Exploring the Piezoelectric Properties of Bismuth Ferrite Thin Films Using Piezoelectric Force Microscopy: A Case Study
Abstract
:1. Introduction
2. Sample Preparation
3. Results and Observation
3.1. X-ray Spectroscopy Analysis
3.2. Piezoresponse Force Microscopy Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Misiurev, D.; Kaspar, P.; Holcman, V. Brief Theoretical Overview of Bi-Fe-O Based Thin Films. Materials 2022, 15, 8719. [Google Scholar] [CrossRef] [PubMed]
- Bouquet, V.; Baudouin, F.; Demange, V.; Députier, S.; Ollivier, S.; Joanny, L.; Rault, L.; Fouchet, A.; Guilloux-Viry, M. Influence of two-dimensional oxide nanosheets seed layers on the growth of (100)BiFeO3 thin films synthesized by chemical solution deposition. Thin Solid Film. 2020, 693, 137687. [Google Scholar] [CrossRef]
- Pooladi, M.; Sharifi, I.; Behzadipour, M. A review of the structure, magnetic and electrical properties of bismuth ferrite (Bi2Fe4O9). Ceram. Int. 2020, 46, 18453–18463. [Google Scholar] [CrossRef]
- Wushuer, M.; Xiaerding, F.; Mamat, M.; Xu, M.; Mijiti, A.; Aihaiti, L. Influence of Mn doping on structural, optical, and magnetic properties of BiFeO3 films fabricated by the sol-gel method. ScienceAsia 2020, 46, 330–335. [Google Scholar] [CrossRef]
- Mittal, S.; Garg, S.; Bhandari, H.; Sharma, V. A review on recent progressions of Bismuth ferrite modified morphologies as an effective photocatalyst to curb water and air pollution. Inorg. Chem. Commun. 2022, 144, 109834. [Google Scholar] [CrossRef]
- Kim, D.J.; Paudel, T.R.; Lu, H.; Burton, J.D.; Connell, J.G.; Tsymbal, E.Y.; Seo, S.S.A.; Gruverman, A. Room-temperature ferroelectricity in hexagonal TbMnO3 thin films. Adv. Mater. 2014, 26, 7660–7665. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Jian, J.; Chen, J.; Cheng, J. Effects of LNO buffer layers on electrical properties of BFO-PT thin films on stainless steel substrates. J. Alloys Compd. 2019, 784, 231–236. [Google Scholar] [CrossRef]
- Mo, Z.; Tian, G.; Yang, W.; Ning, S.; Ross, C.A.; Gao, X.; Liu, J. Magnetoelectric coupling in self-assembled BiFeO3-CoFe2O4 nanocomposites on (110)-LaAlO3 substrates. APL Mater. 2021, 9, 041109. [Google Scholar] [CrossRef]
- Boni, G.A.; Chirila, C.F.; Stancu, V.; Amarande, L.; Pasuk, I.; Trupina, L.; Istrate, C.M.; Radu, C.; Tomulescu, A.; Neatu, S.; et al. Accidental Impurities in Epitaxial Pb(Zr0.2Ti0.8)O3 Thin Films Grown by Pulsed Laser Deposition and Their Impact on the Macroscopic Electric Properties. Nanomaterials 2021, 11, 1177. [Google Scholar] [CrossRef]
- Mahmood, A.; Echtenkamp, W.; Street, M.; Wang, J.L.; Cao, S.; Komesu, T.; Dowben, P.A.; Buragohain, P.; Lu, H.; Gruverman, A.; et al. Voltage controlled Néel vector rotation in zero magnetic field. Nat. Commun. 2021, 12, 1674. [Google Scholar] [CrossRef]
- Isakov, D.; Vasilev, S.; Gomes, E.D.M.; Almeida, B.; Shur, V.Y.; Kholkin, A.L. Probing ferroelectric behaviour in charge-transfer organic meta-nitroaniline. Appl. Phys. Lett. 2016, 109, 162903. [Google Scholar] [CrossRef]
- Bu, S.; Wang, D.; Jin, G.; Dai, R.U.; Shi, G.; Jin, D.; Cheng, J. Structural and multiferroic properties of 1-x(Bi0.85La 0.15)FeO3-xPbTiO3 solid solutions. Integr. Ferroelectr. 2013, 141, 9–17. [Google Scholar] [CrossRef]
- Kathavate, V.S.; Sonagara, H.; Kumar, B.P.; Singh, I.; Prasad, K.E. Direct observations of changes in ferroelectric domain configurations around the indentation and ahead of the crack front in soft-doped PZT. Materialia 2021, 19, 101191. [Google Scholar] [CrossRef]
- Kathavate, V.S.; Prasad, K.E.; Kiran, M.S.R.N.; Zhu, Y. Mechanical characterization of piezoelectric materials: A perspective on deformation behavior across different microstructural length scales. J. Appl. Phys. 2022, 132, 121103. [Google Scholar] [CrossRef]
- Kathavate, V.S.; Sonagara, H.; Kumar, B.P.; Singh, I.; Prasad, K.E. Tailoring nanomechanical properties of hard and soft PZT piezoceramics via domain engineering by selective annealing. Mater. Today Commun. 2021, 28, 102495. [Google Scholar] [CrossRef]
- Watson, B.H.; Brova, M.J.; Fanton, M.; Meyer, R.J.; Messing, G.L. Textured Mn-doped PIN-PMN-PT Ceramics: Harnessing Intrinsic Piezoelectricity for High-power Transducer Applications. J. Eur. Ceram. Soc. 2021, 41, 1270–1279. [Google Scholar] [CrossRef]
- Kathavate, V.S.; Praveen Kumar, B.; Singh, I.; Eswar Prasad, K. Analysis of indentation size effect (ISE) in nanoindentation hardness in polycrystalline PMN-PT piezoceramics with different domain configurations. Ceram. Int. 2021, 47, 11870–11877. [Google Scholar] [CrossRef]
- Zhang, M.H.; Thong, H.C.; Lu, Y.X.; Sun, W.; Li, J.F.; Wang, K. (K,Na)NbO3-based lead-free piezoelectric materials: An encounter with scanning probe microscopy. J. Korean Ceram. Soc. 2017, 54, 261–271. [Google Scholar] [CrossRef]
- Fox, G.R.; Trolier-McKinstry, S.; Krupanidhi, S.B.; Casas, L.M. Pt/ti/sio2/si substrates. J. Mater. Res. 1995, 10, 1508–1515. [Google Scholar] [CrossRef]
- Yun, Q.; Bai, A.; Zhao, S. Lattice distortion of holmium doped bismuth ferrite nanofilms. J. Rare Earths 2014, 32, 884–889. [Google Scholar] [CrossRef]
- Kozakov, A.T.; Guglev, K.A.; Ilyasov, V.V.; Ershov, I.V.; Nikol’skii, A.V.; Smotrakov, V.G.; Eremkin, V.V. Electronic structure of bismuth ferrite and hematite single crystals: X-ray photoelectron study and calculation. Phys. Solid State 2011, 53, 41–47. [Google Scholar] [CrossRef]
- Sobola, D.; Ramazanov, S.; Koneĉnỳ, M.; Orudzhev, F.; Kaspar, P.; Papež, N.; Knápek, A.; Potoĉek, M. Complementary SEM-AFM of swelling Bi-Fe-O film on HOPG substrate. Materials 2020, 13, 2402. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Riaz, S.; Khan, U.; Hussain, S.S.; Nairan, A.; Akbar, A.; Saleem, M.; Atiq, S.; Naseem, S. Enhanced structural and magnetic ordering in as-synthesized Ca doped bismuth iron oxide nanoceramics. J. Alloys Compd. 2020, 832, 154725. [Google Scholar] [CrossRef]
- Wei, Y.; Dong, S.; Mehrez, S.; Niaz Akhtar, M.; Tra Giang, H. Synergistic effect of polyindole decoration on bismuth neodymium ferrite powder for achieving wideband microwave absorber. Ceram. Int. 2022, 48, 25049–25055. [Google Scholar] [CrossRef]
- Kossar, S.; Amiruddin, R.; Rasool, A.; Giridharan, N.V.; Dhayanithi, D.; Santhosh Kumar, M.C. Ferroelectric polarization induced memristive behavior in bismuth ferrite (BiFeO3) based memory devices. Superlattices Microstruct. 2020, 148, 106726. [Google Scholar] [CrossRef]
- Liang, X.L.; Dai, J.Q.; Zhang, G. dong Great ferroelectric properties and narrow bandgaps of BiFeO3 thin films by (Mg, Mn) modifying. Appl. Surf. Sci. 2022, 586, 152751. [Google Scholar] [CrossRef]
- Ruby, S.; Inbanathan, S.S.R. Structural properties and electrical conduction mechanisms of Bi 0.9 Sm 0.05 Tb 0.05 FeO3 Thin Film. Appl. Surf. Sci. 2018, 449, 10–14. [Google Scholar] [CrossRef]
- Sharif, S.; Murtaza, G.; Meydan, T.; Williams, P.I.; Cuenca, J.; Hashimdeen, S.H.; Shaheen, F.; Ahmad, R. Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3 thin films prepared by pulsed laser deposition. Thin Solid Film. 2018, 662, 83–89. [Google Scholar] [CrossRef]
- Balke, N.; Schenk, T.; Stolichnov, I.; Gruverman, A. Piezoresponse Force Microscopy (PFM); Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780081024300. [Google Scholar] [CrossRef]
- Chu, Y.H.; Martin, L.W.; Holcomb, M.B.; Ramesh, R. Controlling magnetism with multiferroics. Mater. Today 2007, 10, 16–23. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Z.; He, Q.; Clarkson, J.D.; Serrao, C.R.; Yadav, A.K.; Nowakowski, M.E.; Fan, Z.; You, L.; Gao, X.; et al. Interface Engineering of Domain Structures in BiFeO3 Thin Films. Nano Lett. 2017, 17, 486–493. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, J.; Chai, X.; Chen, Y.; Zhang, W.; Jiang, J.; Jiang, A. Large domain-wall current in BiFeO3 epitaxial thin films. Ceram. Int. 2021, 47, 10130–10136. [Google Scholar] [CrossRef]
- Ahn, Y.; Seo, J.; Yeog Son, J.; Jang, J. Ferroelectric domain structures and thickness scaling of epitaxial BiFeO3 thin films. Mater. Lett. 2015, 154, 25–28. [Google Scholar] [CrossRef]
- Iorgu, A.I.; Maxim, F.; Matei, C.; Ferreira, L.P.; Ferreira, P.; Cruz, M.M.; Berger, D. Fast synthesis of rare-earth (Pr3+, Sm3+, Eu3+and Gd3+) doped bismuth ferrite powders with enhanced magnetic properties. J. Alloys Compd. 2015, 629, 62–68. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Ma, J.; Li, S.; Pan, H.; Nan, C.W.; Lin, Y.H. Controllable electrical, magnetoelectric and optical properties of BiFeO3 via domain engineering. Prog. Mater. Sci. 2022, 127, 100943. [Google Scholar] [CrossRef]
Substrate | Sample | Fluency (J/cm2) | Laser Pulses | Repetition Rate (Hz) | Deposition Time (min) | Substrate Temperature (C°) | Gas Pressure (O2) (mbar) |
---|---|---|---|---|---|---|---|
Pt(10 nm)/TiO2(100 nm)/Si | # BFO-100 | 2 | 5000 | 5 | 16.7 | 530 | 7 × 10–³ |
Pt(10 nm)/Ti (100 nm)/Si | * BFO-100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misiurev, D.; Kaspar, P.; Sobola, D.; Papež, N.; H. Fawaeer, S.; Holcman, V. Exploring the Piezoelectric Properties of Bismuth Ferrite Thin Films Using Piezoelectric Force Microscopy: A Case Study. Materials 2023, 16, 3203. https://doi.org/10.3390/ma16083203
Misiurev D, Kaspar P, Sobola D, Papež N, H. Fawaeer S, Holcman V. Exploring the Piezoelectric Properties of Bismuth Ferrite Thin Films Using Piezoelectric Force Microscopy: A Case Study. Materials. 2023; 16(8):3203. https://doi.org/10.3390/ma16083203
Chicago/Turabian StyleMisiurev, Denis, Pavel Kaspar, Dinara Sobola, Nikola Papež, Saleh H. Fawaeer, and Vladimír Holcman. 2023. "Exploring the Piezoelectric Properties of Bismuth Ferrite Thin Films Using Piezoelectric Force Microscopy: A Case Study" Materials 16, no. 8: 3203. https://doi.org/10.3390/ma16083203
APA StyleMisiurev, D., Kaspar, P., Sobola, D., Papež, N., H. Fawaeer, S., & Holcman, V. (2023). Exploring the Piezoelectric Properties of Bismuth Ferrite Thin Films Using Piezoelectric Force Microscopy: A Case Study. Materials, 16(8), 3203. https://doi.org/10.3390/ma16083203