Removal of Cesium and Strontium Ions from Aqueous Solutions by Thermally Treated Natural Zeolite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Zeolite Collection, Preparation, and Characterization
2.3. Batch Sorption Experiments
2.4. Equilibrium and Kinetics Studies
3. Results and Discussion
3.1. Characteristics of Thermally Treated Volcanic Tuffs
3.2. Release of Cs+ and Sr2+ from Natural Zeolites to the Aqueous Solution
3.3. Removal Efficiency (E%) from Contaminated Solutions
3.3.1. Influence of Zeolite Quantities on Removal Efficiency
3.3.2. Influence of Contact Time
3.4. Influence of Zeolite Grain Sizes on Removal Efficiency (E%)
3.5. Effect of Interfering Ions
3.6. Retention Mechanisms
3.7. Adsorption Isotherms and Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwon, S.; Kim, C.; Han, E.; Lee, H.; Cho, H.S.; Choi, M. Relationship between zeolite structure and capture capability for radioactive cesium and strontium. J. Hazard. Mater. 2021, 408, 124419. [Google Scholar] [CrossRef]
- Inan, S. Inorganic ion-exchangers for strontium removal from radioactive waste: A review. J. Radioanal. Nucl. Chem. 2022, 331, 1137–1154. [Google Scholar] [CrossRef]
- Yang, H.M.; Jeon, H.; Lee, Y.; Choi, M. Sulfur-modified zeolite A as a low-cost strontium remover with improved selectivity for radioactive strontium. Chemosphere 2022, 299, 134309. [Google Scholar] [CrossRef] [PubMed]
- Lonin, A.Y.; Levenets, V.V.; Omelnik, O.P.; Shchur, A.O. Removal of a mixture of Cs, Sr and Co cations from an aqueous solution using composite sorbents based on natural and synthetic zeolites. J. Radioanal. Nucl. Chem. 2022, 331, 5517–5523. [Google Scholar] [CrossRef]
- Abdollahi, T.; Towfighi, J.; Rezaei-Vahidian, H. Sorption of cesium and strontium ions by natural zeolite and management of produced secondary waste. Environ. Technol. Innov. 2020, 17, 100592. [Google Scholar] [CrossRef]
- Li, H.; Han, K.; Shang, J.; Cai, W.; Pan, M.; Xu, D.; Du, C.; Zuo, R. Comparison of adsorption capacity and removal efficiency of strontium by six typical adsorption materials. Sustainability 2022, 14, 7723. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, Y. Ultrafast removal of radioactive strontium ions from contaminated water by nanostructured layered sodium vanadosilicate with high adsorption capacity and selectivity. J. Hazard. Mater. 2020, 398, 122907. [Google Scholar] [CrossRef]
- Senila, M.; Cadar, O.; Senila, L.; Angyus, B.S. Simulated bioavailability of heavy metals (Cd, Cr, Cu, Pb, Zn) in contaminated soil amended with natural zeolite using diffusive gradients in thin-films (DGT) technique. Agriculture 2022, 12, 321. [Google Scholar] [CrossRef]
- Painer, F.; Baldermann, A.; Gallien, F.; Eichinger, S.; Steindl, F.; Dohrmann, R.; Dietzel, M. Synthesis of zeolites from fine-Grained Perlite and Their Application as Sorbents. Materials 2022, 15, 4474. [Google Scholar] [CrossRef]
- Neag, E.; Torok, A.I.; Tanaselia, C.; Aschilean, I.; Senila, M. Kinetics and equilibrium studies for the removal of Mn and Fe from binary metal solution systems using a Romanian thermally activated natural zeolite. Water 2020, 12, 1614. [Google Scholar] [CrossRef]
- Ferreira, D.R.; Phillips, G.D.; Baruah, B. A comparison of the adsorption of cesium on zeolite minerals vs vermiculite. Clays Clay Miner. 2021, 69, 663–671. [Google Scholar] [CrossRef]
- Senila, M.; Neag, E.; Cadar, O.; Kovacs, E.D.; Aschilean, I.; Kovacs, M.H. Simultaneous removal of heavy metals (Cu, Cd, Cr, Ni, Zn and Pb) from aqueous solutions using thermally treated Romanian zeolitic volcanic tuff. Molecules 2022, 27, 3938. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Karim, A.A.M.; Zaki, A.A.; Elwan, W.; El-Naggar, M.R.; Gouda, M.M. Experimental and modeling investigations of cesium and strontium adsorption onto clay of radioactive waste disposal. Appl. Clay Sci. 2016, 132–133, 391–401. [Google Scholar] [CrossRef]
- Margeta, K.; Zabukovec, N.; Siljeg, M.; Farkas, A. Natural zeolites in water treatment—How effective is their use. In Water Treatment; Elshorbagy, W., Ed.; InTech: London, UK, 2013; pp. 84–85. [Google Scholar]
- Krol, M.; Mozgawa, W.; Jastrzebski, W. Theoretical and experimental study of ion-exchange process on zeolites from 5-1 structural group. J. Porous. Mater. 2016, 23, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zou, W.; Bai, H.; Zhao, L.; Li, K.; Han, R. Characterization and properties of zeolite as adsorbent for removal of uranium (VI) from solution in fixed bed column. J. Radioanal. Nucl. Chem. 2011, 288, 779–788. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, R.; Liu, Q.; Cao, Q.; Guo, R. Synthesis of zeolite A from fly ash and its application in the slow release of urea. Waste Manag. 2023, 158, 47–55. [Google Scholar] [CrossRef]
- Pabis-Mazgaj, E.; Gawenda, T.; Pichniarczyk, P.; Stempkowska, A. Mineral composition and structural characterization of the clinoptilolite powders obtained from zeolite-rich tuffs. Minerals 2021, 11, 103. [Google Scholar] [CrossRef]
- Mubarak, M.F.; Mohamed, A.M.G.; Keshawy, M.; elMoghny, T.A.; Shehata, N. Adsorption of heavy metals and hardness ions from groundwater onto modified zeolite: Batch and column studies. Alex. Eng. J. 2022, 61, 4189–4207. [Google Scholar] [CrossRef]
- Sharma, P.; Sutar, P.P.; Xiao, H.; Zhang, Q. The untapped potential of zeolites in techno-augmentation of the biomaterials and food industrial processing operations: A review. J. Future Foods 2023, 3, 127–141. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Kudarova, A.; Guney, A.; Kinayat, N.; Tauanov, Z. Efficient mercury removal from water by using modified natural zeolites and comparison to commercial adsorbents. Sustain. Chem. Pharm. 2023, 32, 101017. [Google Scholar] [CrossRef]
- Kubota, T.; Fukutani, S.; Ohta, T.; Mahara, Y. Removal of radioactive cesium, strontium, and iodine from natural waters using bentonite, zeolite, and activated carbon. J. Radioanal. Nucl. Chem. 2013, 296, 981–984. [Google Scholar] [CrossRef] [Green Version]
- Araissi, M.; Ayed, I.; Elaloui, E.; Moussaoui, Y. Removal of barium and strontium from aqueous solution using zeolite 4A. Water Sci. Technol. 2016, 73, 1628–1636. [Google Scholar] [CrossRef] [PubMed]
- Baek, W.; Ha, S.; Hong, S.; Kim, S.; Kim, Y. Cation-exchange of cesium and cation selectivity of natural zeolites: Chabazite, stilbite, and heulandite. Microporous Mesoporous Mater. 2018, 264, 159–166. [Google Scholar] [CrossRef]
- European Comission. Zero Pollution Action Plan. Available online: https://environment.ec.europa.eu/strategy/zero-pollution-action-plan_en (accessed on 31 March 2023).
- Senila, M.; Cadar, O.; Miu, I. Mercury determination in natural zeolites by thermal decomposition atomic absorption spectrometry: Method validation in compliance with requirements for use as dietary supplements. Molecules 2019, 24, 4023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chicinas, P.R.; Bedelean, H.; Maicaneanu, A. Romanian (Măcicaş) zeolitic volcanic tuff for malachite green removal. Studia UBB Chemia 2016, 61, 243–254. [Google Scholar]
- Adekola, F.A.; Hodonou, D.S.S.; Adegoke, H.I. Thermodynamic and kinetic studies of biosorption of iron and manganese from aqueous medium using rice husk ash. Appl. Water Sci. 2016, 6, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Mozgawa, W.; Bajda, T. Spectroscopic study of heavy metals sorption on clinoptilolite. Phys. Chem. Minerals 2005, 31, 709–713. [Google Scholar] [CrossRef]
- Mansouri, N.; Rikhtegar, N.; Panahi, H.A.; Atabi, F.; Shahraki, B.K. Porosity, characterization and structural properties of natural zeolite—Clinoptilolite—As a sorbent. Environ. Prot. Eng. 2013, 39, 139–152. [Google Scholar]
- Senila, M.; Neag, E.; Cadar, O.; Hoaghia, M.A.; Roman, M.; Moldovan, A.; Hosu, A.; Lupas, A.; Kovacs, E.D. Characteristics of volcanic tuff from Macicasu (Romania) and its capacity to remove ammonia from contaminated air. Molecules 2022, 27, 3503. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Niemark, A.; Olivier, J.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. Physisoprtion of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl. Chem. 2015, 87, 1051–1064. [Google Scholar] [CrossRef] [Green Version]
- Trgo, M.; Peric, J.; Medvidovic, V. Investigations of different kinetic models for zinc ions uptake by a natural zeolitic tuff. J. Environ. Manag. 2006, 79, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Pernyeszi, T.; Roland, F.; Janos, K. Methylene blue adsorption study on microcline particles in the function of particle size range and temperature. Minerals 2019, 9, 555. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, S.J.; Akbari, N.; Shiri-Yekta, Z.; Mashhadizadeh, M.H.; Pourmatin, A. Adsorption of strontium ions from aqueous solution using hydrous, amorphous MnO2–ZrO2 composite: A new inorganic ion exchanger. J. Radioanal. Nucl. Chem. 2014, 299, 1701–1707. [Google Scholar] [CrossRef]
- Luo, Q.; Jiang, D.; Hou, D.; Chen, W.; Hu, X.; He, Y. Effective adsorption of metal ions by modified clinoptilolite zeolite from simulated radioactive solution. J. Radioanal. Nucl. Chem. 2019, 319, 1069–1081. [Google Scholar] [CrossRef]
- Inan, S.; Hicsonmez, U. Adsorption studies of radionuclides by Turkish minerals: A review. J. Turk. Chem. Soc. A Chem. 2022, 9, 579–600. [Google Scholar] [CrossRef]
- Mimura, H.; Akiba, K. Adsorption behavior of cesium and strontium on synthetic zeolite P. J. Nucl. Sci. Technol. 1993, 30, 436–443. [Google Scholar] [CrossRef]
- Lee, M.G.; Kam, S.-K.; Lee, C.-H. Kinetic and isothermal adsorption properties of strontium and cesium ions by zeolitic materials synthesized from Jeju volcanic rocks. Environ. Eng. Res. 2021, 26, 200127. [Google Scholar] [CrossRef]
- Basuki, K.T.; Fatuzzahroh, M.; Ariyanti, D.; Saputra, A. Adsorption of strontium from an aqueous solution by TiO2-pillared zeolite. Int. J. Technol. 2021, 12, 625–634. [Google Scholar] [CrossRef]
- Belviso, C.; Abdolrahimi, M.; Peddis, D.; Gagliano, E.; Sgroi, M.; Lettino, A.; Roccaro, P.; Vagliasindi, F.; Falciglia, P.; Di Bella, G.; et al. Synthesis of zeolite from volcanic ash: Characterization and application for cesium removal. Microporous Mesoporous Mater. 2021, 319, 111045. [Google Scholar] [CrossRef]
- Borai, E.H.; Harjula, R.; Malinen, L.; Paajanen, A. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J. Hazard. Mater. 2009, 172, 416–422. [Google Scholar] [CrossRef]
- Lee, N.K.; Khalid, H.R.; Lee, H.K. Adsorption characteristics of cesium onto mesoporous geopolymers containing nano-crystalline zeolites. Microporous Mesoporous Mater. 2017, 242, 238–244. [Google Scholar] [CrossRef]
- Abdel Moamen, O.A.; Ismail, I.M.; Abdelmonem, N.; Abdel Rahman, R.O. Factorial design analysis for optimizing the removal of cesium and strontium ions on synthetic nano-sized zeolite. J. Taiwan. Inst. Chem. Eng. 2015, 55, 133–144. [Google Scholar] [CrossRef]
- Li, Y.; Simon, A.O.; Jiao, O.; Zhang, M.; Yan, W.; Rao, H.; Liu, J.; Zhang, J. Rapid removal of Sr2+, Cs2+, UO22+ from solution with surfactant and amino acid modified zeolite Y. Microporous Mesoporous Mater. 2021, 302, 110244. [Google Scholar] [CrossRef]
- Shubair, T.; Tahara, A.; Khandaker, S. Optimizing the magnetic separation of strontium ion using modified zeolite with nano iron particles. Case Stud. Therm. Eng. 2022, 6, 100243. [Google Scholar] [CrossRef]
- Sterba, J.H.; Sperrer, H.; Wallenko, F.; Welch, J.M. Adsorption characteristics of a clinoptilolite-rich zeolite compound for Sr and Cs. J. Radioanal. Nucl. Chem. 2018, 318, 267–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Rahman, K.M.A.; El-Sourougy, M.R.; Abdel-Monem, N.M.; Ismail, I.M. Modeling the sorption kinetics of cesium and strontium ions on Zeolite A. J. Nucl. Radiochem. Sci. 2006, 7, 21–27. [Google Scholar] [CrossRef] [Green Version]
Parameter | NZ1 | NZ2 |
---|---|---|
pH | 8.31 ± 0.25 | 8.40 ± 0.28 |
SiO2 (%) | 65.8 ± 2.2 | 66.1 ± 2.3 |
Al2O3 (%) | 12.3 ± 0.8 | 12.5 ± 0.7 |
CaO (%) | 3.77 ± 0.07 | 3.94 ± 0.08 |
MgO (%) | 0.63 ± 0.05 | 0.60 ± 0.04 |
K2O (%) | 1.44 ± 0.13 | 1.42 ± 0.11 |
Na2O (%) | 1.35 ± 0.10 | 1.21 ± 0.12 |
Fe2O3 (%) | 2.07 ± 0.12 | 2.05 ± 0.10 |
MnO (%) | 0.03 ± 0.004 | 0.03 ± 0.004 |
LOI (%) | 2.33 ± 0.65 | 2.21 ± 0.83 |
Others (%) | 1.97 | 1.54 |
Zeolite | Na+ | K+ | Ca2+ | Mg2+ | CEC |
---|---|---|---|---|---|
mEq 100 g−1 | |||||
NZ1 | 3.2 | 24.5 | 61.7 | 3.3 | 92.6 |
NZ2 | 2.6 | 22.7 | 64.8 | 3.6 | 93.8 |
Cation | Zeolite | Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|---|---|
qmax | KL | R2 | KF | n | R2 | ||
(mg g−1) | (L mg−1) | (mg 1−1/n L1/n g−1) | |||||
Cs+ | NZ1 | 14.22 | 0.25 | 0.9945 | 2.83 | 0.59 | 0.9722 |
Cs+ | NZ2 | 11.46 | 0.70 | 0.9932 | 4.36 | 0.42 | 0.9916 |
Sr2+ | NZ1 | 68.88 | 0.02 | 0.9993 | 1.45 | 0.92 | 0.9985 |
Sr2+ | NZ2 | 13.46 | 0.19 | 0.9956 | 2.29 | 0.58 | 0.9726 |
Cation | Zeolite | Model | Parameters | 10 mg/L | 50 mg/L | 100 mg/L |
---|---|---|---|---|---|---|
Cs+ | NZ1 | PFO | k1 (1 min−1) | 0.18 | 0.21 | 0.23 |
qe, calc (mg g−1) | 0.92 | 4.65 | 8.59 | |||
R2 | 0.9544 | 0.9498 | 0.81558 | |||
PSO | k2 (g mg·min−1) | 0.28 | 0.07 | 0.04 | ||
qe, calc (mg g−1) | 0.97 | 4.9 | 9.02 | |||
R2 | 0.9795 | 0.9897 | 0.9326 | |||
qe, exp | 0.96 | 4.81 | 9.25 | |||
NZ2 | PFO | k1 (1 min−1) | 1.01 | 0.38 | 0.57 | |
qe, calc (mg g−1) | 0.91 | 4.72 | 8.70 | |||
R2 | 0.510 | 0.890 | 0.73 | |||
PSO | k2 (g mg·min−1) | 1.47 | 0.13 | 0.10 | ||
qe, calc (mg g−1) | 0.96 | 4.95 | 9.21 | |||
R2 | 0.854 | 0.989 | 0.948 | |||
qe, exp | 0.99 | 4.89 | 9.34 | |||
Sr2+ | NZ1 | PFO | k1 (1 min−1) | 0.15 | 0.11 | 0.15 |
qe, calc (mg g−1) | 0.86 | 4.27 | 8.14 | |||
R2 | 0.9532 | 0.9257 | 0.7846 | |||
PSO | k2 (g mg·min−1) | 0.21 | 0.03 | 0.02 | ||
qe, calc (mg g−1) | 0.93 | 4.69 | 8.79 | |||
R2 | 0.9786 | 0.9676 | 0.8926 | |||
qe, exp | 0.93 | 4.66 | 9.26 | |||
NZ2 | PFO | k1 (1 min−1) | 0.30 | 0.20 | 0.22 | |
qe, calc (mg g−1) | 0.89 | 4.64 | 8.55 | |||
R2 | 0.8072 | 0.9901 | 0.9217 | |||
PSO | k2 (g mg·min−1) | 0.58 | 0.06 | 0.04 | ||
qe, calc (mg g−1) | 0.93 | 4.90 | 9.01 | |||
R2 | 0.9423 | 0.9875 | 0.9774 | |||
qe, exp | 0.94 | 4.72 | 8.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Șenilă, M.; Neag, E.; Tănăselia, C.; Șenilă, L. Removal of Cesium and Strontium Ions from Aqueous Solutions by Thermally Treated Natural Zeolite. Materials 2023, 16, 2965. https://doi.org/10.3390/ma16082965
Șenilă M, Neag E, Tănăselia C, Șenilă L. Removal of Cesium and Strontium Ions from Aqueous Solutions by Thermally Treated Natural Zeolite. Materials. 2023; 16(8):2965. https://doi.org/10.3390/ma16082965
Chicago/Turabian StyleȘenilă, Marin, Emilia Neag, Claudiu Tănăselia, and Lacrimioara Șenilă. 2023. "Removal of Cesium and Strontium Ions from Aqueous Solutions by Thermally Treated Natural Zeolite" Materials 16, no. 8: 2965. https://doi.org/10.3390/ma16082965
APA StyleȘenilă, M., Neag, E., Tănăselia, C., & Șenilă, L. (2023). Removal of Cesium and Strontium Ions from Aqueous Solutions by Thermally Treated Natural Zeolite. Materials, 16(8), 2965. https://doi.org/10.3390/ma16082965