Some Brassicaceae Extracts as Potential Antioxidants and Green Corrosion Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction
2.3. Antioxidant Activity and Total Phenolics
2.4. Electrochemical Experiments
2.5. Weight-Loss Experiments
2.6. Scanning Electron Microscopy (SEM) and EDX Studies
2.7. FT-IR Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, C.; Ebenso, E.E.; Bahadur, I.; Quraishi, M.A. An Overview on Plant Extracts as Environmental Sustainable and Green Corrosion Inhibitors for Metals and Alloys in Aggressive Corrosive Media. J. Mol. Liq. 2018, 266, 577–590. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, L.; Behnamian, Y.; Song, S.; Wang, R.; Gao, Z.; Hu, W.; Xia, D.H. Metal Pitting Corrosion Characterized by Scanning Acoustic Microscopy and Binary Image Processing. Corros. Sci. 2020, 170, 108685. [Google Scholar] [CrossRef]
- Singh, P.; Srivastava, V.; Quraishi, M.A. Novel Quinoline Derivatives as Green Corrosion Inhibitors for Mild Steel in Acidic Medium: Electrochemical, SEM, AFM, and XPS Studies. J. Mol. Liq. 2016, 216, 164–173. [Google Scholar] [CrossRef]
- Ladan, M.; Basirun, W.J.; Kazi, S.N.; Rahman, F.A. Corrosion Protection of AISI 1018 Steel Using Co-Doped TiO2/Polypyrrole Nanocomposites in 3.5% NaCl Solution. Mater. Chem. Phys. 2017, 192, 361–373. [Google Scholar] [CrossRef]
- Umoren, S.A.; Solomon, M.M.; Obot, I.B.; Suleiman, R.K. A Critical Review on the Recent Studies on Plant Biomaterials as Corrosion Inhibitors for Industrial Metals. J. Ind. Eng. Chem. 2019, 76, 91–115. [Google Scholar] [CrossRef]
- Jiang, S.; Chai, F.; Su, H.; Yang, C. Influence of Chromium on the Flow-Accelerated Corrosion Behavior of Low Alloy Steels in 3.5% NaCl Solution. Corros. Sci. 2017, 123, 217–227. [Google Scholar] [CrossRef]
- Pradeep Kumar, C.B.; Mohana, K.N. Phytochemical Screening and Corrosion Inhibitive Behavior of Pterolobium Hexapetalum and Celosia Argentea Plant Extracts on Mild Steel in Industrial Water Medium. Egypt. J. Pet. 2014, 23, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Soltani, N.; Tavakkoli, N.; Khayat Kashani, M.; Mosavizadeh, A.; Oguzie, E.E.; Jalali, M.R. Silybum Marianum Extract as a Natural Source Inhibitor for 304 Stainless Steel Corrosion in 1.0 M HCl. J. Ind. Eng. Chem. 2014, 20, 3217–3227. [Google Scholar] [CrossRef]
- Sedik, A.; Lerari, D.; Salci, A.; Athmani, S.; Bachari, K.; Gecibesler, H.; Solmaz, R. Dardagan Fruit Extract as Eco-Friendly Corrosion Inhibitor for Mild Steel in 1 M HCl: Electrochemical and Surface Morphological Studies. J. Taiwan Inst. Chem. Eng. 2020, 107, 189–200. [Google Scholar] [CrossRef]
- Faiz, M.; Zahari, A.; Awang, K.; Hussin, H. Corrosion Inhibition on Mild Steel in 1 M HCl Solution by Cryptocarya Nigra Extracts and Three of Its Constituents (Alkaloids). RSC Adv. 2020, 10, 6547–6562. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B.; Ramezanzadeh, M. Potential of Borage Flower Aqueous Extract as an Environmentally Sustainable Corrosion Inhibitor for Acid Corrosion of Mild Steel: Electrochemical and Theoretical Studies. J. Mol. Liq. 2019, 277, 895–911. [Google Scholar] [CrossRef]
- Doheny-Adams, T.; Redeker, K.; Kittipol, V.; Bancroft, I.; Hartley, S.E. Development of an Efficient Glucosinolate Extraction Method. Plant Methods 2017, 13, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crocoll, C.; Halkier, B.A.; Burow, M. Analysis and Quantification of Glucosinolates. Curr. Protoc. Plant Biol. 2016, 1, 385–409. [Google Scholar] [CrossRef] [PubMed]
- Grosser, K.; van Dam, N.M. A Straightforward Method for Glucosinolate Extraction and Analysis with High-Pressure Liquid Chromatography (HPLC). J. Vis. Exp. 2017, 2017, 55425. [Google Scholar] [CrossRef] [Green Version]
- Moreno, D.A.; Carvajal, M.; López-Berenguer, C.; García-Viguera, C. Chemical and Biological Characterisation of Nutraceutical Compounds of Broccoli. J. Pharm. Biomed. Anal. 2006, 41, 1508–1522. [Google Scholar] [CrossRef]
- Ungureanu, C.; Fierascu, I.; Fierascu, R.C. Sustainable Use of Cruciferous Wastes in Nanotechnological Applications. Coatings 2022, 12, 769. [Google Scholar] [CrossRef]
- Mazumder, A.; Dwivedi, A.; Plessis, J. Du Sinigrin and Its Therapeutic Benefits. Molecules 2016, 21, 416. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Thakur, A.K.; Barothia, N.D.; Chatterjee, S.S. Therapeutic Potentials of Brassica Juncea: An Overview. CellMed 2011, 1, 2.1–2.16. [Google Scholar] [CrossRef] [Green Version]
- Muntean, D.; Ştefănuţ, M.N.; Căta, A.; Buda, V.; Danciu, C.; Bănică, R.; Pop, R.; Licker, M.; Ienaşcu, I.M.C. Symmetrical Antioxidant and Antibacterial Properties of Four Romanian Cruciferous Extracts. Symmetry 2021, 13, 893. [Google Scholar] [CrossRef]
- Njumbe Ediage, E.; Diana Di Mavungu, J.; Scippo, M.L.; Schneider, Y.J.; Larondelle, Y.; Callebaut, A.; Robbens, J.; Van Peteghem, C.; De Saeger, S. Screening, Identification and Quantification of Glucosinolates in Black Radish (Raphanus sativus L. Niger) Based Dietary Supplements Using Liquid Chromatography Coupled with a Photodiode Array and Liquid Chromatography-Mass Spectrometry. J. Chromatogr. A 2011, 1218, 4395–4405. [Google Scholar] [CrossRef]
- Vale, A.P.; Santos, J.; Melia, N.; Peixoto, V.; Brito, N.V.; Oliveira, M.B.P.P. Phytochemical Composition and Antimicrobial Properties of Four Varieties of Brassica Oleracea Sprouts. Food Control. 2015, 55, 248–256. [Google Scholar] [CrossRef]
- Hu, S.H.; Wang, J.C.; Kung, H.F.; Wang, J.T.; Lee, W.L.; Yang, Y.H. Antimicrobial Effect of Extracts of Cruciferous Vegetables. Kaohsiung J. Med. Sci. 2004, 20, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Casaletto, M.P.; Figà, V.; Privitera, A.; Bruno, M.; Napolitano, A.; Piacente, S. Inhibition of Cor-Ten Steel Corrosion by “Green” Extracts of Brassica Campestris. Corros. Sci. 2018, 136, 91–105. [Google Scholar] [CrossRef]
- Ngobiri, N.C.; Oguzie, E.E.; Li, Y.; Liu, L.; Oforka, N.C.; Akaranta, O. Eco-Friendly Corrosion Inhibition of Pipeline Steel Using Brassica Oleracea. Int. J. Corros. 2015, 2015, 404139. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Qiang, Y.; Zhao, W.; Zhang, S. A Green Brassica Oleracea L Extract as a Novel Corrosion Inhibitor for Q235 Steel in Two Typical Acid Media. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 616, 126077. [Google Scholar] [CrossRef]
- Ştefănuţ, M.N.; Căta, A.; Pop, R.; Tănasie, C.; Boc, D.; Ienaşcu, I.; Ordodi, V. Anti-Hyperglycemic Effect of Bilberry, Blackberry and Mulberry Ultrasonic Extracts on Diabetic Rats. Plant Foods Hum. Nutr. 2013, 68, 378–384. [Google Scholar] [CrossRef]
- Ahamad, I.; Prasad, R.; Quraishi, M.A. Thermodynamic, Electrochemical and Quantum Chemical Investigation of Some Schiff Bases as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solutions. Corros. Sci. 2010, 52, 933–942. [Google Scholar] [CrossRef]
- Shukla, S.K.; Ebenso, E.E. Corrosion Inhibition, Adsorption Behavior and Thermodynamic Properties of Streptomycin on Mild Steel in Hydrochloric Acid Medium. Int. J. Electrochem. Sci. 2011, 6, 3277–3291. [Google Scholar]
- Vicas, S.I.; Teusdea, A.C.; Carbunar, M.; Socaci, S.A.; Socaciu, C. Glucosinolates Profile and Antioxidant Capacity of Romanian Brassica Vegetables Obtained by Organic and Conventional Agricultural Practices. Plant Foods Hum. Nutr. 2013, 68, 313–321. [Google Scholar] [CrossRef]
- Huang, J.; Cang, H.; Liu, Q.; Shao, J. Environment Friendly Inhibitor for Mild Steel by Artemisia Halodendron. Int. J. Electrochem. Sci. 2013, 8, 8592–8602. [Google Scholar]
- Li, W.H.; He, Q.; Zhang, S.T.; Pei, C.L.; Hou, B.R. Some New Triazole Derivatives as Inhibitors for Mild Steel Corrosion in Acidic Medium. J. Appl. Electrochem. 2008, 38, 289–295. [Google Scholar] [CrossRef]
- Umoren, S.A.; Solomon, M.M.; Obot, I.B.; Suleiman, R.K. Comparative Studies on the Corrosion Inhibition Efficacy of Ethanolic Extracts of Date Palm Leaves and Seeds on Carbon Steel Corrosion in 15% HCl Solution. J. Adhes. Sci. Technol. 2018, 32, 1934–1951. [Google Scholar] [CrossRef]
- Abdel-Gaber, A.M.; Abd-El-Nabey, B.A.; Sidahmed, I.M.; El-Zayady, A.M.; Saadawy, M. Inhibitive Action of Some Plant Extracts on the Corrosion of Steel in Acidic Media. Corros. Sci. 2006, 48, 2765–2779. [Google Scholar] [CrossRef]
- Hussin, M.H.; Jain Kassim, M.; Razali, N.N.; Dahon, N.H.; Nasshorudin, D. The Effect of Tinospora Crispa Extracts as a Natural Mild Steel Corrosion Inhibitor in 1 M HCl Solution. Arab. J. Chem. 2016, 9, S616–S624. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Gao, M.; Guo, Y.; Yang, Y.; Hu, R. A Natural Extract of Tobacco Rob as Scale and Corrosion Inhibitor in Artificial Seawater. Desalination 2016, 398, 198–207. [Google Scholar] [CrossRef]
- de Souza, F.S.; Spinelli, A. Caffeic Acid as a Green Corrosion Inhibitor for Mild Steel. Corros. Sci. 2009, 51, 642–649. [Google Scholar] [CrossRef]
- Hamani, H.; Daoud, D.; Benabid, S.; Douadi, T.; Al-Noaimi, M. Investigation on Corrosion Inhibition and Adsorption Mechanism of Azomethine Derivatives at Mild Steel/0.5 M H2SO4 Solution Interface: Gravimetric, Electrochemical, SEM and EDX Studies. J. Indian Chem. Soc. 2022, 99, 100330. [Google Scholar] [CrossRef]
- Chaouiki, A.; Chafiq, M.; Lgaz, H.; Al-Hadeethi, M.R.; Ali, I.H.; Masroor, S.; Chung, I.M. Green Corrosion Inhibition of Mild Steel by Hydrazone Derivatives in 1.0 M HCl. Coatings 2020, 10, 640. [Google Scholar] [CrossRef]
- Aziz, I.A.A.; Abdulkareem, M.H.; Annon, I.A.; Hanoon, M.M.; Al-Kaabi, M.H.H.; Shaker, L.M.; Alamiery, A.A.; Isahak, W.N.R.W.; Takriff, M.S. Weight Loss, Thermodynamics, SEM, and Electrochemical Studies on N-2-Methylbenzylidene-4-Antipyrineamine as an Inhibitor for Mild Steel Corrosion in Hydrochloric Acid. Lubricants 2022, 10, 23. [Google Scholar] [CrossRef]
- Abdul Rahiman, A.F.S.; Sethumanickam, S. Corrosion Inhibition, Adsorption and Thermodynamic Properties of Poly(Vinyl Alcohol-Cysteine) in Molar HCl. Arab. J. Chem. 2017, 10, S3358–S3366. [Google Scholar] [CrossRef] [Green Version]
- Hamdy, A.; El-Gendy, N.S. Thermodynamic, Adsorption and Electrochemical Studies for Corrosion Inhibition of Carbon Steel by Henna Extract in Acid Medium. Egypt. J. Pet. 2013, 22, 17–25. [Google Scholar] [CrossRef] [Green Version]
Extracts | Antioxidant Activity, Remaining DPPH, % | Total Phenolics, mg GAE/L |
---|---|---|
Broccoli | 11.75 | 1623.4 ± 25.1 |
Cabbage | 15.79 | 1008.8 ± 9.6 |
Black radish | 22.03 | 1313.5 ± 16.4 |
Rapeseed | 15.13 | 1713.0 ± 42.8 |
Cauliflower | 9.54 | 1380.7 ± 19.4 |
Element | C | Si | Mn | P | S | Fe |
---|---|---|---|---|---|---|
Percentage, wt.% | 0.12–0.15 | 0.10–0.35 | 0.70–1.10 | 0.03 | 0.07–0.13 | 98.21–98.98 |
Sample | Ecorr, mV | Rp, Ohm·cm2 | Icorr, mA/cm2 | βa, mV | βc, mV | vcorr, mm/year | IE, % |
---|---|---|---|---|---|---|---|
0.5 M H2SO4 | −454.7 | 3.20 | 10.13 | 189.6 | −202.2 | 118.5 | - |
Broccoli A | −408.9 | 84.60 | 0.17 | 82.6 | −83.8 | 1.98 | 98.33 |
Broccoli B | −435.4 | 6.83 | 4.83 | 154.7 | −187.6 | 56.54 | 52.30 |
Cabbage A | −436.6 | 24.54 | 1.05 | 95.2 | −141.3 | 12.26 | 89.65 |
Cabbage B | −435.3 | 7.39 | 3.26 | 130.8 | −145.0 | 38.14 | 67.82 |
Cauliflower A | −433.9 | 25.73 | 0.68 | 84.1 | −108.2 | 7.97 | 93.27 |
Cauliflower B | −430.4 | 15.16 | 1.28 | 90.8 | −116.4 | 14.99 | 87.35 |
Black radish A | −430.8 | 23.80 | 0.81 | 108.0 | −110.8 | 9.43 | 92.05 |
Black radish B | −434.9 | 8.84 | 2.74 | 108.9 | −146.5 | 32.02 | 72.98 |
Rapeseed A | −448.6 | 6.95 | 4.78 | 152.5 | −184.2 | 55.96 | 52.79 |
Rapeseed B | −442.5 | 4.87 | 7.39 | 186.6 | −212.3 | 86.38 | 27.13 |
Sample | vcorr (mm/Year) | IE (%) | ||||||
---|---|---|---|---|---|---|---|---|
20 °C | 40 °C | 50 °C | 60 °C | 20 °C | 40 °C | 50 °C | 60 °C | |
0.5 M H2SO4 | 58.66 | 85.70 | 90.41 | 91.69 | - | - | - | - |
Broccoli | 0.78 | 33.67 | 56.50 | 79.57 | 98.66 | 60.71 | 37.51 | 13.22 |
Cabbage | 40.98 | 67.41 | 83.12 | 89.57 | 30.13 | 21.35 | 8.06 | 2.32 |
Cauliflower | 22.31 | 63.82 | 78.55 | 89.19 | 61.96 | 25.53 | 13.11 | 2.73 |
Black radish | 13.55 | 61.59 | 74.13 | 89.31 | 76.90 | 28.14 | 18.00 | 2.60 |
Rapeseed | 45.47 | 75.33 | 86.37 | 89.71 | 22.48 | 12.10 | 4.46 | 2.16 |
Inhibitor | Linear Regression Equation (4) | R2 Equation (4) | Ea (kJ mol−1) | Linear Regression Equation (5) | R2 Equation (5) | ΔH* (kJ mol−1) | ΔS* (J mol−1 K−1) |
---|---|---|---|---|---|---|---|
H2SO4 | y = −0.495x + 3.476 | 0.893 | 9.47 | y = −0.828x + 1.260 | 0.811 | 6.88 | −187.06 |
Broccoli | y = −5.055x + 17.319 | 0.914 | 96.77 | y = −11.328x + 33.137 | 0.910 | 94.18 | 77.96 |
Cabbage | y = −0.861x + 4.562 | 0.978 | 16.48 | y = −1.671x + 3.761 | 0.968 | 13.89 | −166.27 |
Cauliflower | y = −1.513x + 6.555 | 0.942 | 28.97 | y = −3.173x + 8.352 | 0.930 | 26.38 | −128.10 |
Black radish | y = −2.047x + 8.186 | 0.921 | 39.19 | y = −4.403x + 12.108 | 0.910 | 36.60 | −96.88 |
Rapeseed | y = −0.752x + 4.245 | 0.943 | 14.40 | y = −1.421x + 3.031 | 0.916 | 11.81 | −172.34 |
Elements | Atomic content (%) | ||||||
---|---|---|---|---|---|---|---|
Steel Disks | H2SO4 | Broccoli | Cabbage | Cauliflower | Black radish | Rapeseed | |
C | 0.22 | - | 19.61 | - | 17.24 | 18.92 | 2.45 |
Si | 0.07 | 0.35 | 2.64 | 0.30 | 1.70 | 0.68 | 1.03 |
P | 0.02 | 0.59 | 0.44 | 0.30 | 0.30 | 0.37 | 0.34 |
S | 0.09 | 1.42 | 0.65 | 11.22 | 0.63 | 0.68 | 2.67 |
Mn | 1.04 | 0.63 | - | 0.34 | 0.78 | 0.68 | 56.46 |
Fe | 98.56 | 57.35 | 60.99 | 29.63 | 57.00 | 46.47 | 37.05 |
O | - | 39.52 | 15.67 | 58.07 | 22.00 | 31.55 | - |
Cl | - | 0.15 | - | 0.14 | 0.34 | 0.66 | - |
Brassicaceae Extracts | Inhibitor Film |
---|---|
3284 cm−1 OH stretching, intermolecular bonded, intense, large | Decreased intensity or shifted to 3330 cm−1 |
1661 cm−1 C = N stretching, medium | Decreased intensity, absent or shifted to 1644 cm−1 |
1625 cm−1 C = C stretching, medium | Absent |
1392, 1337 cm−1 OH bending, intense | Shifted to 1416 cm−1 |
1029 cm−1 C-O stretching, intense | Decreased intensity, shifted to 1115 cm−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ienașcu, I.M.C.; Căta, A.; Chis, A.A.; Ştefănuț, M.N.; Sfîrloagă, P.; Rusu, G.; Frum, A.; Arseniu, A.M.; Morgovan, C.; Rus, L.L.; et al. Some Brassicaceae Extracts as Potential Antioxidants and Green Corrosion Inhibitors. Materials 2023, 16, 2967. https://doi.org/10.3390/ma16082967
Ienașcu IMC, Căta A, Chis AA, Ştefănuț MN, Sfîrloagă P, Rusu G, Frum A, Arseniu AM, Morgovan C, Rus LL, et al. Some Brassicaceae Extracts as Potential Antioxidants and Green Corrosion Inhibitors. Materials. 2023; 16(8):2967. https://doi.org/10.3390/ma16082967
Chicago/Turabian StyleIenașcu, Ioana Maria Carmen, Adina Căta, Adriana Aurelia Chis, Mariana Nela Ştefănuț, Paula Sfîrloagă, Gerlinde Rusu, Adina Frum, Anca Maria Arseniu, Claudiu Morgovan, Luca Liviu Rus, and et al. 2023. "Some Brassicaceae Extracts as Potential Antioxidants and Green Corrosion Inhibitors" Materials 16, no. 8: 2967. https://doi.org/10.3390/ma16082967
APA StyleIenașcu, I. M. C., Căta, A., Chis, A. A., Ştefănuț, M. N., Sfîrloagă, P., Rusu, G., Frum, A., Arseniu, A. M., Morgovan, C., Rus, L. L., & Dobrea, C. M. (2023). Some Brassicaceae Extracts as Potential Antioxidants and Green Corrosion Inhibitors. Materials, 16(8), 2967. https://doi.org/10.3390/ma16082967