Complete Generalization of the Equations for the Stress–Strain Curves of Concrete under Uniaxial Compression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generalized Extreme Value Distribution
2.2. Fractional Calculus
2.2.1. Introduction
2.2.2. Definition of Fractional-Order Integral
2.2.3. Fractional Calculus and Constitutive Models
3. Process of Generalization of Concrete Stress–Strain Equations
3.1. Introduction
3.2. First Generalization: Fractional Hooke’s Law
3.3. Second Generalization: Exponent m
3.4. Third Generalization: Generalized Extreme Value Distribution
3.5. Formulation of the Stress–Strain Equation: Restricted Form
3.6. Complete Stress–Strain Curves
3.7. General Form of the Equation
4. Experimental Verification of the Results
4.1. Results for the Low-Strength Concrete Test Specimens
4.2. Results for the Medium-Strength Concrete Test Specimens
4.3. Results for the High-Strength Concrete Test Specimens
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bach, J.C.V. Untersuchungen von Granit in Bezug auf Zug-, Druck-, Biegungs-und Schubfestigkeit, sowie in Hinsicht auf Zug-, Druck- und Biegungselastizität. Z. Ver. Dtsch. Ing. 1897, 41, 248. [Google Scholar]
- Ritter, K.W. Die Bauweise Hennebique. Schweiz. Bauztg. 1899, XXXIII, 59–61. [Google Scholar]
- Smith, G.M.; Young, L.E. Ultimate flexural analysis on stress-strain curves for cylinders. ACI J. Proc. 1956, 53, 597–609. [Google Scholar]
- Yip, W.K. Generic form of stress-strain equations for concrete. Cem. Concr. Res. 1997, 28, 499–508. [Google Scholar] [CrossRef]
- Desayi, P.; Krishnan, S. Equation for the stress-strain curve of concrete. ACI J. Proc. 1964, 61, 345–350. [Google Scholar]
- Saenz, L.P. Discussion of “Equation for the stress-strain curve of concrete” by P. Desayi and S. Krishnan. ACI J. Proc. 1964, 61, 1229–1235. [Google Scholar]
- Alexander, S. A single equation for the stress-strain curve of concrete. Indian Concr. J. 1965, 39, 247–277. [Google Scholar]
- Sinha, B.P.; Gerstle, K.H.; Tulin, L.G. Stress-strain relations for concrete under cyclic loading. ACI J. 1964, 61, 195–211. [Google Scholar]
- Popovics, S. A numerical approach to the complete stress-strain curve of concrete. Cem. Concr. Res. 1973, 3, 583–599. [Google Scholar] [CrossRef]
- Carreira, D.J.; Chu, K.-H. Stress-strain Relationship for plain concrete in compression. ACI J. Proc. 1985, 82, 797–804. [Google Scholar]
- Tsai, W.T. Uniaxial compressional stress-strain relation of concrete. J. Struc. Eng. 1988, 14, 2133–2136. [Google Scholar] [CrossRef]
- Collins, M.P.; Mitchell, D.; MacGregor, J.G. Structural design considerations for highstrengthconcrete. Concr. Int. Des. Constr. 1933, 15, 27–34. [Google Scholar]
- Tasnimi, A.A. Mathematical model for complete stress-strain curve prediction ofnormal, light-weight and high-strength concretes. Mag. Concr. Res. 2004, 56, 23–34. [Google Scholar] [CrossRef]
- Sargin, M. Stress-Strain Relationships for Concrete and the Analysis of Structural Concrete Sections; Solid Mechanics Division, University of Waterloo: Waterloo, ON, Canada, 1971. [Google Scholar]
- Wang, P.T.; Shah, S.P.; Naaman, A.E. Stress-strain curves of normal and light weight concrete in compression. ACI J. Proc. 1978, 75, 603–611. [Google Scholar]
- Comité Euro-International du Béton. CBE-FIP Model Code 90; Thomas Telford: London, UK, 1991. [Google Scholar]
- Sargin, M.; Handa, V. A general formulation for the stress-strain properties of concrete. In Solid Mechanics Division, Report no. 3; University of Waterloo: Waterloo, ON, Canada, 1969; pp. 1–27. [Google Scholar]
- CEB Working Group on HSC/HPC. High performance concrete, Recommended Extensions to the MC 90 Research Needs. Bull. D’Inf. CEB 1995, 228, 1–60. [Google Scholar]
- Van Gysel, A.; Taerwe, L. Analytical formulation of the complete stress-strain curvefor high strength concrete. Mater. Struct. 1996, 29, 529–533. [Google Scholar] [CrossRef]
- Kachanov, L.M. On the time to rupture under creep conditions. Izv. Akad. Nauk SSSR. Otd. Tekhn. Nauk. 1958, 8, 26–31. [Google Scholar]
- Rabotnov, Y.N. A Mechanism of a Long Time Failure, in Creep Problems in Structural Members; USSR Academy of Sci. Publ.: Moscow, Russia, 1959. [Google Scholar]
- Janson, J. Fracture mechanics and damage mechanics: A combined approach. J. Mécanique Appliquée 1977, 1, 69–84. [Google Scholar]
- Krajcinovic, D.; Fonseca, G.U. The continuous damage theory of brittle materials. Part I: General theory. J. Appl. Mech. 1981, 48, 809–815. [Google Scholar] [CrossRef]
- Lemaitre, J. A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 1985, 107, 83–89. [Google Scholar] [CrossRef]
- Mazars, J.J.; Pijaudier-Cabot, G. Continuum damage theory-Application to concrete. J. Eng. Mech. 1989, 115, 345–365. [Google Scholar] [CrossRef]
- Shah, S.P.; Winter, G. Inelastic behavior and fracture of concrete. ACI J. Proc. 1966, 63, 925–930. [Google Scholar]
- Weibull, W. A statistical theory of the strength of materials. Ing. Vetensk. Akad. 1939, 151, 1–45. [Google Scholar]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. Trans. ASME 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Griffith, A.A. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 1921, 221, 163–198. [Google Scholar]
- Smekal, A. Bruchtheorie spröder körper. Z. Phys. A-Hadron Nucl. 1936, 103, 495–525. (In German) [Google Scholar]
- Taylor, G.I. The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. Lond. A 1934, 145, 362–387. [Google Scholar]
- Taylor, G.I. The mechanism of plastic deformation of crystals. Part II. Comparison with observation. Proc. R. Soc. Lond. A 1934, 145, 388–404. [Google Scholar]
- Taylor, G.I. A theory of plasticity of crystals. Z. Krist. Cryst. Mater. 1934, 89, 375–385. [Google Scholar] [CrossRef]
- Blechman, I. Stage model of stress-strain relationship for concrete under short-termload. Part 1: Ascending branch. Cem. Concr. Res. 1988, 18, 863–873. [Google Scholar] [CrossRef]
- Blechman, I. Stage model of stress-strain relationship for concrete under short-termload. Part 2: Nature of concrete atrophy. Cem. Concr. Res. 1989, 19, 7–15. [Google Scholar] [CrossRef]
- Blechman, I. Stage model of stress-strain relationship for concrete under short-termload. Part 3: Descending branch. Cem. Concr. Res. 1989, 19, 203–215. [Google Scholar] [CrossRef]
- Ferretti, E. Modellazione del Comportamento del Cilindrofasciato in Compressione. Ph. D. Thesis, Universisity of Lecce, Lecce, Italy, 2001. (In Italian). [Google Scholar]
- Ferretti, E.; Di Leo, A. Cracking and creep role in displacements at constant load: Concrete solids in compression, Computers. Mater. Contin. 2008, 7, 59–79. [Google Scholar]
- Fréchet, M. Sur la loi de probabilité de l’ecartmaximum. Ann. Soc. Pol. Math. 1927, 6, 93–116. [Google Scholar]
- Fisher, R.A.; Tippett, L.H.C. Limiting forms of the frecuency distribution of thelargest or smallest members of a sample. Proc. Camb. Philos. Soc. 1928, 24, 180–190. [Google Scholar] [CrossRef]
- Gnedenko, B.V. Sur la distribution limit´e du terme maximum d’unesériealéatoire. Ann. Math. 1943, 44, 423–453. [Google Scholar] [CrossRef]
- Gumbel, E. Statistical Theory of Extreme Values and some Practical Application. In Journal Applied Mathematics Series 33; National Bureau of Standards: Washington, DC, USA; U.S. Department of Commerce: Washington, DC, USA, 1954. [Google Scholar]
- Liouville, J. M´emoire sur quelquesquestion de g´eometrie et de m´ecanique et sur un nouveaugenre de calculpourresoudre ces questions. J. L’´Ec. 1832, 13, 1–69. [Google Scholar]
- Malinin, N.N. Applied Theory of Plasticity and Creep; Mashinostroine: Moscow, Russia, 1975. [Google Scholar]
- Sobotka, Z. Reology of Materials and Construction; Academia: Prague, Czech Republic, 1981. [Google Scholar]
- Blair, G.W.S. Limitations of the Newtonian time scale in relation to non-equibrium rheological states and a theory of quasi-propierties. Proc. R. Soc. Lond. A 1947, 189, 69–87. [Google Scholar]
- Blair, G.W.S. The role of psycophysics in rheology. J. Colloid Sci. 1947, 2, 21–32. [Google Scholar] [CrossRef]
- Gerasimov, A.N.N. A generalizationof linear laws of deformation and its application to inner friction problems. Prikt. Mat. Mek. 1948, 12, 251–259. [Google Scholar]
- Slonimsky, G.L. On the law of deformation of highly elastic polymeric bodies. Dokl. Akad. Nauk. SSSR 1961, 140, 343–346. [Google Scholar]
- Nutting, P.G. A new general law of deformation. J. Frankl. Inst. 1921, 191, 679–685. [Google Scholar] [CrossRef]
- Nonnemnacher, T.F. Fractional relaxation equations for viscoelasticity and relatedphenomena. Lect. Notes Phys. 1991, 381, 309–320. [Google Scholar]
- Yip, W.K.; Kong, F.K.; Chan, K.S.; Lim, M.K. A statistical model of microcrackingof concrete under uniaxial compression. Theor. Appl. Fract. Mech. 1995, 22, 17–27. [Google Scholar] [CrossRef]
- Yip, W.K. New damage variable in failure analysis of concrete. J. Mater. Civ. Eng. 1996, 8, 184–188. [Google Scholar] [CrossRef]
- Basu, B.; Tiwari, D.; Kundu, D.; Prasad, R.R. Is the Weibull distribution the mostappropiate statistical strength distribution for brittle materials? Ceram. Int. 2009, 35, 237–246. [Google Scholar] [CrossRef]
- Gupta, R.D.; Kundu, D. Generalized exponential distributions. Aust. N. Z. J. Stat. 1999, 41, 173–188. [Google Scholar] [CrossRef]
- Salguero, F.; Romero, S.; Prat, F.; Arribas, R.; Moreno, F. Universal Stress-Strain Equation for Metallic Materials. J. Mater. Civ. Eng. 2014, 26, 040140030(1)–040140030(9). [Google Scholar] [CrossRef]
- Salgero, F. Sobre las Curvas Tensión-Deformación de Hormigones y Otros Materiales Sometidos a Ensayos de Tensión Uniaxial. Ph. D. Thesis, University of Huelva, Huelva, Spain, 2012. (In Spanish). [Google Scholar]
- Kato, B.; Aoki, H.; Yamanouchi, H. Standarized mathematical expression for stress-strain relations of structural steel under monotonic and uniaxial tension loading. Mater. Struct. 1990, 23, 47–58. [Google Scholar] [CrossRef]
Initial Distribution F(x) | Limit Distribution for the Maxima G(x) |
---|---|
Exponential | Type I GEVD (Gumbel) |
Gamma | Type I GEVD (Gumbel) |
Normal | Type I GEVD (Gumbel) |
Log-normal | Type I GEVD (Gumbel) |
Pareto | Type II GEVD (Fréchet) |
Cauchy | Type II GEVD (Fréchet) |
Burr | Type II GEVD (Fréchet) |
Log-gamma | Type II GEVD (Fréchet) |
Uniform | Type III GEVD (Weibull) |
Beta | Type III GEVD (Weibull) |
Test Specimen | CEM (kg/m3) | W/C | CA (kg/m3) | FA (kg/m3) | SF (kg/m3) | WR(kg/m3) | f′c (MPa) |
---|---|---|---|---|---|---|---|
L2 | 250 | 0.65 | 975.41 | 1056.46 | - | - | 32.35 |
M1 | 375 | 0.44 | 925.76 | 995.71 | 4.69 | - | 56.18 |
M2 | 375 | 0.44 | 925.76 | 995.71 | 4.69 | - | 50.06 |
H2 | 500 | 0.23 | 907.80 | 982.26 | 25.00 | 12.5 | 105.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Cartes, V.; Ramos-Cabeza, D.; de la Torre, M.L.; Salguero-Andújar, F. Complete Generalization of the Equations for the Stress–Strain Curves of Concrete under Uniaxial Compression. Materials 2023, 16, 3387. https://doi.org/10.3390/ma16093387
Domínguez-Cartes V, Ramos-Cabeza D, de la Torre ML, Salguero-Andújar F. Complete Generalization of the Equations for the Stress–Strain Curves of Concrete under Uniaxial Compression. Materials. 2023; 16(9):3387. https://doi.org/10.3390/ma16093387
Chicago/Turabian StyleDomínguez-Cartes, Vanesa, Daniel Ramos-Cabeza, María Luisa de la Torre, and Francisco Salguero-Andújar. 2023. "Complete Generalization of the Equations for the Stress–Strain Curves of Concrete under Uniaxial Compression" Materials 16, no. 9: 3387. https://doi.org/10.3390/ma16093387
APA StyleDomínguez-Cartes, V., Ramos-Cabeza, D., de la Torre, M. L., & Salguero-Andújar, F. (2023). Complete Generalization of the Equations for the Stress–Strain Curves of Concrete under Uniaxial Compression. Materials, 16(9), 3387. https://doi.org/10.3390/ma16093387