Effect of Ru on Deformation Mechanism and Microstructure Evolution of Single-Crystal Superalloys under Medium-Temperature and High-Stress Creep
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Initial Microstructures of Experimental Ni-Based Single-Crystal Superalloys
3.2. Creep Behavior and Microstructure Evolution of Both Alloys at Different Conditions
3.2.1. Creep Curve
3.2.2. Microstructure Evolution after Creep Rupture
3.2.3. Deformation Mechanisms
4. Conclusions
- Though the alloy including 3 wt.% Ru still keeps a typical dendritic structure in the [001] direction, Ru alters the distribution coefficient, which is called the reverse partitioning behavior, leading to an increase in the eutectic structure of the alloy and decreases in the primary dendrite arm spacing. The average size of the γ′ phase in the 3Ru alloy is a little bit less than in the 0Ru alloy, and the γ′ precipitates are more uniform.
- Compared with the 0Ru alloy, the 3Ru alloy has a lower creep rate and significantly increased creep life. With the increase in the creep temperature and stress, the creep incubation period of 3Ru alloy becomes longer before the beginning of the primary creep stage. When the creep temperature or stress decreases to a certain value, the incubation period disappears.
- At medium-temperature and high-stress creep conditions, the addition of Ru effectively inhibits the smooth operation of the dislocation slip system {111}<112> and leads to a low primary creep strain rate of the 3Ru alloy. At high-temperature and low-stress creep conditions, however, the major deformation mechanism changed by forming the dense dislocation grid triggered by the a<101> super dislocation slip, which leads to the high creep property of the 3Ru alloy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reed, R.C.; Tao, T.; Warnken, N. Alloys-By-Design: Application to nickel-based single crystal superalloys. Acta Mater. 2009, 57, 5898–5913. [Google Scholar] [CrossRef]
- Caron, P.; Khan, T. Improvement of Creep strength in a nickel-base single-crystal superalloy by heat treatment. Mater. Sci. Eng. 1983, 61, 173–184. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Nag, S.; Singh, A.R.P.; Srinivasan, R.; Tiley, J.; Fraser, H.L.; Banerjee, R. Evolution of the γ/γ′ interface width in a commercial nickel base superalloy studied by three-dimensional atom probe tomography. Scr. Mater. 2009, 61, 92–95. [Google Scholar] [CrossRef]
- Van Sluytman, J.S.; Fontaine, A.L.; Cairney, J.M.; Pollock, T.M. Elemental partitioning of platinum group metal containing Ni-base superalloys using electron microprobe analysis and atom probe tomography. Acta Mater. 2010, 58, 1952–1962. [Google Scholar] [CrossRef]
- Guédou, J.Y.; Choné, J. What is the role of rhenium in single crystal superalloys? In Proceedings of the MATEC Web of Conferences, Giens, France, 12–16 May 2014; Volume 14. [Google Scholar]
- Kommel, L. Phase Equilibrium Evolution in Single-Crystal Ni-Based Superalloys, in Superalloys; Aliofkhazraei, M., Ed.; IntechOpen: Vienna, Austria, 2015. [Google Scholar] [CrossRef]
- Wang, F.; Ma, D.; Buhrig-Polaczek, A. Microsegregation behavior of alloying elements in single-crystal nickel-based superalloys with emphasis on dendritic structure. Mater. Charact. 2017, 127, 311–316. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Sun, Z.M.; Gong, S.K. Vacancy mediated alloying strengthening effects on γ/γ′ interface of Ni-based single crystal superalloys: A first-principles study. Acta. Mater. 2017, 135, 25–34. [Google Scholar] [CrossRef]
- Guan, Y.S.; Liu, E.; Guan, X.R.; Zheng, Z. Influence of Ru on Solidification Behavior, Microstructure and Hardness of Re-free Ni-based Equiaxed Superalloys with High Cr Content. JMST 2016, 32, 271–281. [Google Scholar] [CrossRef]
- Belyaev, M.S.; Petrushin, N.V. High-Cycle Fatigue of Single Crystals of Nickel-Base Superalloy VZhM4. Inorg. Mater. Appl. Res. 2018, 9, 655–662. [Google Scholar] [CrossRef]
- Poubanne, P. Anisotropic Mechanical Behavior Modeling of a Nickel-Base Single Crystal Superalloy. Constitutive Laws of Plastic Deformation and Fracture. In Proceedings of the 19th Canadian Fracture Conference, Ottawa, ON, Canada, 29–31 May 1989; Krausz, A.S., Ed.; Springer: Ottawa, ON, Canada, 1989; pp. 49–55. [Google Scholar]
- Pollock, T.M.; Tin, S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties. J. Propuls. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Caldwell, E.C.; Fela, F.J.; Fuchs, G.E. The segregation of elements in high-refractory-content single-crystal nickel-based superalloys. JOM 2004, 56, 44–48. [Google Scholar] [CrossRef]
- Hino, T.; Kobayashi, T.; Koizumi, Y.; Harada, H.; Yamagata, T. Development of a New Single Crystal Superalloy for Industrial Gas Turbines. TMS 2000, 1, 729–736. [Google Scholar] [CrossRef]
- Guédou, J.Y.; Choné, J. New single crystal superalloys-overview and update. In Proceedings of the MATEC Web of Conferences, Giens, France, 12–16 May 2014; Volume 14. [Google Scholar]
- Zietara, M.; Neumeier, S.; Göken, M.; Czyrska-Filemonowicz, A. Characterization of γ and γ′ Phases in 2nd and 4th Generation Single Crystal Nickel-Base Superalloys. Met. Mater. Int. 2017, 23, 126–131. [Google Scholar] [CrossRef]
- Matuszewski, K.; Müller, A.; Ritter, N.; Rettig, R.; Kurzydłowski, K.J.; Singer, R.F. On the Thermodynamics and Kinetics of TCP Phase Precipitation in Re- and Ru- Containing Ni-base Superalloys. Adv. Eng. Mater. 2015, 17, 1127–1133. [Google Scholar] [CrossRef]
- Ai, C.; Li, S.S.; Zhao, X.B.; Zhou, J.; Guo, Y.J.; Sun, Z.P.; Song, X.D.; Gong, S.K. Influence of solidification history on precipitation behavior of TCP phase in a completely heat-treated Ni3Al based single crystal superalloy during thermal exposure. J. Alloys Compd. 2017, 722, 740–745. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, Y.Z.; Li, C.F.; Cui, J.P.; Liu, Z.Q.; Jin, T. In situ investigation on the precipitation of topologically close-packed phase in Ni-base single crystal superalloy. J. Alloys Compd. 2014, 610, 589–593. [Google Scholar] [CrossRef]
- Wang, X.G.; Liu, J.L.; Jin, T.; Sun, X.F. The effects of ruthenium additions on tensile deformation mechanisms of single crystal superalloys at different temperatures. Mater. Des. 2014, 63, 286–293. [Google Scholar] [CrossRef]
- Liu, C.P.; Zhang, X.N.; Ge, L.; Liu, S.H.; Wang, C.Y.; Yu, T.; Zhang, Y.F.; Zhang, Z. Effect of rhenium and ruthenium on the deformation and fracture mechanism in nickel-based model single crystal superalloys during the in-situ tensile at room temperature. Mater. Sci. Eng. A 2017, 682, 90–97. [Google Scholar] [CrossRef]
- Xia, W.S.; Zhao, X.B.; Yue, L.; Yue, Q.Z.; Wang, J.W.; Ding, Q.Q.; Bei, H.B.; Zhang, Z. Inconsistent creep between dendrite core and interdendritic region under different degrees of elemental inhomogeneity in nickel-based single crystal superalloys. JMST 2021, 92, 88–97. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Tian, S.G.; Zhang, S.K.; Tian, N.; Liu, L.R. Deformation and damage features of a Re/Ru-containing single crystal nickel base superalloy during creep at elevated temperature. Prog. Nat. Sci. 2019, 29, 210–216. [Google Scholar] [CrossRef]
- Lamm, M.; Singer, R.F. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483. Mater. Sci. Eng. A 2007, 38a, 1177–1183. [Google Scholar] [CrossRef]
- Lu, G.X.; Liu, J.D.; Qiao, H.C.; Zhou, Y.Z.; Jin, T.; Sun, X.F.; Hu, Z.Q. Differences in the micromechanical properties of dendrites and interdendritic regions in superalloys. Philos. Mag. Lett. 2016, 96, 461–468. [Google Scholar] [CrossRef]
- Wang, X.G.; Liu, J.L.; Jin, T.; Sun, X.F. Tensile behaviors and deformation mechanisms of a nickel-base single crystal superalloy at different temperatures. Mater. Sci. Eng. A 2014, 598, 154–161. [Google Scholar] [CrossRef]
- Liu, G.; Liu, L.; Zhao, X.; Ge, B.M.; Zhang, J. Effects of Re and Ru on the Solidification Characteristics of Nickel-Base Single-Crystal Superalloys. Metall. Mater. Trans. A 2011, 42, 2733–2741. [Google Scholar] [CrossRef]
- Shi, Z.X.; Li, J.R.; Liu, S.Z.; Wang, X.G.; Yue, X.D. Effects of Ru on Solidification Characteristic and Microstructures of Ni-Based Single Crystal Superalloy. J. Iron Steel Res. Int. 2013, 20, 74–78. [Google Scholar] [CrossRef]
- Hobbs, R.A.; Tin, S.; Rae, C.M.F.; Broomfield, R.W.; Humphreys, C.J. Solidification characteristics of advanced nickel-base single crystal superalloys. TMS 2004, 819–825. [Google Scholar] [CrossRef]
- Kearsey, R.M.; Beddoes, J.C.; Jones, P.; Au, P. The effects of Re, W and Ru on microsegregation behaviour in single crystal superalloy systems. Intermetallics 2004, 12, 801–810. [Google Scholar] [CrossRef]
- Carroll, L.J.; Feng, Q.; Mansfield, J.F.; Pollock, T.M. Elemental partitioning in Ru-containing nickel-base single crystal superalloys. Mater. Sci. Eng. A 2007, 457, 292–299. [Google Scholar] [CrossRef]
- Kearsey, R.M.; Beddoes, J.C.; Jones, P.; Au, P. Compositional design considerations for microsegregation in single crystal superalloy systems. Intermetallics 2004, 12, 903–910. [Google Scholar] [CrossRef]
- Liu, Y.H.; Kang, M.D.; Wu, Y.; Wang, M.M.; Li, M.; Yu, J.W.; Gao, H.Y.; Wang, J. Crack formation and microstructure-sensitive propagation in low cycle fatigue of a polycrystalline nickel-based superalloy with different heat treatments. Int. J. Fatigue 2018, 10, 79–89. [Google Scholar] [CrossRef]
- Link, T.; Zabler, S.; Epishin, A.; Haibel, A.; Bansal, M.; Thibault, X. Synchrotron tomography of porosity in single-crystal nickel-base superalloys. Mater. Sci. Eng. A 2006, 425, 47–54. [Google Scholar] [CrossRef]
- Tian, C.G.; Han, G.M.; Cui, C.Y.; Sun, X.F. Effects of stacking fault energy on the creep behaviors of Ni-base superalloy. Mater. Des. 2014, 64, 316–323. [Google Scholar] [CrossRef]
- Rae, C.M.F.; Reed, R.C. Primary creep in single crystal superalloys: Origins, mechanisms and effects. Acta Mater. 2007, 55, 1067–1081. [Google Scholar] [CrossRef]
- Zhang, J.X.; Murakumo, T.; Koizumi, Y.; Kobayashi, T.; Harada, H.; Masaki, S.J. Interfacial dislocation networks strengthening a fourth-generation single crystal TMS138 superalloys. Metall. Mater. Trans. A 2002, 33, 3741–3746. [Google Scholar] [CrossRef]
- Rae, C.M.F.; Zhang, L. Primary creep in single crystal superalloys: Some comments on effects of composition and microstructure. MST 2013, 19, 228–235. [Google Scholar] [CrossRef]
- Jian, Y.; Jia, R.L.; Zhen, X.S.; Jin, Q.Z.; Shi, Z.L.; Mei, H. Microstructural Evolution of the [001] Oriented Single Crystal Superalloy DD6 Creep at 760 °C and 785 MPa. Adv. Mater. Res. 2012, 535, 888–893. [Google Scholar] [CrossRef]
Alloy | Co | Al | Cr + Mo + W + Ta | Re | Ru | Ni |
---|---|---|---|---|---|---|
0Ru | 12 | 6 | 19.4 | 5.4 | 0 | Bal. |
3Ru | 12 | 6 | 19.4 | 5.4 | 3 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emokpaire, S.O.; Wang, N.; Liu, J.; Zhu, C.; Wang, X.; Li, J.; Zhou, Y. Effect of Ru on Deformation Mechanism and Microstructure Evolution of Single-Crystal Superalloys under Medium-Temperature and High-Stress Creep. Materials 2023, 16, 2732. https://doi.org/10.3390/ma16072732
Emokpaire SO, Wang N, Liu J, Zhu C, Wang X, Li J, Zhou Y. Effect of Ru on Deformation Mechanism and Microstructure Evolution of Single-Crystal Superalloys under Medium-Temperature and High-Stress Creep. Materials. 2023; 16(7):2732. https://doi.org/10.3390/ma16072732
Chicago/Turabian StyleEmokpaire, Stephen Okhiai, Nan Wang, Jide Liu, Chongwei Zhu, Xinguang Wang, Jinguo Li, and Yizhou Zhou. 2023. "Effect of Ru on Deformation Mechanism and Microstructure Evolution of Single-Crystal Superalloys under Medium-Temperature and High-Stress Creep" Materials 16, no. 7: 2732. https://doi.org/10.3390/ma16072732
APA StyleEmokpaire, S. O., Wang, N., Liu, J., Zhu, C., Wang, X., Li, J., & Zhou, Y. (2023). Effect of Ru on Deformation Mechanism and Microstructure Evolution of Single-Crystal Superalloys under Medium-Temperature and High-Stress Creep. Materials, 16(7), 2732. https://doi.org/10.3390/ma16072732