Modulating the Performance of the SAW Strain Sensor Based on Dual-Port Resonator Using FEM Simulation
Abstract
:1. Introduction
2. Theoretical Basis
3. Simulation Setups
3.1. The Simplified 2D Model for Eigenfrequency Analysis
3.2. The Full-Sized 2D Model for the Total Displacement Field of RSAW and Frequency Domain Analysis
3.3. Meshing
3.4. A 3D Simulation Model for Strain Transfer Analysis
4. Results and Discussion
4.1. Eigenfrequency Analysis
4.2. The Analysis of Total Displacement Field of RSAW
4.3. Frequency Domain Analysis
4.4. The Steady State Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.-N.; Ren, L.; Jia, Z.-G.; Yi, T.-H.; Li, D.-S. State-of-the-art in structural health monitoring of large and complex civil infrastructures. J. Civ. Struct. Health 2015, 6, 3–16. [Google Scholar] [CrossRef]
- Xian, H.J.; Cao, C.R.; Shi, J.A.; Zhu, X.S.; Hu, Y.C.; Huang, Y.F.; Meng, S.; Gu, L.; Liu, Y.H.; Bai, H.Y.; et al. Flexible strain sensors with high performance based on metallic glass thin film. Appl. Phys. Lett. 2017, 111, 121906. [Google Scholar] [CrossRef]
- Gugliandolo, G.; Capra, P.P.; Campobello, G.; Donato, N. Cryogenic Characterization of SAW Resonators. In Proceedings of the 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications, Nis, Serbia, 20–25 October 2019. [Google Scholar]
- Weng, H.; Duan, F.L.; Xie, Z.; Liu, S.; Ji, Z.; Zhang, Y. LiNbO3-Based SAW Sensors Capable to Measure up to 1100 °C High Temperature. IEEE Sens. J. 2020, 20, 12679–12683. [Google Scholar] [CrossRef]
- Xu, H.; Jin, H.; Dong, S.; Chen, J.; Song, X.; Xuan, W.; Shi, L.; Huang, S.; Zhang, P.; Luo, J. A langasite surface acoustic wave wide-range temperature sensor with excellent linearity and high sensitivity. AIP Adv. 2021, 11, 015143. [Google Scholar] [CrossRef]
- Kalinin, V.; Leigh, A.; Stopps, A. Resonant SAW Torque Sensor for Wind Turbines. In Proceedings of the 2013 Joint UFFC, EFTF and PFM Symposium, Prague, Czech Republic, 21–25 July 2013. [Google Scholar]
- Scheiner, B.; Probst, F.; Michler, F.; Weigel, R.; Koelpin, A.; Lurz, F. Miniaturized Hybrid Frequency Reader for Contactless Measurement Scenarios Using Resonant Surface Acoustic Wave Sensors. Sensors 2021, 21, 2367. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Dong, S.; Xuan, W.; Farooq, U.; Huang, S.; Li, M.; Wu, T.; Jin, H.; Wang, X.; Luo, J. Flexible surface acoustic wave strain sensor based on single crystalline LiNbO3 thin film. Appl. Phys. Lett. 2018, 112, 093502. [Google Scholar] [CrossRef]
- Xu, H.; Cao, Z.; Dong, S.; Chen, J.; Xuan, W.; Cheng, W.; Huang, S.; Shi, L.; Liu, S.; Farooq, U.; et al. Flexible dual-mode surface acoustic wave strain sensor based on crystalline LiNbO3 thin film. J. Micromech. Microeng. 2019, 29, 025003. [Google Scholar] [CrossRef]
- Bruckner, G.; Bardong, J.; Gruber, C.; Plessky, V. A Wireless, Passive ID Tag and Temperature Sensor for a Wide Range of Operation. Procedia Eng. 2012, 47, 132–135. [Google Scholar] [CrossRef]
- Pei, G.; Ma, B.; Luo, J.; Deng, J. High Temperature Surface Acoustic Wave Sensor with Strain Isolation Structure. In Proceedings of the 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Online, 20–25 June 2021. [Google Scholar]
- Li, Z.; Meng, X.; Wang, B.; Zhang, C. A Three-Dimensional Finite Element Analysis Model of SAW Torque Sensor with Multilayer Structure. Sensors 2022, 22, 2600. [Google Scholar] [CrossRef] [PubMed]
- Zi, X.-y.; Zhao, S.-f.; Geng, S.; Wu, L.; Pang, H.-l. A Wireless Torque Sensor based on Surface Acoustic Wave. In Proceedings of the International Conference on Wireless Communication and Sensor Network, Wuhan, China, 13–14 December 2014. [Google Scholar]
- Feng, B.; Jin, H.; Fang, Z.; Yu, Z.; Dong, S.; Luo, J. Flexible Strain Sensor Based on Ultra-Thin Quartz Plate. IEEE Sens. J. 2021, 21, 18571–18577. [Google Scholar] [CrossRef]
- Shu, L.; Peng, B.; Yang, Z.; Wang, R.; Deng, S.; Liu, X. High-Temperature SAW Wireless Strain Sensor with Langasite. Sensors 2015, 15, 28531–28542. [Google Scholar] [CrossRef] [PubMed]
- Varadan, V.K.; Kim, G.-H.; Lee, Y.-J.; Jung, D.; Kim, J.-H. Surface acoustic wave device for chemical and biological applications. In Proceedings of the Conference on Nanosensors, Biosensors, and Info-Tech Sensors and Systems, San Diego, CA, USA, 10–12 March 2014. [Google Scholar]
- Luo, J.; Luo, P.; Xie, M.; Du, K.; Zhao, B.; Pan, F.; Fan, P.; Zeng, F.; Zhang, D.; Zheng, Z.; et al. A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure. Biosens. Bioelectron. 2013, 49, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Salim, Z.T.; Hashim, U.; Arshad, M.K.M. FEM Modeling and Simulation of a Layered SAW device Based on ZnO/128° YX LiNbO3. In Proceedings of the 12th IEEE International Conference on Semiconductor Electronics (ICSE), Kaula Lumpur, Malaysia, 17–19 August 2016. [Google Scholar]
- Li, H.; Tian, Y.; Ke, Y.; He, S. Analysis of Rayleigh Surface Acoustic Waves Propagation on Piezoelectric Phononic Crystal with 3-D Finite Element Model. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Chicago, IL, USA, 3–6 September 2014. [Google Scholar]
- Shimko, A.; Plessky, V. Fast SAW Device Simulation in COMSOL Using the Hierarchical Cascading Method. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018. [Google Scholar]
- Belkhelfa, N.; Serhane, R. Silicon SAW parameters extraction and optimization using finite elements analysis. In Proceedings of the 2019 International Conference on Advanced Electrical Engineering (ICAEE), Algiers, Algeria, 19–21 November 2019. [Google Scholar]
- Koskela, J.; Maniadis, P.; Willemsen, B.A.; Turner, P.J. Hierarchical Cascading in 2D FEM Simulation of Finite SAW Devices with Periodic Block Structure. In Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016. [Google Scholar]
- Chen, Z.; Zhang, Q.; Fu, S.; Wang, X.; Qiu, X.; Wu, H. Hybrid Full-Wave Analysis of Surface Acoustic Wave Devices for Accuracy and Fast Performance Prediction. Micromachines 2020, 12, 10005. [Google Scholar] [CrossRef] [PubMed]
- Namdeo, A.K.; Ramakrishnan, N.; Nemade, H.B.; Palathinkal, R.P. FEM Study on Contactless Excitation of Acoustic Waves in SAW Devices. In Proceedings of the COMSOL Conference 2009, Bangalore, India, 23 September 2009. [Google Scholar]
- Chung, G.-S.; Phan, D.-T. Finite Element Modeling of Surface Acoustic Waves in Piezoelectric Thin Films. J. Korean Phys. Soc. 2010, 57, 446–450. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, H. A FEM simulation approach for multilayered SAW delay line devices. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015. [Google Scholar]
- Zhang, G. Orientation of Piezoelectric Crystals and Acoustic Wave Propagation. In Proceedings of the 2012 COMSOL Conference in Boston, Boston, MA, USA, 3–5 October 2012. [Google Scholar]
- Martin, G.; Berthelot, P.; Masson, J.W.; Daniau, V. Measuring the Inner Body Temperature using a Wireless Temperature SAW-Sensor-Based System. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Rotterdam, The Netherlands, 18–21 September 2005.
- Ye, X.; Wang, Q.; Fang, L.; Wang, X.; Liang, B. Comparative Study of SAW Temperature Sensor Based on Different Piezoelectric Materials and Crystal Cuts for Passive Wireless Measurement. In Proceedings of the 2010 IEEE Sensors Conference, Kona, HI, USA, 1–4 November 2010. [Google Scholar]
- Slobodnik, A.J. Surface Acoustic Waves and SAW Materials. Proc. IEEE 1976, 64, 581–595. [Google Scholar] [CrossRef]
- Huang, I.Y.; Lin, C.-Y.; Lan, J.-W. Improving thin-film zinc-oxide surface acoustic wave device insertion loss using a grooved reflective grating structure. J. Micro-Nanolith. Mem. 2013, 12, 013019. [Google Scholar] [CrossRef]
- Li, X.; Ma, X. Simulation Study on Performance of AlN Piezoelectric Thin Film Transducer. Piezoelectrics Acoustooptics 2017, 39, 649–653. [Google Scholar]
- Zhang, Z.; Zhu, D.; Huang, Z. A Mass-Loading Effect LiNb03 SAW Sensor. In Proceedings of the 2001 6th International Conference on Solid-State and Integrated Circuit Technology, Shanghai, China, 22–25 October 2001. [Google Scholar]
- Smith, W.R.; Gerard, H.M.; Collins, J.H. Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model. IEEE Trans. Microw. Theory Tech. 1969, MTT-17, 856–864. [Google Scholar] [CrossRef]
Material | Air | Al (Electrodes) | Steel AISI 4340 |
---|---|---|---|
Density, ρ (kg/m3) | - | 2700 | 7850 |
Relative dielectric constant, ε | 1 | 1 | - |
Young’s modulus, E (Pa) | - | 7 × 1010 | 2.05 × 1011 |
- | 0.33 | 0.28 |
Piezoelectric Material | LiNbO3 |
---|---|
Density, ρ (kg/m3) | 4700 |
Mechanical loss factor [32] | 0.001 |
Dielectric loss factor [32] | 0.005 |
Relative dielectric constant, εs | |
Coupling matrix, e (C/m2) | |
Elastic matrix, CE (1010 Pa) |
Parameter | Value |
---|---|
The wavelength, λ (μm) | 20 |
Metallization rate, η (i.e., a/(λ/2) | 0.5 |
Electrode width, a (μm) | 5 |
Acoustic aperture, W (mm) | 2 |
Air field thickness, (μm) | 4 |
Electrode thickness, thAl (μm) | 0.16 |
128° Y-cut LN thickness, thLN (μm) | 50 |
Perfect matching layer (PML) thickness, (μm) | 8 |
Boundary | Mechanical Conditions | Electrical Conditions |
---|---|---|
Г1 | - | Zero charge |
Г2, Г3 | Free | Continuity |
Г4 | Fixed | Zero charge |
ГL2, ГL3, ГR2, ГR3 | Periodic boundary conditions | Periodic boundary conditions |
ГL1, ГR1 | - | Periodic boundary conditions |
Boundary | Mechanical Conditions | Electrical Conditions |
---|---|---|
Г2, Г3 | Free | Continuity |
Г4 | Fixed | Zero charge |
ГL2, ГR2 | Free | Zero charge |
Г1, ГL1, ГR1 | - | Zero charge |
Parameter | Value | Parameter | Value |
---|---|---|---|
λ (μm) | 20 | W (mm) | 2.2 |
Nt | 60 | Ltt (μm) | 10 |
Nr | 30 | Lrt (μm) | 5 |
η | 0.6 | thLN (μm) | 40 |
thAl (μm) | 0.2 | the size of the LN (mm2) | 7 × 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Lu, Z.; Yang, J.; Gong, X.; Ke, Q. Modulating the Performance of the SAW Strain Sensor Based on Dual-Port Resonator Using FEM Simulation. Materials 2023, 16, 3269. https://doi.org/10.3390/ma16083269
Cheng C, Lu Z, Yang J, Gong X, Ke Q. Modulating the Performance of the SAW Strain Sensor Based on Dual-Port Resonator Using FEM Simulation. Materials. 2023; 16(8):3269. https://doi.org/10.3390/ma16083269
Chicago/Turabian StyleCheng, Chunlong, Zihan Lu, Jingwen Yang, Xiaoyue Gong, and Qingqing Ke. 2023. "Modulating the Performance of the SAW Strain Sensor Based on Dual-Port Resonator Using FEM Simulation" Materials 16, no. 8: 3269. https://doi.org/10.3390/ma16083269
APA StyleCheng, C., Lu, Z., Yang, J., Gong, X., & Ke, Q. (2023). Modulating the Performance of the SAW Strain Sensor Based on Dual-Port Resonator Using FEM Simulation. Materials, 16(8), 3269. https://doi.org/10.3390/ma16083269