. Side-chain Engineering of Ladder-structured Polysilsesquioxane Membranes for Gas Separations. J. Membrane Sci. 2016, 516, 202–214. [Google Scholar] [CrossRef]
- Kawa, M.; Frechet, J.M.J. Self-assembled Lanthanide-cored Dendrimer Complexes: Enhancement of the Luminescence Properties of Lanthanide Ions Through Site-isolation and Antenna Effects. Chem. Mater. 1998, 10, 286–296. [Google Scholar] [CrossRef]
- Dong, W.-K.; Ma, J.-C.; Dong, Y.-J.; Zhu, L.-C.; Zhang, Y. Di- and Tetranuclear Heterometallic 3d-4f Cobalt(II)-Lanthanide(III) Complexes Derived From a Hexadentate Bisoxime: Syntheses, Structure and Magnetic Properties. Polyhedron 2016, 115, 228–235. [Google Scholar] [CrossRef]
- Chakrabarty, R.; Dutta, A.; Roy, S.; Das, G.; Ledoux-Rak, I.; Mondal, P.; Prasad, S.K.; Rao, D.S.S.; Bhattacharjee, C.R. Multifunctional Lanthanide Complexes: Mesomorphism, Photoluminescence, and Second Order NLO Property. ChemistrySelect 2018, 3, 8245–8251. [Google Scholar] [CrossRef]
- Cui, Y.; Zou, W.; Song, R.; Yu, J.; Zhang, W.; Yang, Y.; Qian, G. A Ratiometric and Colorimetric Luminescent Thermometer Over a Wide Temperature Range Based on a Lanthanide Coordination Polymer. Chem. Commun. 2014, 50, 719–721. [Google Scholar] [CrossRef]
- Sun, L.; Zhu, R.; Hu, H.; Yu, J.; Wang, X.; Huang, L.; Liu, X. Study on Yellowing Mechanism and Inhibiting Technology Based on Amide Salts Modified Polyester. Text. Res. J. 2022, 1–16. [Google Scholar] [CrossRef]
- Srinivasan, S.K.; Ganguly, S. FT-IR Spectroscopic Studies of Metal Nitrates Supported on a Modified Montmorillonite Clay. Catal. Lett. 1991, 10, 279–288. [Google Scholar] [CrossRef]
- Comandini, A.; Malewicki, T.; Brezinsky, K. Chemistry of Polycyclic Aromatic Hydrocarbons Formation From Phenyl Radical Pyrolysis and Reaction of Phenyl and Acetylene. J. Phys. Chem. A 2012, 116, 2409–2434. [Google Scholar] [CrossRef]
- Kim, D.; Jin, Y.-H.; Jeon, K.-W.; Kim, S.; Kim, S.-J.; Han, O.C.; Seo, D.-K.; Park, J.-C. Blue-silica by Eu2+-activator Occupied in Interstitial Sites. RSC Adv. 2015, 5, 74790–74801. [Google Scholar] [CrossRef]
- Chen, C.; Yang, X.; Wei, J.; Tan, X.; Wang, X. Eu (III) Uptake on Rectorite in the Presence of Humic Acid: A Macroscopic and Spectroscopic Study. J. Colloid Interface Sci. 2013, 393, 249–256. [Google Scholar] [CrossRef]
- Mercier, F.; Alliot, C.; Bion, L.; Thromat, N.; Toulhoat, P. XPS Study of Eu(III) Coordination Compounds: Core Levels Binding Energies in Solid Mixed-oxo-compounds EumXxOy. J. Electron Spectros. Relat. Phenom. 2006, 150, 21–26. [Google Scholar] [CrossRef]
- Joo, M.H.; Park, S.J.; Hong, S.-M.; Rhee, C.K.; Kim, D.; Sohn, Y. Electrodeposition and Characterization of Lanthanide Elements on Carbon Sheets. Coatings 2021, 11, 100. [Google Scholar] [CrossRef]
- Abualrejal, M.M.A.; Zou, H.; Chen, J.; Song, Y.; Sheng, Y. Electrospinning Synthesis and Photoluminescence Properties of One-Dimensional SiO2:Tb3+ Nanobelts. Adv. Nano Res. 2017, 6, 33–47. [Google Scholar]
- Mondal, T.K.; Ghorai, U.K.; Saha, S.K. Dual-Emissive Carbon Quantum Dot-Tb Nanocomposite as a Fluorescent Indicator for a Highly Selective Visual Detection of Hg(II) in Water. ACS Omega 2018, 3, 11439–11446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Formula | Chemical Shift (ppm) |
---|---|
1H NMR | |
t, Si(CH2CH2CH2OCH2CHOCH2), 2H | 0.35–0.75 |
m, Si(CH2CH2CH2OCH2CHOCH2), 2H | 1.3–1.7 |
d, Si(CH2CH2CH2OCH2CHOCH2), 1H | 2.5–2.7 |
m, Si(CH2CH2CH2OCH2CHOCH2), 2H | 2.8–3.0 |
m, Si(CH2CH2CH2OCH2CHOCH2), 2H | 3.0–3.3 |
m, Si(CH2CH2CH2OCH2CHOCH2), 2H | 3.2–3.4 |
m, Si(C6H5), 5H | 7.2–8.0 |
29Si NMR | |
Si(CH2CH2CH2OCH2CHOCH2) | −64 to −70 |
Si(C6H5) | −77 to −82 |
Sample | Pencil Hardness (10H = Best) | Cross-Cut Adhesion (5B = Best) |
---|---|---|
1 h curing | ||
LPGSQ64 | 2B | 3B |
LPGSQ64-Eu 3% | 2H | 5B |
LPGSQ64-Tb 3% | HB | 5B |
LPGSQ64-Eu 5% | 3H | 4B |
LPGSQ64-Tb 5% | H | 5B |
6 h curing | ||
LPGSQ64 | HB | 3B |
LPGSQ64-Eu 3% | 3H | 5B |
LPGSQ64-Tb 3% | H | 5B |
LPGSQ64-Eu 5% | 3H | 5B |
LPGSQ64-Tb 5% | 4H | 5B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Burak, D.; Poliukhova, V.; Lee, A.S.; Jang, H.; Hwang, S.; Baek, K.-Y.; Han, J.; Ju, B.-K.; Cho, S.-H. Lanthanide and Ladder-Structured Polysilsesquioxane Composites for Transparent Color Conversion Layers. Materials 2023, 16, 2537. https://doi.org/10.3390/ma16062537
Han J, Burak D, Poliukhova V, Lee AS, Jang H, Hwang S, Baek K-Y, Han J, Ju B-K, Cho S-H. Lanthanide and Ladder-Structured Polysilsesquioxane Composites for Transparent Color Conversion Layers. Materials. 2023; 16(6):2537. https://doi.org/10.3390/ma16062537
Chicago/Turabian StyleHan, Jaehyun, Darya Burak, Valeriia Poliukhova, Albert S. Lee, Hoseong Jang, Seungsang Hwang, Kyung-Youl Baek, Joonsoo Han, Byeong-Kwon Ju, and So-Hye Cho. 2023. "Lanthanide and Ladder-Structured Polysilsesquioxane Composites for Transparent Color Conversion Layers" Materials 16, no. 6: 2537. https://doi.org/10.3390/ma16062537
APA StyleHan, J., Burak, D., Poliukhova, V., Lee, A. S., Jang, H., Hwang, S., Baek, K. -Y., Han, J., Ju, B. -K., & Cho, S. -H. (2023). Lanthanide and Ladder-Structured Polysilsesquioxane Composites for Transparent Color Conversion Layers. Materials, 16(6), 2537. https://doi.org/10.3390/ma16062537