Common Failures in Hydraulic Kaplan Turbine Blades and Practical Solutions
Abstract
:1. Introduction
2. Structure of the Kaplan Hydraulic Turbine
Kaplan Hydraulic Turbine
3. Various Damages in Hydraulic Turbines
3.1. Internal Object Damage (IOD)
3.1.1. Material and Physical Defects
3.1.2. Deficiencies in Design
3.1.3. Deficits in Manufacturing and Assembly Processes
3.2. Foreign Object Damage (FOD)
3.2.1. Corrosion Failures
Uniform Attack
Pitting Corrosion
3.2.2. Fatigue Failure
- Constructive factors—shape and dimensions of the part and assembling method.
- Technological factors—material and the surface quality.
- Operational factors—loading type, short-term overloads and underloads, jerks, load frequency, temperature, and chemical influence of the environment.
3.2.3. Cavitation Wear
Leading Edge Cavitation
Tip Vortex Cavity Phenomenon
Traveling Bubble Cavitation
Hub Vortex Cavitation
3.2.4. Hydro-Abrasive Problem
3.2.5. Hydro-Erosion Problem
4. Practical Solutions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Mtoe | Mega tons of oil equivalent |
TWh | Terawatt hour |
HPP | Hydropower Plant |
HSMA | High Strength Micro Alloy |
HT | Heat-Treated |
HTA | Hydraulic Transient Analysis |
NAB alloy | Nickel Aluminum Bronze alloy |
IOD | Internal Object Damage |
FOD | Foreign Object Damage |
HAZ | Heat-Affected Zone |
PVD | Physical Vapor Deposition |
CVD | Chemical Vapor Deposition |
HVOF spraying | High-Velocity Oxygen Fuel spraying |
HVFS | High-Velocity Flame Spray |
References
- Singh, R.; Tiwari, S.K.; Mishra, S.K. Cavitation Erosion in Hydraulic Turbine Components and Mitigation by Coatings: Current Status and Future Needs. J. Mater. Eng. Perform. 2012, 21, 1539–1551. [Google Scholar] [CrossRef]
- Kim, J.; Yang, H.; Baik, K.; Seong, B.G.; Lee, C.; Hwang, S.Y. Development and properties of nanostructured thermal spray coatings. Curr. Appl. Phys. 2006, 6, 1002–1006. [Google Scholar] [CrossRef]
- Brijkishore, K.R.; Prasad, V. Prediction of cavitation and its mitigation techniques in hydraulic turbines—A review. Ocean Eng. 2021, 221, 108512. [Google Scholar] [CrossRef]
- Thapa, B.; Shrestha, R.; Dhakal, P.; Thapa, B.S. Problems of Nepalese hydropower projects due to suspended sediments. Aquat. Ecosyst. Health Manag. 2005, 8, 251–257. [Google Scholar] [CrossRef]
- Mann, B. High-energy particle impact wear resistance of hard coatings and their application in hydroturbines. Wear 2000, 237, 140–146. [Google Scholar] [CrossRef]
- Sangal, S.; Singhal, M.K.; Saini, R.P. CFD based analysis of silt erosion in Kaplan hydraulic turbine. In Proceedings of the 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, India, 3–5 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1765–1770. [Google Scholar] [CrossRef]
- Al-Bukhaiti, M.A.; Ahmed, S.M.; Badran, F.M.F.; Emara, K.M. Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron. Wear 2007, 262, 1187–1198. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Z.; Zeng, J.; Lin, J. Fatigue of piston rod caused by unsteady, unbalanced, unsynchronized blade torques in a Kaplan turbine. Eng. Fail. Anal. 2010, 17, 192–199. [Google Scholar] [CrossRef]
- Liu, X.; Luo, Y.; Wang, Z. A review on fatigue damage mechanism in hydro turbines. Renew. Sust. Energy Rev. 2016, 54, 1–14. [Google Scholar] [CrossRef]
- Georgievskaia, E. Analytical system for predicting cracks in hydraulic turbines. Eng. Fail. Anal. 2021, 127, 105489. [Google Scholar] [CrossRef]
- Al-Tekreeti, W.K.F.; Kazem, R.K.; Siamak, G. A comprehensive review on mechanical failures cause vibration in the gas turbine of combined cycle power plants. Eng. Fail. Anal. 2022, 143, 106094. [Google Scholar] [CrossRef]
- Lewis, B.J.; Cimbala, J.M.; Wouden, A.M. Major historical developments in the design of water wheels and Francis hydro turbines. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014; Volume 22, p. 012020. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.W.; Ji, B.; Tsujimoto, T. A review of cavitation in hydraulic machinery. J. Hydrodynam. B. 2016, 28, 335–358. [Google Scholar] [CrossRef]
- Ayli, E. Cavitation in hydraulic turbines. Int. J. Heat Technol. 2019, 37, 334–344. [Google Scholar] [CrossRef]
- Gohil, P.P.; Saini, R.P. Coalesced effect of cavitation and silt erosion in hydro turbines—A review. Renew. Sustain. Energy Rev. 2014, 33, 280–289. [Google Scholar] [CrossRef]
- Lahdelma, S.; Juuso, E.K. Vibration Analysis of Cavitation in Kaplan Water Turbines. IFAC Proc. Vol. 2008, 41, 13420–13425. [Google Scholar] [CrossRef] [Green Version]
- Dörfler, P.; Sick, M.; Coutu, A. Flow-Induced Pulsation and Vibration in Hydroelectric Machinery: Engineer’s Guidebook for Planning, Design and Troubleshooting; Springer: London, UK, 2013; pp. 163–168. [Google Scholar]
- Shamsuddeen, M.M.; Park, J.; Choi, Y.S.; Kim, J.H. Unsteady multi-phase cavitation analysis on the effect of anti-cavity fin installed on a Kaplan turbine runner. Renew. Energy 2020, 162, 861–876. [Google Scholar] [CrossRef]
- Dreyer, M.; Decaix, J.; Münch, C.; Farhat, M. Mind the gap—Tip leakage vortex in axial turbines. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014; Volume 22, p. 052023. [Google Scholar] [CrossRef] [Green Version]
- Decaix, J.; Dreyer, M.; Balarac, G.; Farhat, M.; Münch, C. RANS computations of a confined cavitating tip-leakage vortex. Eur. J. Mech. B Fluids. 2018, 67, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Alligne, S.; Christophe, N.; Phillipe, A.; Basile, K.; Jean Jacques, S.; Francois, A. Influence of the vortex rope location of a Francis turbine on the hydraulic system stability. Int. J. Fluid Mach. Syst. 2009, 2, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Branko, B. Methods for vibro-acoustic diagnostics of turbine cavitation. J. Hydraul. Res. 2003, 41, 87–96. [Google Scholar] [CrossRef]
- Nicolet, C.; Alligné, S.; Kawkabani, B.; Simond, J.J.; Avellan, F. Unstable operation of Francis pump-turbine at runaway. Int. J. Fluid Mach. Syst. 2009, 2, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, M.; Leonard, F. Transient response and life assessment: Case studies on the load rejection of two hydroelectric turbines. In Proceedings of the International Conference Surveillance 7, Chartres, France, 29–30 October 2013; pp. 1–11. [Google Scholar]
- Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R.M. Hydro-abrasive erosion of hydraulic turbines caused by sediment—A century of research and development. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016; Volume 49, p. 122001. [Google Scholar] [CrossRef] [Green Version]
- Anant, K.R.; Arun, K. Analyzing hydro abrasive erosion in Kaplan turbine: A case study from India. J. Hydrodyn. Ser. B. 2016, 28, 863–872. [Google Scholar]
- Mandeep, S.; Banerjee, J.; Patel, P.L.; Himanshu, T. Effect of silt erosion on Francis turbine: A case study of Maneri Bhali Stage-II, Uttarakhand, India. ISH J. Hydraul. Eng. 2013, 19, 1–10. [Google Scholar] [CrossRef]
- Sailesh, C.; Hari, P.N.; Ole, G.D. A Review on Sediment Erosion Challenges in Hydraulic Turbines. In Sedimentation Engineering; Ata, A., Ed.; IntechOpen: London, UK, 2018; pp. 9–29. [Google Scholar] [CrossRef]
- Robin, T.; Muneesh, S.; Sourabh, K. Impact of Sand Erosion on Hydroturbines: A Case Study of Hydropower Plant in Himachal Pradesh, India. In Intelligent Communication, Control and Devices (Proceedings of ICICCD 2017); Rajesh, S., Sushabhan, C., Anita, G., Eds.; Springers: Warsaw, Poland, 2018; pp. 1–12. [Google Scholar] [CrossRef]
- Deepak, K.G.; Harpreet, S.; Harmesh, K.; Varinder, S. Slurry erosion behaviour of HVOF sprayed WC–10Co–4Cr and Al2O3 + 13TiO2 coatings on a turbine steel. Wear 2012, 289, 46–57. [Google Scholar] [CrossRef]
- Padhy, M.K.; Saini, R.P. Effect of size and concentration of silt particles on erosion of Pelton turbine buckets. Energy 2009, 34, 1477–1483. [Google Scholar] [CrossRef]
- Massimo, D.S.; Gianfranco, L.; Massimiliano, B.; Angelo, D.; Maria, R.; Alessandra, V. Study of 13Cr-4Ni-(Mo) (F6NM) Steel Grade Heat Treatment for Maximum Hardness Control in Industrial Heats. Metals 2017, 7, 351. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.Y.; Li, X.Y.; Rong, L.J.; Ping, D.H.; Yin, F.X.; Li, Y.Y. Formation of the reversed austenite during intercritical tempering in a Fe–13%Cr–4%Ni–Mo martensitic stainless steel. Mater. Lett. 2010, 64, 1411–1414. [Google Scholar] [CrossRef]
- Yunqing, G.; Xia, K.; Wu, D.; Mou, J.; Zheng, S. Technical Characteristics and Wear-Resistant Mechanism of Nano Coatings: A Review. Coatings 2020, 10, 233. [Google Scholar] [CrossRef] [Green Version]
- Siamak, G.; Alejandro, V.A.C.; Vladimir, A.R.; Nikolay, I.P. Experimental and theoretical research on drilling epoxy granite using coated and uncoated carbide spiral drill bits. Int. J. Mech. Sci. 2018, 135, 240–252. [Google Scholar] [CrossRef]
- Nikolay, N. Chapter fourteen—Traditional hydropower plant technology. In Sustainable Power Generation; Academic Press: Cambridge, MA, USA, 2019; pp. 355–377. [Google Scholar] [CrossRef]
- Ravi, K.; Singal, S.K. Operation and Maintenance Problems in Hydro Turbine Material in Small Hydro Power Plant. Mater. Today–Proc. 2015, 2, 2323–2331. [Google Scholar] [CrossRef]
- Audrius, Ž.; David, S.B.; George, A.A. Development of hydro impulse turbines and new opportunities. Renew. Sust. Energy Rev. 2015, 51, 1624–1635. [Google Scholar] [CrossRef] [Green Version]
- Rama, C.M.K.; Upendar, S.; Durgesh, V.; Sandeep, B.; Rahim, M.K.S.K.; Gurram, N.S.K.; Ahammad, H.S.K. Modeling and Analysis of Kaplan Turbine Blade Using CFD. Int. J. Eng. Technol. 2018, 7, 1086–1089. [Google Scholar] [CrossRef]
- Huixiang, C.; Daqing, Z.; Yuan, Z.; Shengwen, J.; An, Y.; You, G. Load Rejection Transient Process Simulation of a Kaplan Turbine Model by Co-Adjusting Guide Vanes and Runner Blades. Energies 2018, 11, 3354. [Google Scholar] [CrossRef] [Green Version]
- Jawahar, C.P.; Michael, P.A. A review on turbines for micro hydro power plant. Renew. Sust. Energy Rev. 2017, 72, 882–887. [Google Scholar] [CrossRef]
- Self Levelling Metal Machines Pte Ltd. Share Your Challenges. Available online: https://slmm.com.sg/ (accessed on 5 March 2023).
- Zmudj, A.E.; Litkovskii, J.A.; Rubek, N.N. Reverse Waterhammer in Hydroelectric Plants. Gidroelectromashinostroenije 1960, 2. (In Russian) [Google Scholar]
- Pejovic, S.; Gajic, A.; Zhang, Q. Smart design requires updated design and analysis guidelines. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014; Volume 22, p. 042008. [Google Scholar] [CrossRef] [Green Version]
- Zivkovic, S.; Cerce, L.; Kostic, J.; Majstorovic, V.; Kramar, D. Reverse Engineering of Turbine Blades Kaplan’s type for Small Hydroelectric Power Station. Procedia CIRP 2018, 75, 379–384. [Google Scholar] [CrossRef]
- Nicklas, H. Analysis of Hydraulic Pressure Transients in the Water Ways of Hydropower Stations; Uppsala University: Uppsala, Sweden, 2011. [Google Scholar]
- Zhan, L.; Peng, Y.; Chen, X. Cavitation Vibration Monitoring in the Kaplan Turbine. In Proceedings of the IEEE 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 28–30 March 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, X.; Luo, Y.Y.; Wang, Z.W. Fatigue Analysis of the Piston Rod in a Kaplan Turbine Based on Crack Propagation under Unsteady Hydraulic Loads. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014; Volume 22, p. 012017. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, N.V.; Yuldashev, M.V.; Yuldashev, R.V. Analytical-numerical analysis of closed-form dynamic model of Sayano-Shushenskaya hydropower plant: Stability, oscillations, and accident. Commun. Nonlinear Sci. Numer. Simul. 2020, 93, 105530. [Google Scholar] [CrossRef]
- Abdulmuttalib, A.M. Vibration reduction in Haditha hydropower plant Kaplan turbine with air injection- review and proposed study. In Proceedings of the Black Sea Summit 7th International Applied Science Congress, Bursa, Turkey, 28–29 August 2021; pp. 87–100. [Google Scholar] [CrossRef]
- Pejovic, S.; Zhang, Q.; Karney, B.; Gajic, A. Key invited article, Analysis of Pump-Turbine “S” Instability and Reverse Waterhammer Incidents in Hydropower Systems. In Proceedings of the 4-th International Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Belgrade, Serbia, 26–28 October 2011; pp. 1–16. [Google Scholar]
- Hasler, J.P. Investigating Russia’s Biggest Dam Explosion: What Went Wrong, Internet. 2010. Available online: http://www.popularmechanics.com/technology/engineering/gonzo/4344681 (accessed on 5 March 2023).
- Accident at Russia’s Biggest Hydroelectric Plant, Halffast. 2012. Available online: https://www.dailymail.co.uk/news/article-1207093/Accident-Russias-biggest-hydroelectric-plant-leaves-seven-workers-dead.html (accessed on 5 March 2023).
- Pejovic, S. Electricity and Water Systems at High Risk—Hydro Projects: Lessons to Learn! Available online: http://myelab.net/cane/HydroProjectsOttawa.pdf (accessed on 14 December 2022).
- Gajic, A.; Pejovic, S.; Ivljanin, B. Reverse Waterhammer—Case Studies. In Proceedings of the International Conference on CSHS03, Belgrade, Serbia, 26–28 October 2003; pp. 89–104. [Google Scholar]
- DA-45-154-CIVENG-56-166/S.O; Report on Investigation of Accident to Turbine No.2 in PIT No.1 during Sudden Load Rejection Tests. Ice Harbor Lock and Dam, Corps of Engineers: Walla Walla, WA, USA, 1962; p. 78930.
- Gordon, M. Shrum Generating Station (GMS) Units 1 to 5 Turbine Replacement Project. 2009. Available online: http://www.bchydro.com/etc/medialib/internet/documents/planning_regulatory/regulatory_proceedings/gms_u1u5_turbinereplaceproject.Par.0001.File.gms_u1_u5_turbine_replace_project.pdf (accessed on 25 September 2022).
- Hugh, J. Chapter 8—Reliability and system design. In Engineering Design, Planning, and Management, 2nd ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 293–329. [Google Scholar] [CrossRef]
- Wong, W. 9—Asset integrity: Learning about the cause and symptoms of age and decay and the need for maintenance to avoid catastrophic failures. In The Risk Management of Safety and Dependability (A Guide for Directors, Managers and Engineers); Woodhead Publishing: Cambridge, UK, 2010; pp. 188–225. [Google Scholar] [CrossRef]
- López, D.; Congote, J.P.; Cano, J.R.; Toro, A.; Tschiptschin, A.P. Effect of particle velocity and impact angle on the corrosion–erosion of AISI 304 and AISI 420 stainless steels. Wear 2005, 259, 118–124. [Google Scholar] [CrossRef]
- Brekke, H. A review on dynamic problems in Francis and Pelton Turbines. In Proceedings of the 27th IAHR Symposium on Hydraulic Machinery and Systems, Montreal, QC, Canada, 22–26 September 2014. [Google Scholar]
- Boukani, H.H.; Viens, M.; Tahan, S.A.; Gagnon, M. On the performance of nondestructive testing methods in the hydroelectric turbine industry. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014; Volume 22. [Google Scholar] [CrossRef] [Green Version]
- Brekke, H. Design, performance and maintenance of Francis turbines. Glob. J. Res. Eng. 2013, 13, 29–40. [Google Scholar]
- Abdel, A.A.H.; Jamil, T.S.; Shalaby, M.S.; Shaban, A.M.; Souaya, E.R.; Abdel Ghany, N.A. Application of (polyaniline/zeolite X) composite as anticorrosion coating for energy recovery devices in RO desalination water plants. Int. J. Ind. Chem. 2019, 10, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Xin, Y.S.; Jialing, W.; Qun, Z.; Tao, L.; Tang, T.; Xian, Y.L.; Gui, C.H. Method for detecting surface defects of runner blades of large hydraulic turbines based on improved real-time lightweight network. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 1995; p. 012090. [Google Scholar] [CrossRef]
- Adam, A. Case Study: Lapino Powerplant Penstock Failure. J. Hydraul. Eng. 2001, 127, 547–555. [Google Scholar]
- Ming, Z.; David, V.; Carme, V.; Mònica, E.; Eduard, E. Failure investigation of a Kaplan turbine blade. Eng. Fail. Anal. 2019, 97, 690–700. [Google Scholar] [CrossRef]
- Arrington, R.M. Failure of water-operated needle valves at Bartlett Dam and Oneida Station hydroelectric plant. In Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference, San Francisco, CA, USA, 18–23 July 1999; American Society of Mechanical Engineers: New York, NY, USA, 1999; pp. 18–22. [Google Scholar]
- Saeed, R.A.; Galybin, A.N.; Popov, V. 3D fluid–structure modelling and vibration analysis for fault diagnosis of Francis turbine using multiple ANN and multiple ANFIS. Mech. Syst. Signal Pract. 2013, 34, 259–276. [Google Scholar] [CrossRef]
- Urquiza, G.; García, J.C.; González, J.G.; Castro, L.; Rodríguez, J.A.; Basurto, P.M.A.; Mendoza, O.F. Failure analysis of a hydraulic Kaplan turbine shaft. Eng. Fail. Anal. 2014, 41, 108–117. [Google Scholar] [CrossRef]
- Ugyen, D.; Reza, G. Hydro turbine failure mechanisms: An overview. Eng. Fail. Anal. 2014, 44, 136–147. [Google Scholar] [CrossRef]
- Anton, D.P.; Ina, Y.; Igor, Y. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater. Des. 2020, 187, 108385. [Google Scholar] [CrossRef]
- Mile, S.; Milomir, G.; Dragan, P.; Nebojša, Z.; Radmila, P. Analysis of the drive shaft fracture of the bucket wheel excavator. Eng. Fail. Anal. 2012, 20, 105–117. [Google Scholar] [CrossRef]
- James, J.S.; William, J.M. Introduction to failure analysis and prevention. In Failure Analysis and Prevention; William, T.B., Roch, J.S., Eds.; ASM International: Materials Park, OH, USA, 2002; pp. 3–23. [Google Scholar] [CrossRef]
- Pohan, K.; Kiyoshi, M.; Norio, O.; Hua, D. Design of a Kaplan turbine for a wide range of operating head—Curved draft tube design and model test verification. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016; Volume 49, p. 022009. [Google Scholar] [CrossRef] [Green Version]
- Michael, D.H.; Dale, B.E.; Anand, R.S. (Eds.) 2—Fractography as a Failure Analysis Tool. In Fractography in Failure Analysis of Polymers; Woodhead Publishing: Cambridge, UK, 2015; pp. 6–22. [Google Scholar] [CrossRef]
- Bryan, W.K.; Stanislav, P.; Qinfen, Z.; Aleksandar, G. Design Challenges in Hydropower Systems: Trade-offs and difficulties in operation. In Proceedings of the 2nd International Conference on Electric Technology and Civil Engineering (ICETCE 2012), Hubei, China, 18–20 May 2012. [Google Scholar]
- Akkats Power Station, Vattenfall’s European Energy Company. 2002. Available online: http://powerplants.vattenfall.com/node/338 (accessed on 5 March 2023).
- Bryan, W.K.; Liu, D.; Wang, F.; Qinfen, Z. Pump-turbine runner lifting during load acceptance: An exploration of possible causes. In Proceedings of the 10th International Conference on Pressure Surges, Edinburgh, UK, 14–16 May 2008. [Google Scholar]
- Williams, E. Domestic turbine design, simulation and manufacturing for Sub-Saharan Africa energy sustainability. In Proceedings of the 14th International Conference on Sustainable Energy Technologies, Nottingham, UK, 25–27 August 2015; pp. 1–10. [Google Scholar]
- Shri, S.; Seddon, P.B. Managing process deficiencies with enterprise systems. Bus. Process Manag. J. 2007, 13, 405–416. [Google Scholar] [CrossRef]
- Abishek, K.; Pratisthit, L.S.; Sailesh, C.; Bhola, T.; Biraj, S.T.; Nischal, S. A review on casting technology with the prospects on its application for hydro turbines. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1608, p. 012015. [Google Scholar] [CrossRef]
- Denis, T.; Martin, G.; Stéphane, G. The effect of materials properties on the reliability of hydraulic turbine runners. Int. J. Fluid Mach. Syst. 2015, 8, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Giichiro, H.; Hiroyuki, A.; Masahiko, K.; Jun, S. Effect of casting defects on fatigue strength of stainless cast steel SCS6 for hydraulic turbine Runner. Trans. Jpn. Soc. Mech. Eng. 2011, 77, 947–955. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Wang, B.; Wang, S. Quality assurance model in mechanical assembly. Int. J. Adv. Manuf. Technol. 2010, 51, 1121–1138. [Google Scholar] [CrossRef]
- Barbour, A.; Thomson, W.T. Finite element study of rotor slot designs with respect to current monitoring for detecting static air gap eccentricity in squirrel-cage induction motors. In Proceedings of the IAS ’97, Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting, New Orleans, LA, USA, 5–9 October 1997; IEEE: Piscataway, NJ, USA, 1997; Volume 1, pp. 112–119. [Google Scholar] [CrossRef]
- Nandi, S.; Toliyat, H.A.; Li, X. Condition Monitoring and Fault Diagnosis of Electrical Motors—A Review. IEEE Trans. Energy Convers. 2005, 20, 719–729. [Google Scholar] [CrossRef]
- Thiery, F.; Gustavsson, R.; Aidanpää, J.O. Dynamics of a misaligned Kaplan turbine with blade-to-stator contacts. Int. J. Mech. Sci. 2015, 99, 251–261. [Google Scholar] [CrossRef]
- Reza Kashyzadeh, K.; Omidi Bidgoli, M.; Rahimian Koloor, S.S.; Petru, M. Chapter One—Assessment of oil storage tanks performance containing cracks and cavities. In Above Ground Storage Tank Oil Spills; Gulf Professional Publishing: Houston, TX, USA, 2023; pp. 3–41. [Google Scholar] [CrossRef]
- Firouzanmehr, M.; Reza Kashyzadeh, K.; Borjali, A.; Ivanov, A.; Jafarnode, M.; Gan, T.H.; Wang, B.; Chizari, M. Detection and Analysis of Corrosion and Contact Resistance Faults of TiN and CrN Coatings on 410 Stainless Steel as Bipolar Plates in PEM Fuel Cells. Sensors 2022, 22, 750. [Google Scholar] [CrossRef] [PubMed]
- Omidi Bidgoli, M.; Reza Kashyzadeh, K.; Rahimian Koloor, S.S.; Petru, M. Estimation of Critical Dimensions for the Crack and Pitting Corrosion Defects in the Oil Storage Tank Using Finite Element Method and Taguchi Approach. Metals 2020, 10, 1372. [Google Scholar] [CrossRef]
- Chattopadhyay, R. Surface Wear: Analysis, Treatment, and Prevention; ASM International: Materials Park, OH, USA, 2001. [Google Scholar]
- Webster, H.A. The Costs of Corrosion: A Perspective. J. Air. Pollut. Control Assoc. 2012, 26, 302–303. [Google Scholar] [CrossRef]
- Satrio, T.J.; Mahendrata, C.; Agung, T. Estimating corrosion rate and remaining life of a pressure vessel of H2S absorber. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2097, p. 030007. [Google Scholar] [CrossRef] [Green Version]
- Walsh, F.; Ottewill, G.; Barker, D. Corrosion and Protection of Metals: II. Types of Corrosion and Protection Methods. Trans. IMF 1993, 71, 117–120. [Google Scholar] [CrossRef]
- Muhammad, K. Chapter 6—Hydro energy. In Renewable Energy Conversion Systems; Elsevier Science: Amsterdam, The Netherlands, 2021; pp. 193–219. [Google Scholar] [CrossRef]
- Fujihara, T.; Imano, H.; Oshima, K. Development of Pump Turbine for Seawater Pumped-Storage Power Plant. Hitachi Rev. 1998, 47, 199–202. [Google Scholar]
- Horynová, M.; Klakurková, L.; Švejcar, J.; Juliš, M.; Gejdoš, P.; Čelko, L. Failure analysis of casing of draft tube of turbine used in hydropower plant. Eng. Fail. Anal. 2017, 82, 848–854. [Google Scholar] [CrossRef]
- Mirjam, B.L.; Robert, T. The effect of TiN inclusions and deformation-induced martensite on the corrosion properties of AISI 321 stainless steel. Eng. Fail. Anal. 2013, 33, 430–438. [Google Scholar] [CrossRef]
- Liou, H.Y.; Shieh, R.I.; Wei, F.I.; Wang, S.C. Roles of Microalloying Elements in Hydrogen Induced Cracking Resistant Property of HSLA Steels. Corrosion 1993, 49, 389–398. [Google Scholar] [CrossRef]
- Padilha, A.F.; Rios, P.R. Decomposition of Austenite in Austenitic Stainless Steels. ISIJ Inter. 2002, 42, 325–327. [Google Scholar] [CrossRef]
- Einar, B. Corrosion and Protection. Department of Machine Design and Materials Technology; Springer: London, UK, 2003; Available online: https://link.springer.com/book/10.1007/b97510 (accessed on 2 August 2022).
- Available online: https://www.ddcoatings.co.uk/2276/what-is-pitting-corrosion (accessed on 2 August 2022).
- Ginzel, R.K.; Kanters, W.A. Pipeline Corrosion and Cracking and the Associated Calibration Considerations for Same Side Sizing. In The e-Journal of Nondestructive Testing 94 Applications; Eclipse Scientific Products Inc.: Williamsford, ON, Canada, 2002; Volume 7, Available online: https://www.ndt.net/article/v07n07/ginzel_r/ginzel_r.htm (accessed on 2 August 2022).
- Radivoje, M.M.; Dejan, B.M.; Ivana, D.A. Determination of critical size of corrosion pit on mechanical elements in hydro power plants. Appl. Eng. Lett. 2018, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Linhardt, P. Unusual corrosion of nickel-aluminium bronze in a hydroelectric power plant. Mater. Corros. 2015, 66, 1536–1541. [Google Scholar] [CrossRef]
- European Standard EN 1982. Copper and Copper Alloys—Ingots and Castings. 2008. Available online: https://standards.iteh.ai/catalog/standards/cen/9d084a26-bde2-48d2-b9ed-049ee3e9824d/en-1982-2008 (accessed on 5 March 2023).
- Linhardt, P. Twenty years of experience with corrosion failures caused by manganese oxidizing microorganisms. Mater. Corros. 2010, 61, 1034–1039. [Google Scholar] [CrossRef]
- Linhardt, P. Mikrobielle Werkstoffzerstörung—Simulation, Schadensfälle und Gegenmaßnahmen für metallische Werkstoffe: Manganoxidierende Bakterien und Lochkorrosion an Turbinenteilen aus CrNi-Stahl in einem Laufkraftwerk. Mater. Corros. 1994, 45, 79–83. [Google Scholar] [CrossRef]
- Kashyzadeh, K.R.; Aghili Kesheh, N. Study type of cracks in construction and its controlling. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 1–4. [Google Scholar]
- Murakami, Y. 4.02—High and Ultrahigh Cycle Fatigue. In Comprehensive Structural Integrity; Elsevier: Amsterdam, The Netherlands, 2003; pp. 129–164. [Google Scholar] [CrossRef]
- Arghavan, A.; Kashyzadeh, R.K.; Amiri Asfarjani, A. Investigating Effect of Industrial Coatings on Fatigue Damage. Appl. Mech. Mater. 2011, 87, 230–237. [Google Scholar] [CrossRef]
- Allenov, D.G.; Borisovna, K.D.; Ghorbani, S.; Reza Kashyzadeh, K. Simultaneous effects of cutting depth and tool overhang on the vibration behavior of cutting tool and high-cycle fatigue behavior of product: Experimental research on the turning machine. Int. J. Adv. Manuf. Technol. 2022, 122, 2361–2378. [Google Scholar] [CrossRef]
- Abdollahnia, H.; Alizadeh Elizei, M.H.; Reza Kashyzadeh, K. Application of Probabilistic Approach to Investigate Influence of Details in Time History of Temperature Changes on the HCF Life of Integrated Bridge Steel Piles Installed on Water. J. Mar. Sci. Eng. 2022, 10, 1802. [Google Scholar] [CrossRef]
- Reza Kashyzadeh, K.; Souri, K.; Bayat, A.G.; Safavi Jabalbarez, R.; Ahmad, M. Fatigue Life Analysis of Automotive Cast Iron Knuckle under Constant and Variable Amplitude Loading Conditions. Appl. Mech. 2022, 3, 517–532. [Google Scholar] [CrossRef]
- Kashyzadeh, K.R. Effects of Axial and Multiaxial Variable Amplitude Loading Conditions on the Fatigue Life Assessment of Automotive Steering Knuckle. J. Fail. Anal. Prev. 2020, 20, 455–463. [Google Scholar] [CrossRef]
- Kashyzadeh, K.R.; Arghavan, A. Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods. Strength Mater. 2013, 45, 748–757. [Google Scholar] [CrossRef]
- Reza Kashyzadeh, K.; Maleki, E. Experimental Investigation and Artificial Neural Network Modeling of Warm Galvanization and Hardened Chromium Coatings Thickness Effects on Fatigue Life of AISI 1045 Carbon Steel. J. Fail. Anal. Prev. 2017, 17, 1276–1287. [Google Scholar] [CrossRef]
- Maleki, E.; Reza Kashyzadeh, K. Effects of the hardened nickel coating on the fatigue behavior of ck45 steel: Experimental, finite element method, and artificial neural network modeling. Iran. J. Mater. Sci. Eng. 2017, 14, 81–99. [Google Scholar] [CrossRef]
- Shin, I.N. Failure Analysis in Engineering Applications; Butterworth Heinemann: Oxford, UK, 1992; ISBN 9781483193779. [Google Scholar]
- Zerbst, U.; Madia, M.; Klinger, C.; Bettge, D.; Murakami, Y. Defects as a root cause of fatigue failure of metallic components. I: Basic aspects. Eng. Fail. Anal. 2019, 97, 777–792. [Google Scholar] [CrossRef]
- Tanaka, K. 4.04—Fatigue Crack Propagation. In Cyclic Loading and Fracture; Elsevier Science: Amsterdam, The Netherlands, 2003; pp. 95–127. [Google Scholar] [CrossRef]
- Farrahi, G.H.; Ahmadi, A.; Reza Kashyzadeh, K.; Azadi, S.H.; Jahani, K. A comparative study on the fatigue life of the vehicle body spot welds using different numerical techniques: Inertia relief and Modal dynamic analyses. Frat. Integrità. Strutt. 2020, 52, 67–81. [Google Scholar] [CrossRef]
- Reza Kashyzadeh, K. A new algorithm for fatigue life assessment of automotive safety components based on the probabilistic approach: The case of the steering knuckle. Eng. Sci. Technol. Int. J. 2020, 23, 392–404. [Google Scholar] [CrossRef]
- Farrahi, G.H.; Ahmadi, A.; Reza Kashyzadeh, K. Simulation of vehicle body spot weld failures due to fatigue by considering road roughness and vehicle velocity. Simul. Model. Pract. Theory 2020, 105, 102168. [Google Scholar] [CrossRef]
- Abdollahnia, H.; Alizadeh Elizei, M.H.; Reza Kashyzadeh, K. Fatigue Life Assessment of Integral Concrete Bridges with H Cross-Section Steel Piles Mounted in Water. J. Fail. Anal. Prev. 2020, 20, 1661–1672. [Google Scholar] [CrossRef]
- Abdollahnia, H.; Alizadeh Elizei, M.H.; Reza Kashyzadeh, K. Multiaxial Fatigue Life Assessment of Integral Concrete Bridge with a Real-Scale and Complicated Geometry Due to the Simultaneous Effects of Temperature Variations and Sea Waves Clash. J. Mar. Sci. Eng. 2021, 9, 1433. [Google Scholar] [CrossRef]
- Reza Kashyzadeh, K.; Farrahi, G.H.; Ahmadi, A.; Minaei, M.; Ostad Rahimi, M.; Barforoushan, S. Fatigue life analysis in the residual stress field due to resistance spot welding process considering different sheet thicknesses and dissimilar electrode geometries. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 237, 33–51. [Google Scholar] [CrossRef]
- Quang, H.P.; Martin, G.; Jérôme, A.; Antoine, T.; Christine, M. Rainflow-counting matrix interpolation over different operating conditions for hydroelectric turbine fatigue assessment. Renew. Energ. 2021, 172, 465–476. [Google Scholar] [CrossRef]
- Calin, O.M.; Constantin, V.C.; Doina, F.; Vasile, C. Fatigue Analysis of an Outer Bearing Bush of a Kaplan Turbine. An. Univ. Eftimie Murgu Reşiţa. Fasc. Ing. 2011, 18, 155–162. [Google Scholar]
- Wang, Z.W.; Luo, Y.Y.; Zhou, L.J.; Xiao, R.F.; Peng, G.J. Computation of dynamic stresses in piston rods caused by unsteady hydraulic loads. Eng. Fail. Anal. 2008, 15, 28–37. [Google Scholar] [CrossRef]
- Doina, F.; Viorel, C.; Dorian, N.; Gilbert, R.G.; Gabriela, M. Failure Analysis of a Kaplan Turbine Runner Blade by Metallographic and Numerical Methods. In Proceedings of the 7th WSEAS International Conference on FLUID MECHANICS (FLUIDS’10), Cambridge, UK, 23–25 February 2010; pp. 60–66. [Google Scholar]
- Kan, K.; Binama, M.; Chen, H.; Zheng, Y.; Zhou, D.; Su, W.; Muhirwa, A. Pump as turbine cavitation performance for both conventional and reverse operating modes: A review. Renew. Sust. Energy Rev. 2022, 168, 112786. [Google Scholar] [CrossRef]
- Tiwari, G.; Shukla, S.N.; Prasad, V.; Patel, V.K. Numerical investigation of hydrodynamics of the cavitating turbulent flow in a low head prototype Francis turbine. In Proceedings of the AIP Conference Proceedings, East Sikkim, India, 6–7 December 2019; Volume 2273, p. 050006. [Google Scholar]
- Agustí, M.; Xavier, E.; Víctor, H.H. Numerical simulation of cavitation in a Francis runner under different operating conditions. A: International Symposium of Cavitation and Multiphase Flow. In Proceedings of the 3rd International Symposium of Cavitation and Multiphase Flow, Shanghai, China, 19–22 April 2019; Shanghai University Press: Shanghai, China; pp. 1–8. Available online: http://hdl.handle.net/2117/133596 (accessed on 14 December 2022).
- Jean, P.F.; Jean, M.M. Fundamentals of Cavitation; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar] [CrossRef] [Green Version]
- Xavier, E.; Eduard, E.; Mohamed, F.; François, A.; Miguel, C. Detection of cavitation in hydraulic turbines. Mech. Syst. Signal Pract. 2006, 20, 983–1007. [Google Scholar] [CrossRef] [Green Version]
- Motycak, L.; Skotak, A.; Kupcik, R. Kaplan turbine tip vortex cavitation—Analysis and prevention. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2012; Volume 15, p. 032060. [Google Scholar] [CrossRef] [Green Version]
- Matthieu, D.; Jean, D.; Cécile, M.A.; Mohamed, F. Mind the gap: A new insight into the tip leakage vortex using stereo-PIV. Exp. Fluids 2014, 55, 1849. [Google Scholar] [CrossRef]
- Mouleeswaran, S.K.; Chidambara, R.M.; Sarath, K.M.N. Experimental Investigations on Cavitation in a Kaplan Turbine. Acta Mech. Slovaca 2011, 15, 72201178. [Google Scholar] [CrossRef]
- Jean, P.F. Cavitation. Available online: http://www.legi.grenoble-inp.fr/people/Jean-Pierre.Franc/gallery.html (accessed on 5 March 2023).
- Xavier, E.; Mohamed, F.; Philippe, A.; Eduard, E.; François, A. Cavitation monitoring of hydroturbine: Tests in a FRANCIS turbine model. In Proceedings of the Sixth International Symposium on Cavitation CAV2006, Wageningen, The Netherlands, 31 August 2006; pp. 1–5. [Google Scholar]
- Ville, M.V.; Antti, H.; Tuomas, S.; Timo, S. DDES of wetted and cavitating marine propeller for CHA underwater noise. Assessment. J. Mar. Sci. Eng. 2018, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Munendra, K.; Alok, N. Cavitation in Kaplan Turbines—A Review. J. Mat. Sci. Mech. Eng. 2015, 2, 425–429. [Google Scholar]
- Mabulu, M. Cavitation and Vibration of Hydropower Plants. Master’s Thesis, Hohai University, Nanjing, China, 2005. [Google Scholar]
- François, A. Introduction to cavitation in hydraulic machinery. Scientific Bulletin of the Politehnica University of Timisoara Transactions on Mechanics Special issue. In Proceedings of the 6th International Conference on Hydraulic Machinery and Hydrodynamics, Timisoara, Romania, 21–22 October 2004; pp. 1–14. [Google Scholar]
- Saurabh, S.; Singhal, M.K.; Saini, R.P. Hydro-abrasive erosion in hydro turbines: A review. Int. J. Green Energy 2018, 15, 232–253. [Google Scholar] [CrossRef]
- Bharat Heavy Electricals Limited (BHEL). Ty ASK Operating experience of 4 × 36 MW Chilla power station. In Bhel–Hydro Customers Meet, 18th ed.; Bharat Heavy Electricals Limited (BHEL): Chandigarh, India, 1998. [Google Scholar]
- Edward, J.L.; Graham, K.H.; James, R.C.; Ben, G.B.K.; Anthony, J.P.; Caspar, J.M.H.; Wainwright, J. New insights into the mechanisms of splash erosion using high speed, three dimensional, particle tracking velocimetry. Phys. Rev. E. 2014, 002200. [Google Scholar]
- Bishwakarma, M.B.; Støle, H. Real-time sediment monitoring in hydropower plants. J. Hydraul. Res. 2008, 46, 282–288. [Google Scholar] [CrossRef]
- Zu, Y.M.; Yu, L.W. Review of Research on Abrasion and Cavitation of Silt-Laden Flows Through Hydraulic Turbines in China. In Hydraulic Machinery and Cavitation; Cabrera, E., Espert, V., Martínez, F., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 641–650. [Google Scholar] [CrossRef]
- Hutchings, I.M. Tribology: Friction and Wear of Engineering Materials; Edward Arnold: London, UK, 1992; 352p, ISBN 034056184. [Google Scholar]
- Sandeep, K.; Brajesh, V. Estimation of Silt Erosion in Hydro Turbine. Int. J. Eng. Res. Technol. 2015, 4, 65–68. [Google Scholar]
- Gwidon, S.; Batchelor, A.W. Engineering Tribology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Toshiyuki, T.; Tomoyoshi, O.; Johshiro, S. Hydraulic performance of Francis turbine for sediment-laden flow. Hitachi Rev. 1988, 37, 115–120. [Google Scholar]
- Sundararajan, G. A comprehensive model for the solid particle erosion of ductile materials. Wear 1991, 149, 111–127. [Google Scholar] [CrossRef]
- Mamata, K.P.; Saini, R.P. A review on silt erosion in hydro turbines. Renew. Sust. Energy Rev. 2008, 12, 1974–1987. [Google Scholar] [CrossRef]
- Pratik, M.S.P.; Pabitra, N.J.; Meg, B.B.; Haakon, S. Sediment and Thermodynamic efficiency measurement at Jhimruk hydropower plant, Nepal in Monsoon 2003. In Proceedings of the Ninth International Symposium on River Sedimentation, Yichang, China, 18–21 October 2004. [Google Scholar]
- Thapa, B. Sand Erosion in Hydraulic Machinery. Ph.D. Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 2004. [Google Scholar]
- Dinesh, K.; Bhingole, P.P. CFD Based Analysis of Combined Effect of Cavitation and Silt Erosion on Kaplan Turbine. Mater. Today Proc. 2015, 2, 2314–2322. [Google Scholar] [CrossRef]
- Weili, L.; Jinling, L.; Xingqi, L.; Yuan, L. Research on the cavitation characteristic of Kaplan turbine under sediment flow condition. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2010; Volume 12, p. 12022. [Google Scholar] [CrossRef]
- Stéphane, G.; Éric, B.; Jean, B.L.; Bruce, H. On-site post-weld heat treatment of welds made of 410Ni Mo steel. In Proceedings of the Materials Science and Technology (MS&T), Montreal, QC, Canada, 27–31 October 2013; pp. 754–765. [Google Scholar]
- Paul, S.F. An Internal State Variable Constitutive Model for Deformation of Austenitic Stainless Steels. J. Eng. Mater. Technol. 2012, 134, 041007. [Google Scholar] [CrossRef]
- Byun, T.S.; Hashimoto, N.; Farrell, K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta. Mater. 2004, 52, 3889–3899. [Google Scholar] [CrossRef]
- Farrahi, G.H.; Chamani, M.; Reza, K.; Mostafazade, A.; Mahmoudi, A.H.; Afshin, A. Failure analysis of bolt connections in fired heater of a petrochemical unit. Eng. Fail. Anal. 2019, 92, 327–342. [Google Scholar] [CrossRef]
- Amiri, N.; Shaterabadi, M.; Reza Kashyzadeh, K.; Chizari, M. A Comprehensive Review on Design, Monitoring, and Failure in Fixed Offshore Platforms. J. Mar. Sci. Eng. 2021, 9, 1349. [Google Scholar] [CrossRef]
- Farrahi, G.H.; Tirehdast, M.; Masoumi, E.K.A.; Parsa, S.; Motakefpoor, M. Failure analysis of a gas turbine compressor. Eng. Fail. Anal. 2011, 18, 474–484. [Google Scholar] [CrossRef]
- Ehsan, M.K.A.; Farrahi, G.H.; Mahdi, M.K.A.; Amir, A.Z.; Siavash, P. Failure analysis of a gas turbine compressor in a thermal power plant. J. Fail. Anal. Prev. 2013, 3, 313–319. [Google Scholar] [CrossRef]
- Wagner, B.; Hauer, C.; Schoder, A.; Habersack, H. A review of hydropower in Austria: Past, present and future development. Renew. Sust. Energy Rev. 2015, 50, 304–314. [Google Scholar] [CrossRef]
- Pejovic, S.; Krsmanovic, L.J.; Jemcov, R.; Crnkovic, P. Unstable Operation of High-Head Reversible Pump-Turbines. In Proceedings of the IAHR 8th Symposium, Section for Hydraulic Machinery Equipment and Cavitation, St. Petersburg, Russia, 6–7 September 1976; pp. 283–295. [Google Scholar]
- Pejovic, S.; Obradovic, D.; Gajic, A. Hydraulic Transients in a Power Plant—Mathematical Modeling Confirmed by Field Tests. Hydrosoft 1984, 84, 5–57. [Google Scholar]
- Elbatran, A.H.; Yaakob, O.B.; Ahmed, Y.M.; Shabara, H.M. Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review. Renew. Sust. Energy Rev. 2015, 43, 40–50. [Google Scholar] [CrossRef]
- Hoffstaedt, J.P.; Truijen, D.P.K.; Fahlbeck, J.; Gans, L.H.A.; Qudaih, M.; Laguna, A.J.; De, K.J.D.M.; Stockman, K.; Nilsson, H.; Storli, P.T.; et al. Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling. Renew. Sust. Energy Rev. 2022, 158, 112119. [Google Scholar] [CrossRef]
- IEC TR 61366-2:1998; Hydraulic Turbines, Storage Pumps and Pump-Turbines—Tendering Documents—Part 4: Guidelines for Technical Specifications for Kaplan and Propeller Turbines. IEC: Geneva, Switzerland, 1998.
- Zhang, J.F.; Kang, J.W.; Liu, B.C.; Wu, Y.; Zhang, J.S.; Rong, Z.C.; Zhan, C.C. Numerical simulation of deformation in large scale hydroturbine blade casting. Int. J. Cast. Met. Res. 2008, 21, 304–307. [Google Scholar] [CrossRef]
- Karthik, S. Process safety management in manufacturing industries: A review. Int. J. Eng. Technol. 2018, 7, 540. [Google Scholar] [CrossRef]
- Jakub, H.; Petr, Z.; Michal, Z.; Marie, S.; Tomáš, C. Analysis of Corrosion Attack on Kaplan Turbine Blades. Solid State Phenom. 2017, 270, 149–155. [Google Scholar] [CrossRef]
- Ved, P.S.; Utkarsh, S.; Mahadev, C.; Shukla, V.N. Advance Applications of Nanomaterials: A Review. Mater. Today Proc. 2018, 5, 6376–6380. [Google Scholar] [CrossRef]
- Xiang, D.; Du, K.; Chengqing, Y.; Zhangxiong, D.; Xudong, C. Microstructure and cavitation erosion resistance of HVOF deposited WC-Co coatings with different sized WC. Coatings 2018, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Gustavo, B.S.; Anderson, G.M.P.; Rodolpho, V.; Iren, B.D.A.; Juliano, A.; Luiz, A.J.P. Corrosion Resistance of Iron-based Alloy Coatings Deposited by HVOF Process. In Proceedings of the ITSC 2019—Proceedings of the International Thermal Spray Conference, Yokohama, Japan, 26–29 May 2019; pp. 359–368. [Google Scholar] [CrossRef]
- He, J.; Lavernia, E.J.; Liu, Y.; Qiao, Y.; Fischer, T.E. Near-nanostructured WC-18 pct Co coatings with low amounts of non-WC carbide phase: Part, I. Synthesis and characterization. Metall. Mater. Trans. A 2002, 33, 145–157. [Google Scholar] [CrossRef]
- Qiaoqin, Y.; Tetsuya, S.; Akira, O. Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC–12% Co coatings. Wear 2003, 254, 23–34. [Google Scholar]
- André, R.M.; Kaue, B.; Irene, B.A.F.S.; Andre, C.; Rodolpho, F.V.; Milton, J.D.S.; Anderson, G.M.P. Evaluation of cavitation/corrosion synergy of the Cr3C2-25NiCr coating deposited by HVOF process. Ultrason. Sonochem. 2020, 69, 105271. [Google Scholar] [CrossRef]
- Ning, M.; Lei, G.; Zhenxiong, C.; Huantao, W.; Fuxing, Y.; Keke, Z. Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure. Appl. Surf. Sci. 2014, 320, 364–371. [Google Scholar] [CrossRef]
- Guilemany, J.M.; Dosta, S.; Miguel, J.R. The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders. Surf. Coat. Technol. 2006, 201, 1180–1190. [Google Scholar] [CrossRef]
- Naveena, B.E.; Keshavamurthy, R.; Sekhar, N. Slurry erosive wear behaviour of plasma-sprayed flyash–Al2O3 coatings. Surf. Eng. 2017, 33, 925–935. [Google Scholar] [CrossRef]
- Rajeev, K.; Sanjeev, B.; Atul, G. Synergistic Effect of Al2O3/TiO2 Reinforcements on Slurry Erosion Performance of Nickel-Based Composite Coatings. Part J J. Eng. Tribol. 2018, 232, 974–986. [Google Scholar] [CrossRef]
- Dongsheng, W.; Zongjun, T.; Songlin, W.; Lida, S.; Yinhui, H. Solid Particle Erosion Behaviour of Plasma-Sprayed Conventional and Nanostructured Al2O3-13 wt% TiO2 Ceramic Coatings. Trans. Indian Ceram. Soc. 2015, 74, 90–96. [Google Scholar] [CrossRef]
- Ahmed, H.A.A.; Tarek, M. Corrosion Protection for Energy Recovery in Hydro Turbines; LAP LAMBERT Academic Publishing: Cairo, Egypt, 2019. [Google Scholar]
- Ahmed, A.F. Applications of nanomaterials in corrosion protection coatings and inhibitors. Corros. Rev. 2020, 38, 67–86. [Google Scholar] [CrossRef]
- Jing, Y.C.; Xiao, B.C.; Jing, L.L.; Bin, T.; Nick, B.; Xungai, W. Electrosprayed PLGA smart containers for active anti-corrosion coating on magnesium alloy AMlite. J. Mater. Chem. A 2014, 2, 5738. [Google Scholar] [CrossRef] [Green Version]
- Dawei, S.; Jinliang, A.; Gang, W.; Jinglei, Y. Double-layered reactive microcapsules with excellent thermal and non-polar solvent resistance for self-healing coatings. J. Mater. Chem. A 2015, 3, 4435–4444. [Google Scholar] [CrossRef]
- Anas, T.A. Performance of Cathodic Protection for Pipe Lines. Master’s Thesis, Alnahrain University, Baghdad, Iraq, 2014. [Google Scholar] [CrossRef]
- Ajit, B.; Mallick, P.; Mohapatra, S.S. Chapter 13—Nanocoatings for anticorrosion: An introduction. In Corrosion Protection at the Nanoscale; Elsevier: Amsterdam, The Netherlands, 2020; pp. 227–243. [Google Scholar] [CrossRef]
- Vibhu, S.; Manpreet, K.; Sanjeev, B. Development and Characterization of High-Velocity Flame Sprayed Ni/TiO2/Al2O3 Coatings on Hydro Turbine Steel. J. Therm. Spray Technol. 2019, 28, 379–1401. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical Alloying and Milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Weiwei, C.; Yedong, H.; Wei, G. Electrodeposition of Sol-Enhanced Nanostructured Ni-TiO2 Composite Coatings. Surf. Coat. Technol. 2010, 204, 2487–2492. [Google Scholar] [CrossRef]
- Lajevardi, S.J.; Shahrabi, T. Effects of Pulse Electrodeposition Parameters on the Properties of Ni-TiO2 Nanocomposite Coatings. Appl. Surf. Sci. 2010, 256, 6775–6781. [Google Scholar] [CrossRef]
- Parida, G.; Chaira, D.; Chopkar, M.; Basu, A. Synthesis and Characterization of Ni-TiO2 composite Coatings by Electro-Co-Deposition. Surf. Coat. Technol. 2011, 205, 4871–4879. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Xian, H.; Du, X. A review of methods for vortex identification in hydroturbines. Renew. Sust. Energy Rev. 2018, 81, 1269–1285. [Google Scholar] [CrossRef]
- Kimon, R.; Peter, A.M. Measurements of tip vortex characteristics and the effect of an anti-cavitation lip on a model Kaplan turbine blade. Flow Turbul. Combust. 2000, 64, 119–144. [Google Scholar] [CrossRef]
- Christopher, E.B. 3—Cavitation Bubble Collapse. In Cavitation and Bubble Dynamics; Cambridge University Press: Cambridge, UK, 2013; pp. 59–88. [Google Scholar] [CrossRef]
- Dragica, J.; Mitja, M.; Aljaž, Š.; Enrico, N. Cavitation prediction in a Kaplan turbine using standard and optimized model parameters. In Proceedings of the 6th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Ljubljana, Slovenia, 9–11 September 2015; pp. 1–8. [Google Scholar]
- Dragica, J.; Aljaž, Š.; Andrej, L. Improvement of Efficiency Prediction for a Kaplan Turbine with Advanced Turbulence Models. Stroj. Vestn/J. Mech. Eng. 2014, 60, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Wu, Y.P.; Wang, Q.; Li, G.Y.; Ying, G.B.; Wang, B.; Gao, W.W. Cavitation silt erosion behaviour of HVOF sprayed nickel based alloy coatings. Surf. Eng. 2013, 29, 588–593. [Google Scholar] [CrossRef]
- Filofteia, L.T.; Ghislaine, B.; Sang, O.C.; Didier, K.; Hamlin, L.; Cathy, M.; Christian, C. Microstructure and photocatalytic properties of nanostructured TiO2 and TiO2-Al coatings elaborated by HVOF spraying for the nitrogen oxides removal. Mater. Sci. Eng. A 2006, 417, 56–62. [Google Scholar] [CrossRef]
- Rajeev, K.; Sanjeev, B.; Atul, G. Slurry erosion performance of high-velocity flame-sprayed Ni-20Al2O3 and Ni-10Al2O3-10TiO2 coatings under accelerated conditions. J. Therm. Spray Technol. 2017, 26, 279–1291. [Google Scholar] [CrossRef]
- Grewal, H.S.; Agrawal, A.; Singh, H. Slurry erosion performance of Ni–Al2O3 based composite coatings. Tribol. Int. 2013, 66, 296–306. [Google Scholar] [CrossRef]
- Liu, S.L.; Zheng, X.P.; Geng, G.Q. Influence of Nano-WC—12Co Powder Addition in WC—10Co—4Cr AC-HVAF Sprayed Coatings on Wear and Erosion Behaviour. Wear 2010, 269, 362–367. [Google Scholar] [CrossRef]
- Lalit, T.; Arora, N. A study of processing and slurry erosion behaviour of multi-walled carbon nanotubes modified HVOF sprayed nano-WC-10Co-4Cr coating. Surf. Coat. Technol. 2017, 309, 860–871. [Google Scholar] [CrossRef]
- Vibhu, S.; Manpreet, K.; Sanjeev, B. Slurry jet erosion performance of high-velocity flame-sprayed nano mixed Ni-40Al2O3 coating in aggressive environment. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2019, 233, 1090–1106. [Google Scholar] [CrossRef]
- Nitesh, V.; Khatirkar, R.K.; Sapate, S.G. Tribological behaviour of HVOF sprayed WC-12Co, WC-10Co-4Cr and Cr3C2-25NiCr coatings. Tribol. Int. 2017, 105, 55–68. [Google Scholar] [CrossRef]
- Yang, L.; Ying, L.; Jingjing, C.; Li, L. Solid particle erosion behavior of HVOF/HVAF sprayed WC-Co-Cr coatings. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2016, 230, 634–643. [Google Scholar] [CrossRef]
- Xiang, D.; Xu, D.C.; Chao, L.; Xiang, Y.; Zhang, X.D.; Cheng, Q.Y. Microstructure and performance of multi-dimensional WC-CoCr coating sprayed by HVOF. Int. J. Adv. Manuf. Technol. 2018, 96, 1625–1633. [Google Scholar] [CrossRef]
- Gaurav, N.; Satish, K. Studies on slurry erosion behavior of HVOF applied Y2O3- added WC–10Co–4Cr Cermet on 13-4Martensitic stainless steel. Metallogr. Microstruct. Anal. 2018, 7, 133–142. [Google Scholar] [CrossRef]
- Lima, R.S.; Moreau, C.; Marple, B.R. HVOF-sprayed coatings engineered from mixtures of nanostructured and submicron Al2O3–TiO2 powders: An enhanced wear performance. J. Therm. Spray Technol. 2007, 16, 866–872. [Google Scholar] [CrossRef]
- Wood, R.J.K. The sand erosion performance of coatings. Mater. Des. 1999, 20, 179–191. [Google Scholar] [CrossRef]
- Wheeler, D.W.; Wood, R.J.K. Solid particle erosion of CVD diamond coatings. Wear 1999, 233–235, 306–318. [Google Scholar] [CrossRef]
- Wood, R.J.K.; Wheeler, D.W.; Lejeau, D.C.; Mellor, B.G. Sand erosion performance of CVD boron carbide coated tungsten carbide. Wear 1999, 233–235, 134–150. [Google Scholar] [CrossRef]
- Tjong, S.C.; Haydn, C. Nanocrystalline materials and coatings. Mater. Sci. Eng. R. Rep. 2004, 45, 1–88. [Google Scholar] [CrossRef]
- Lech, P. Finely grained nanometric and submicrometric coatings by thermal spraying: A review. Surf. Coat. Technol. 2008, 202, 4318–4328. [Google Scholar] [CrossRef]
- Vinay, P.S.; Anjan, S.; Jayaganthan, R.A. study on sliding and erosive wear behaviour of atmospheric plasma sprayed conventional and nanostructured alumina coatings. Mater. Des. 2011, 32, 584–591. [Google Scholar] [CrossRef]
- Jianxin, Z.; Jining, H.; Yanchun, D.; Xiangzhi, L.; Dianran, Y. Microstructure characteristics of Al2O3–13 wt.% TiO2 coating plasma spray deposited with nanocrystalline powders. J. Mater. Process. Technol. 2008, 197, 31–35. [Google Scholar] [CrossRef]
Hydropower Plant and Occurrence Year | Turbine Type | Description |
---|---|---|
Turbine rated power 22 MW, head 19 m, and speed 150 rpm accident in Russia, 1960. | Kaplan | They reported that due to design flaws, the turbine blades fractured, and the power plant shut down [43,44]. |
Turbine accident, Hydroelectric station, Zvornik, in former Yugoslavia in 1975. | Kaplan | Analysts claimed that when system unpredictability is combined with complacency or the assumption that the problem has already been solved, design implications become considerably more difficult [43]. |
Turbine accidents at Ozbalt hydropower plant, former Yugoslavia, 1976. | Kaplan | The main cause of failure is not printed. |
Iron gate hydropower plant (Romania and Serbia), 1984. | Kaplan | Because of its high discharge, the Kaplan turbine is prone to cavitation and damage to the runner blades. This is because the water pressure around the turbine is always very low [45]. |
A turbine broke down in Sweden in 1986. | Kaplan | The turbine over speed signal was recorded and the emergency stop level closed the guide vanes. Therefore, emergency closure at over speed, a more severe initial condition, was enough to result in an accident [46]. In this regard, inadequate design and lack of calculation of difficult operational requirements lead to serious accidents. |
Gezhouba hydropower plant (China), 1989. | Kaplan | Cavitation phenomena and high hydraulic loads caused the runner blades on the No. 5 Kaplan turbine to wear out. The root area is usually the high-stress area and it is easy for the crack to initiate [47]. |
Shuikou hydropower plant (China), 2006. | Kaplan | Turbine piston rod No. 3 was damaged. A crack started as a defect and continued to spread as fatigue set in as a result of cyclic loading [48]. |
Sayano-Shushenskaya hydropower plant (Russia), 2009. | Francis | For the safety of the hydropower plant, the speed of the synchronous generator should stay constant. This will keep the frequency almost the same. The second turbine worked in an area that is not recommended (between 200 MW and 400 MW of power with a head of water of 210 m), which caused strong dynamic loads and vibrations. The rotating speed was controlled by the speed governor. The turbine cover was unfastened because of Unit No. 2’s avalanche-like increase in vibrations. The turbine cover flew up from the stator flange because several bolts came loose due to vibrations, and some had fatigue wear of up to 80–95%. The hydraulic unit was then separated, along with its turbine wheel [49]. |
Haditha hydropower plant (Iraq), 2012. | Kaplan | Runner blade damages and structural cracks due to vibration and the effect of cavitation [50]. |
The USA turbine accident. | Kaplan | Damage to the blade and separation of the water column [46]. |
Ice Harbor hydropower plant, turbine No. 2. | Kaplan | Blade damage and water column separation [51,52,53,54,55,56]. |
Modification and extension work to increase the capacity of the Gordon M. Shrum Generating Station on the Peace River in northern British Columbia, Canada, from 261 MW to 305 MW for each unit 1 to 5 at GSM., 2009. | Kaplan | Significant losses occurred due to the disruption in the design of hydropower facilities [57]. |
Grade | (wt%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cr | Ni | Mn | Si | Mo | C | N | S | P | Fe | |
SS304 | 18.18 | 8.48 | 1.75 | 0.57 | 0.2 | 0.051 | 0.05 | 0.005 | 0.028 | Base |
SS316 | 18 | 10 | 2 | 0.75 | 1.66 | 0.08 | 0.1 | 0.03 | 0.045 | Base |
Grade | Tensile Strength (MPa) | Hardness (Brinell) |
---|---|---|
SS304 | 500–700 | 215 max HB |
SS316 | 400–620 | 149 max HB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid Mohammed Ridha, W.; Reza Kashyzadeh, K.; Ghorbani, S. Common Failures in Hydraulic Kaplan Turbine Blades and Practical Solutions. Materials 2023, 16, 3303. https://doi.org/10.3390/ma16093303
Khalid Mohammed Ridha W, Reza Kashyzadeh K, Ghorbani S. Common Failures in Hydraulic Kaplan Turbine Blades and Practical Solutions. Materials. 2023; 16(9):3303. https://doi.org/10.3390/ma16093303
Chicago/Turabian StyleKhalid Mohammed Ridha, Waleed, Kazem Reza Kashyzadeh, and Siamak Ghorbani. 2023. "Common Failures in Hydraulic Kaplan Turbine Blades and Practical Solutions" Materials 16, no. 9: 3303. https://doi.org/10.3390/ma16093303
APA StyleKhalid Mohammed Ridha, W., Reza Kashyzadeh, K., & Ghorbani, S. (2023). Common Failures in Hydraulic Kaplan Turbine Blades and Practical Solutions. Materials, 16(9), 3303. https://doi.org/10.3390/ma16093303