Chemical and Mechanical Characterization of the Alternative Kriab-Mirror Tesserae for Restoration of 18th to 19th-Century Mosaics (Thailand)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigation of the Ancient Kriab Mirrors by X-ray Diffraction and Scanning Electron Microscopy
2.2. Production of Alternative Kriab Mirrors
2.3. Single-Lap-Joint Testing for Adhesive Property of the Alternative Kriab Mirrors
2.4. CIE-Lab Color Measurement and Reflectivity
2.5. QUV Accelerated Weathering Test
3. Results and Discussion
3.1. Phase, Chemical Composition, and Cross-Sectional Analysis of the Ancient Kriab-Mirror Tesserae
3.2. Adhesive Property of the Alternative Kriab Mirrors
3.3. CIE-Lab Color of the Ancient and Alternative Kriab-Mirror Tesserae
3.4. %Reflectance and Mirror Effect of the Ancient and Alternative Kriab-Mirror Samples
3.5. Weathering Resistance of the Alternative Kriab Mirrors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kock, J.; Sode, T. Medieval glass mirrors in Southern Scandinavia and their technique, as still practiced in India. J. Glass Stud. 2002, 44, 79–94. [Google Scholar]
- Won-In, K.; Thongkam, Y.; Pongkrapan, S.; Intarasiri, S.; Thongleurm, C.; Kamwanna, T.; Leelawathanasuk, T.; Dararutana, P. Raman spectroscopic study on archaeological glasses in Thailand: Ancient Thai glass. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 83, 231–235. [Google Scholar] [CrossRef]
- Won-In, K.; Dararutana, P. In Elemental distribution of the greenish-Thai decorative glass. IOP Conf. Ser. J. Phys. Conf. Ser. 2018, 1082, 012084. [Google Scholar] [CrossRef]
- Klysubun, W.; Hauzenberger, C.A.; Ravel, B.; Klysubun, P.; Huang, Y.; Wongtepa, W.; Sombunchoo, P. Understanding the blue color in antique mosaic mirrored glass from the Temple of the Emerald Buddha, Thailand. X-Ray Spectrom. 2015, 44, 116–123. [Google Scholar] [CrossRef]
- Klysubun, W.; Ravel, B.; Klysubun, P.; Sombunchoo, P.; Deenan, W. Characterization of yellow and colorless decorative glasses from the Temple of the Emerald Buddha, Bangkok, Thailand. Appl. Phys. A 2013, 111, 775–782. [Google Scholar] [CrossRef]
- Ravel, B.; Carr, G.; Hauzenberger, C.A.; Klysubun, W. X-ray and optical spectroscopic study of the coloration of red glass used in 19th century decorative mosaics at the Temple of the Emerald Buddha. J. Cult. Herit. 2015, 16, 315–321. [Google Scholar] [CrossRef]
- D-Library|National Library of Thailand. Available online: http://164.115.27.97/digital/items/show/4961 (accessed on 23 March 2023).
- Charleston, R.J. Lead in glass. Archaeometry 1960, 3, 1–4. [Google Scholar] [CrossRef]
- Sayre, E. Some Ancient Glass Specimens with Compositions of Particular Archaeological Significance; Brookhaven National Laboratory: New York, NY, USA, 1964. [Google Scholar] [CrossRef]
- Mecking, O. Medieval lead glass in Central Europe. Archaeometry 2013, 55, 640–662. [Google Scholar] [CrossRef]
- Lankton, J.W.; Dussubieux, L. Early Glass in Asian Maritime Trade: A Review and an Interpretation of Compositional Analyses. J. Glass Stud. 2006, 48, 121–144. [Google Scholar]
- Oujja, M.; Palomar, T.; Martínez-Weinbaum, M.; Martínez-Ramírez, S.; Castillejo, M. Characterization of medieval-like glass alteration layers by laser spectroscopy and nonlinear optical microscopy. Eur. Phys. J. Plus. 2021, 136, 859. [Google Scholar] [CrossRef]
- Colomban, P.; Simsek Franci, G.; Burlot, J.; Gallet, X.; Zhao, B.; Clais, J.-B. Non-Invasive On-Site pXRF Analysis of Coloring Agents, Marks and Enamels of Qing Imperial and Non-Imperial Porcelain. Ceramics 2023, 6, 447–474. [Google Scholar] [CrossRef]
- Wedepohl, K.H.; Baumann, A. Isotope composition of medieval lead glasses reflecting early silver production in Central Europe. Miner. Depos. 1997, 32, 292–295. [Google Scholar] [CrossRef]
- Diskul, S. History of the Temple of the Emerald Buddha; Bureau of the Royal Household: Bangkok, Thailand, 1992. [Google Scholar]
- Krairiksh, P. The Grand Palace and the Temple of the Emerald Buddha: A Hand-Book for Guides; Bureau of the Royal Household: Bangkok, Thailand, 1988; 52p. [Google Scholar]
- ASTM D1002-99; Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Sepcimens by Tension Loading (Metal-To-Metal). ASTM International: West Conshohocken, PA, USA, 2005.
- Beer, F.; Johnston, E.; DeWolf, J.; Mazurek, D. Mechanics of Materials, 7th ed.; MacMillan: New York, NY, USA, 2015. [Google Scholar]
- 3M. 3M™ Scotch-Weld™ Epoxy Adhesive DP100 Plus Clear. Technical Data; 3M: Singapore, 2016. [Google Scholar]
- Lerdkachatarn, P. Krueng Lacquer Jark Thammachart Su Ngarn Praneed Silpa. [Lacquerware: From Nature to Fine Art]. Watthanatham J. Dep. Cult. Promot. 2013, 52, 24–33. [Google Scholar]
- Kanaya, K.; Ichise, N.; Adachi, K.; Yonehara, K.; Muranaka, Y. Observations on charging effects of non-conductive and un-coated materials by ion beam pre-bombardment in scanning electron microscopy. Micron Microsc. Acta 1992, 23, 319–335. [Google Scholar] [CrossRef]
- Eggert, G. Corroding glass, corroding metals: Survey of joint glass/metal corrosion products on historic objects. Corros. Eng. Sci. Technol. 2010, 45, 414–419. [Google Scholar] [CrossRef]
- Fischer, A.; Eggert, G.; Kirchner, D. When Glass and Metal Corrode Together, IV: Sodium Lead Carbonate Hydroxide. In Proceedings of the Conference: Metal, Edinburgh, Scotland, 13–19 September 2013; International Councils of Museums—Committee for Conseravtion and Historic Scotland: Edinburgh, UK, 2013. [Google Scholar]
- Ricciardi, P.; Colomban, P.; Tournié, A.; Macchiarola, M.; Ayed, N. A non-invasive study of Roman Age mosaic glass tesserae by means of Raman spectroscopy. J. Archaeol. Sci. 2009, 36, 2551–2559. [Google Scholar] [CrossRef]
- Neri, E.; Morvan, C.; Colomban, P.; Guerra, M.F.; Prigent, V. Late Roman and Byzantine mosaic opaque “glass-ceramics” tesserae (5th–9th century). Ceram. Int. 2016, 42, 18859–18869. [Google Scholar] [CrossRef]
- Schibille, N.; Degryse, P.; Corremans, M.; Specht, C.G. Chemical characterisation of glass mosaic tesserae from sixth-century Sagalassos (south-west Turkey): Chronology and production techniques. J. Archaeol. Sci. 2012, 36, 1480–1492. [Google Scholar] [CrossRef]
- Arletti, R.; Quartieri, S.; Quartieri, G.; Vezzalini, G.; Sabatino, M.; Triscari, M.A. Mastelloni, Archaeometrical analyses of glass cakes and vitreous mosaic tesserae from Messina (Sicily, Italy). J. Non-Cryst. Solids 2008, 354, 4962–4969. [Google Scholar] [CrossRef]
- Gómez-Morón, M.A.; Palomar, T.; Alves, L.C.; Ortiz, P.; Vilarigues, M.; Schibille, N. Christian-Muslim contacts across the Mediterranean: Byzantine glass mosaics in the Great Umayyad Mosque of Córdoba (Spain). J. Archaeol. Sci. 2021, 129, 1480–1492. [Google Scholar] [CrossRef]
- de Juan Ares, J.; Schibille, N. Glass import and production in Hispania during the early medieval period: The glass from Ciudad de Vascos (Toledo). PLoS ONE 2017, 12, e0182129. [Google Scholar] [CrossRef]
- Sayre, E.V.; Smith, R.W. Compositional categories of ancient glass. Science 1961, 133, 1824–1826. [Google Scholar] [CrossRef] [PubMed]
- Brain, C.; Brain, S. The development of lead-crystal glass in London and Dublin 1672–1682: A reappraisal. Glass Technol. Eur. J. Glass Sci. Technol. A 2016, 57, 37–52. [Google Scholar] [CrossRef]
- Hair, M.L. Hydroxyl groups on silica surface. J. Non-Cryst. Solids 1975, 19, 299–309. [Google Scholar] [CrossRef]
- Oosten, M. Composite: Metal Connections for the Automotive Industry; University of Twente Student Theses: Enschede, The Netherlands, 2015; Available online: http://essay.utwente.nl/69248/ (accessed on 6 April 2023).
- Reburn, A. Analysis of manufacturing parameters on the shear strength of aluminium/GFRP co-cured and adhesively bonded single-lap joints. Plymouth Stud. Sci. 2016, 9, 195–230. [Google Scholar]
- Redmann, A.; Damodaran, V.; Tischer, F.; Prabhakar, P.; Osswald, T.A. Evaluation of single-lap and block shear test methods in adhesively bonded composite joints. J. Compos. Sci. 2021, 5, 27. [Google Scholar] [CrossRef]
- Da Silva, L.F.; Carbas, R.J.C.; Critchlow, G.W.; Figueiredo, M.A.V.; Brown, K. Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int. J. Adhes. Adhes. 2009, 29, 621–632. [Google Scholar] [CrossRef]
- Cognard, J.Y.; Cre’ac ′hcadec, R.; Maurice, J. Numerical analysis of the stress distribution in single-lap shear tests under elastic assumption—Application to the optimization of the mechanical behaviour. Int. J. Adhes. Adhes. 2011, 31, 715–724. [Google Scholar] [CrossRef]
- Ounjaijom, T.; Intawin, P.; Chanchiaw, R.; Dito, P.; Piboon, C.; Pengpat, K. Modified single-lap-Joint testing for adhesive test of alternative Kriab mirrors. In Proceedings of the 12th International Conference on Science, Technology and Innovation for Sustainable Well-Being (STISWB XII), Ibaraki, Japan, 27–29 April 2020; pp. 207–212. [Google Scholar]
- CIE Technical Committee. CIE Technical Committee, 3rd ed.; International Commission on Ilumination: Vienna, Austria, 2004. [Google Scholar]
- Peng, I.; Hills-Kimball, K.; Lovelace, I.M.; Wang, J.; Rios, M.; Chen, O.; Wang, L.-Q. Exploring the Colors of Copper-Containing Pigments, Copper (II) Oxide and Malachite, and Their Origins in Ceramic Glazes. Colorants 2022, 1, 376–387. [Google Scholar] [CrossRef]
- Bacci, M.; Corallini, A.; Orlando, A.; Picollo, M.; Radicati, B. The ancient stained windows by Nicolò di Pietro Gerini in Florence. A novel diagnostic tool for non-invasive in situ diagnosis. J. Cult. Herit. 2007, 8, 235–241. [Google Scholar] [CrossRef]
- Möncke, D.; Papageorgiou, M.; Winterstein-Beckmann, A.; Zacharias, N. Roman glasses colored by dissolved transition metal ions: Redox-reactions, optical spectroscopy and ligand field theory. J. Archaeol. Sci. 2014, 46, 23–36. [Google Scholar] [CrossRef]
- Palomar, T.; Grazia, C.; Cardoso, I.P.; Vilarigues, M.; Miliani, C.; Romani, A. Analysis of chromophores in stained-glass windows using Visible Hyperspectral Imaging in-situ. Acta Part A-Mol. Biomol. Spectrosc. 2019, 223, 117378. [Google Scholar] [CrossRef] [PubMed]
- Babini, A.; Green, P.; George, S.; Hardeberg, J.Y. Comparison of Hyperspectral Imaging and Fiber-Optic Reflectance Spectros-copy for Reflectance and Transmittance Measurements of Colored Glass. Heritage 2022, 5, 1401–1418. [Google Scholar] [CrossRef]
- Meulebroeck, W.; Wouters, H.; Nys, K.; Thienpont, H. Authenticity screening of stained glass windows using optical spectros-copy. Sci. Rep. 2016, 6, 37726. [Google Scholar] [CrossRef]
- Palomar, T.; Mosa, J.; Aparicio, M. Hydrolytic resistance of K2O–PbO–SiO2 glasses in aqueous and high-humidity environments. J. Am. Ceram. Soc. 2020, 103, 5248–5258. [Google Scholar] [CrossRef]
- Geller, R.; Bunting, E. The system PbO-B2O3-SiO2. J. Res. Natl. Bur. Stand. 1939, 23, 275–283. [Google Scholar] [CrossRef]
- Lehman, R.L. Lead-Ion Stability in Soda–Lime Lead Silicate Glasses. J. Am. Ceram. Soc. 1992, 75, 2194–2199. [Google Scholar] [CrossRef]
- Wang, P.W.; Zhang, L. Structural role of lead in lead silicate glasses derived from XPS spectra. J. Am. Ceram. Soc. 1996, 194, 129–134. [Google Scholar] [CrossRef]
- Palomar, T.; de la Fuente, D.; Morcillo, M.; de Buergo, M.A.; Vilarigues, M. Early stages of glass alteration in the coastal at-mosphere. Build. Environ. 2019, 147, 305–313. [Google Scholar] [CrossRef]
Based Glass Composition | Colorants and Possible Impurities | |||||||
---|---|---|---|---|---|---|---|---|
Oxides | SiO2 | B2O3 | PbO | Na2O | Al2O3 | CuO | CoO | SnO2 |
Colorless | 23.23 | 21.63 | 44.87 | 6.65 | 1.19 | 2.43 | - | - |
Blue | 29.74 | 18.68 | 42.44 | 5.85 | 1.29 | 2.01 | - | - |
Green | 23.64 | 17.40 | 48.70 | 5.87 | 1.40 | 3.00 | - | - |
Red | 24.67 | 20.23 | 48.70 | 5.54 | 0.87 | 0.02 * | - | 0.09 * |
Manufacturer Typical Neat Resin | Properties |
---|---|
Color | Clear |
Hardness (ASTM D2240) Shore D | 65–70 |
Work-life | 3–4 min |
Tack-free Time | 9–10 min |
Time to Handling Strength | 20 min at 23 °C |
Cure Time | 48 h at 23 °C |
Elongation | 75% |
Tensile Strength | 12.8 MPa |
Weight% | Kriab2 (Colorless) | Kriab5 (Red) | Kriab6 (Blue) | Kriab7 (Green) | |
---|---|---|---|---|---|
Element (in metal layer) | O | 10.754 | 6.517 | 4.435 | N/A |
B | - | 0.295 | 1.850 | ||
Pb | 72.686 | 86.545 | 89.589 | ||
Sn | - | 6.405 | - | ||
Bi | - | - | - | ||
Na | - | 0.238 | - | ||
K | 7.550 | - | - | ||
Ca | 3.825 | - | - | ||
S | 5.185 | - | - | ||
C | - | - | 4.126 | ||
Period | mid-19th century | mid-19th century | mid-19th century | mid-18th century | |
Oxide (in glass layer) | SiO2 | 50.420 | 43.733 | 31.405 | 76.853 |
B2O3 | 14.950 | 16.108 | - | 12.377 | |
PbO | 9.115 | 32.551 | 59.962 | 7.902 | |
Na2O | 4.956 | 1.776 | 4.315 | - | |
K2O | 3.795 | 1.237 | - | 1.337 | |
MgO | 0.274 | 0.253 | - | 0.019 | |
CaO | 11.936 | 3.269 | - | 0.038 | |
Al2O3 | 2.676 | 1.008 | 0.654 | 0.262 | |
Fe2O3 | 1.429 | 0.065 | 1.404 | 0.216 | |
CuO | - | - | 2.259 | 0.847 | |
ZnO | - | - | - | 0.150 | |
MnO | 0.448 | - | - | - |
Ancient Kriab | CIE-Color Coordinates | Alternative Kriab | CIE-Color Coordinates | Difference |
---|---|---|---|---|
L* = 46.342 a* = −0.097 b* = −0.055 | L* = 42.007 a* = −3.211 b* = −0.852 | ∆L* = −4.335 ∆a* = −3.114 ∆b* = −0.797 | ||
L* = 15.156 a* = 11.891 b* = −30.716 | L* = 32.646 a* = −11.874 b* = −17.412 | ∆L* = 17.490 ∆a* = −23.765 ∆b* = 13.304 | ||
L* = 27.521 a* = −18.599 b* = −1.684 | L* = 21.185 a* = −19.225 b* = 0.903 | ∆L* = −6.336 ∆a* = −0.626 ∆b* = 2.587 | ||
L* = 33.569 a* = 36.618 b* = 16.547 | L* = 43.146 a* = 31.205 b* = 12.094 | ∆L* = 9.577 ∆a* = −5.413 ∆b* = −4.453 |
Color of Mirrors | ∆L* | ∆a* | ∆b* | ∆E* |
---|---|---|---|---|
Colorless | −4.335 | −3.114 | −0.797 | 5.4 |
Blue | 17.490 | −23.765 | 13.304 | 32.4 |
Green | −6.336 | −0.626 | 2.587 | 6.9 |
Red | 9.577 | −5.413 | −4.453 | 11.9 |
Spectrum 1 (Translucent Surface) | Spectrum 2 (Clear Surface) | ||||
---|---|---|---|---|---|
Element | Weight% | Atomic% | Element | Weight% | Atomic% |
C K | 14.35 | 35.90 | C K | 23.88 | 54.57 |
O K | 22.32 | 41.93 | O K | 16.11 | 27.19 |
Na K | 2.63 | 3.44 | Na K | 1.83 | 2.19 |
Si K | 10.72 | 11.47 | Si K | 9.35 | 9.13 |
Pb M | 49.98 | 7.25 | Pb M | 48.83 | 6.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ounjaijom, T.; Intawin, P.; Kraipok, A.; Panyata, S.; Chanchiaw, R.; Teeranun, Y.; Gaewviset, P.; Boonprakong, P.; Meechoowas, E.; Disayathanoowat, T.; et al. Chemical and Mechanical Characterization of the Alternative Kriab-Mirror Tesserae for Restoration of 18th to 19th-Century Mosaics (Thailand). Materials 2023, 16, 3321. https://doi.org/10.3390/ma16093321
Ounjaijom T, Intawin P, Kraipok A, Panyata S, Chanchiaw R, Teeranun Y, Gaewviset P, Boonprakong P, Meechoowas E, Disayathanoowat T, et al. Chemical and Mechanical Characterization of the Alternative Kriab-Mirror Tesserae for Restoration of 18th to 19th-Century Mosaics (Thailand). Materials. 2023; 16(9):3321. https://doi.org/10.3390/ma16093321
Chicago/Turabian StyleOunjaijom, Thawatchai, Pratthana Intawin, Arnon Kraipok, Surapong Panyata, Rachata Chanchiaw, Yunee Teeranun, Prapun Gaewviset, Pathoo Boonprakong, Ekarat Meechoowas, Terd Disayathanoowat, and et al. 2023. "Chemical and Mechanical Characterization of the Alternative Kriab-Mirror Tesserae for Restoration of 18th to 19th-Century Mosaics (Thailand)" Materials 16, no. 9: 3321. https://doi.org/10.3390/ma16093321
APA StyleOunjaijom, T., Intawin, P., Kraipok, A., Panyata, S., Chanchiaw, R., Teeranun, Y., Gaewviset, P., Boonprakong, P., Meechoowas, E., Disayathanoowat, T., Intaja, S., Dito, P., Piboon, C., & Pengpat, K. (2023). Chemical and Mechanical Characterization of the Alternative Kriab-Mirror Tesserae for Restoration of 18th to 19th-Century Mosaics (Thailand). Materials, 16(9), 3321. https://doi.org/10.3390/ma16093321