Biomedical Applications of Titanium Alloys: A Comprehensive Review
Abstract
:1. Introduction
2. Properties of Titanium
2.1. Physical Properties
2.2. Chemical Properties
2.3. Mechanical Properties
2.4. Biological Properties
3. Fabrication Techniques
3.1. Production of Pure Titanium
3.2. Production of Titanium Alloys
4. Titanium Alloys
4.1. Main Microstructural Phases
4.2. Effects of the Alloying Elements
4.3. Biomedical Titanium Alloys
4.4. Effects of Heat Treatments
- Stress-relieving: Mainly utilized to reduce undesirable residual stresses that may result during material processing, usually performed at temperatures between 595 and 705 °C (1100 and 1300 °F) for a period of one to two hours, for alpha and Alpha–Beta alloys, and at 700–800 °C with shorter times, for beta alloys. Cooling is usually performed in air. Stress relieving does not alter the overall microstructure or phase distribution. The main effect is to improve the material’s mechanical properties that are sensitive to residual stresses (e.g., fatigue).
- Annealing: Annealing titanium and its alloys primarily aims to enhance fracture toughness, room temperature ductility, dimensional and thermal stability, as well as creep resistance. As it maximizes some of the most important technological properties, many titanium alloys are placed in service in their annealed state. There are two common types of annealing for titanium alloys that are relevant for biomedical applications, and the most suitable treatment depends on both the chemical composition and the scope:
- −
- Recrystallization annealing: By heating the alloy up to the upper end of the α-β range (but still below the β-transus), recrystallization annealing helps refine the grain structure of titanium alloys. It promotes the formation of new, smaller grains with a lower dislocation density, which enhances mechanical properties such as strength and ductility. It also contributes to eliminating cold work effects and residual stresses.
- −
- β-annealing: It involves heating the material within the beta-phase region (but usually as close as possible to the β-transus) to enhance its mechanical properties. Held at a specific temperature range, this treatment facilitates the dissolution of unwanted phases, reduces residual stresses, and promotes the formation of a uniform microstructure.
- −
- Duplex annealing: Duplex annealing of titanium alloys entails a two-step process. The alloy is initially heated to the beta-phase region for homogenization, eliminating chemical inhomogeneities. Subsequently, a second annealing in the alpha-beta region refines the microstructure, improves mechanical properties, and minimizes residual stresses. Duplex annealing is commonly applied to α-β titanium alloys, particularly those used in aerospace and high-performance applications.
- Solution treating and aging: In solution treating, the alloy is heated to a high temperature within the beta-phase range to dissolve alloying elements and achieve a homogeneous solid solution. Rapid quenching locks in this solid solution. Aging, the second step, involves reheating the alloy to a lower temperature to encourage precipitation of fine particles. These particles contribute to strengthening and refining the microstructure. The balance between the alpha and beta phases, achieved through proper aging, enhances mechanical properties, such as strength, hardness, and fatigue resistance. The specific temperatures and times for these processes depend on the alloy’s composition and intended application.
5. Forming of Titanium Alloys
6. Machining of Titanium Alloys
6.1. Conventional Machining
6.2. Advanced Machining
7. Powder-Based Processes
8. Biological Corrosion
9. Biomedical Applications
9.1. Dental Implants
9.2. Joint Replacement
9.3. Trauma Devices
9.4. Spinal Implants
9.5. Cardiovascular Devices
- -
- -
- -
9.6. Soft Tissue Implants
10. Biological Functions
11. Long-Term Survival Rates
11.1. Causes of Failure
11.2. Clinical Follow-Ups
12. Surface Modification of Titanium
13. Challenges and Future Directions
14. Advantages and Disadvantages
15. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blackwood, D.J. Biomaterials: Past Successes and Future Problems. Corros. Rev. 2003, 21, 97–124. [Google Scholar] [CrossRef]
- Elias, C.N.; Fernandes, D.J.; de Souza, F.M.; Monteiro, E.D.S.; de Biasi, R.S. Mechanical and Clinical Properties of Titanium and Titanium-Based Alloys (Ti G2, Ti G4 Cold Worked Nanostructured and Ti G5) for Biomedical Applications. J. Mater. Res. Technol. 2019, 8, 1060–1069. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, K. Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 102, 844–862. [Google Scholar] [CrossRef] [PubMed]
- Tomashov, N.D.; Altovsky, R.M.; Chernova, G.P. Passivity and Corrosion Resistance of Titanium and Its Alloys. J. Electrochem. Soc. 1961, 108, 113. [Google Scholar] [CrossRef]
- Bosshardt, D.D.; Chappuis, V.; Buser, D. Osseointegration of Titanium, Titanium Alloy and Zirconia Dental Implants: Current Knowledge and Open Questions. Periodontol. 2000 2017, 73, 22–40. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Chen, L.-Y. A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Adv. Eng. Mater. 2019, 21, 1801215. [Google Scholar] [CrossRef]
- Quinn, J.; McFadden, R.; Chan, C.-W.; Carson, L. Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation. iScience 2020, 23, 101745. [Google Scholar] [CrossRef]
- Jorge, J.R.P.; Barão, V.A.; Delben, J.A.; Faverani, L.P.; Queiroz, T.P.; Assunção, W.G. Titanium in Dentistry: Historical Development, State of the Art and Future Perspectives. J. Indian Prosthodont. Soc. 2013, 13, 71–77. [Google Scholar] [CrossRef]
- Olin, C. Titanium in Cardiac and Cardiovascular Applications. In Engineering Materials; Springer: Berlin/Heidelberg, Germany, 2001; pp. 889–907. ISBN 9783642631191. [Google Scholar]
- Mishra, S.K.; Chowdhary, R.; Chrcanovic, B.R.; Brånemark, P.-I. Osseoperception in Dental Implants: A Systematic Review. J. Prosthodont. 2016, 25, 185–195. [Google Scholar] [CrossRef]
- Tjellström, A.; Lindström, J.; Hallén, O.; Albrektsson, T.; Brånemark, P.I. Osseointegrated Titanium Implants in the Temporal Bone. A Clinical Study on Bone-Anchored Hearing Aids. Am. J. Otol. 1981, 2, 304–310. [Google Scholar]
- Carlsson, L.; Röstlund, T.; Albrektsson, B.; Albrektsson, T.; Brånemark, P.I. Osseointegration of Titanium Implants. Acta Orthop. Scand. 1986, 57, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Zaid, M.B.; O’Donnell, R.J.; Potter, B.K.; Forsberg, J.A. Orthopaedic Osseointegration: State of the Art. J. Am. Acad. Orthop. Surg. 2019, 27, e977–e985. [Google Scholar] [CrossRef] [PubMed]
- Marin, E.; Fedrizzi, L.; Zagra, L. Porous Metallic Structures for Orthopaedic Applications: A Short Review of Materials and Technologies. Eur. Orthop. Traumatol. 2010, 1, 103–109. [Google Scholar] [CrossRef]
- Raimondi, M.T.; Pietrabissa, R. The In-Vivo Wear Performance of Prosthetic Femoral Heads with Titanium Nitride Coating. Biomaterials 2000, 21, 907–913. [Google Scholar] [CrossRef]
- Lalor, P.A.; Revell, P.A.; Gray, A.B.; Wright, S.; Railton, G.T.; Freeman, M.A. Sensitivity to Titanium. A Cause of Implant Failure? J. Bone Jt. Surg. Br. 1991, 73, 25–28. [Google Scholar] [CrossRef]
- Jacobs, J.J.; Silverton, C.; Hallab, N.J.; Skipor, A.K.; Patterson, L.; Black, J.; Galante, J.O. Metal Release and Excretion from Cementless Titanium Alloy Total Knee Replacements. Clin. Orthop. Relat. Res. 1999, 358, 173–180. [Google Scholar] [CrossRef]
- Onisi, M.; Kondo, W. Establishing an Environment for Growth of Aciduric Bacteria in the Oral Cavity. J. Dent. Res. 1956, 35, 596–602. [Google Scholar] [CrossRef]
- Pezzotti, G.; Adachi, T.; Gasparutti, I.; Vincini, G.; Zhu, W.; Boffelli, M.; Rondinella, A.; Marin, E.; Ichioka, H.; Yamamoto, T.; et al. Vibrational Monitor of Early Demineralization in Tooth Enamel after in Vitro Exposure to Phosphoridic Liquid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 173, 19–33. [Google Scholar] [CrossRef]
- White, D.J. Dental Calculus: Recent Insights into Occurrence, Formation, Prevention, Removal and Oral Health Effects of Supragingival and Subgingival Deposits. Eur. J. Oral Sci. 1997, 105, 508–522. [Google Scholar] [CrossRef]
- Takahashi, N. Microbial Ecosystem in the Oral Cavity: Metabolic Diversity in an Ecological Niche and Its Relationship with Oral Diseases. Int. Congr. Ser. 2005, 1284, 103–112. [Google Scholar] [CrossRef]
- Leban, M.B.; Kosec, T.; Finšgar, M. Corrosion Characterization and Ion Release in SLM-Manufactured and Wrought Ti6Al4V Alloy in an Oral Environment. Corros. Sci. 2022, 209, 110716. [Google Scholar] [CrossRef]
- Ramazanzadeh, B.A.; Ahrari, F.; Sabzevari, B.; Habibi, S. Nickel Ion Release from Three Types of Nickel-Titanium-Based Orthodontic Archwires in the as-Received State and after Oral Simulation. J. Dent. Res. Dent. Clin. Dent. Prospects 2014, 8, 71–76. [Google Scholar] [PubMed]
- Barber, C.C.; Burnham, M.; Ojameruaye, O.; McKee, M.D. A Systematic Review of the Use of Titanium versus Stainless Steel Implants for Fracture Fixation. OTA Int. 2021, 4, e138. [Google Scholar] [CrossRef] [PubMed]
- Gugala, Z.; Lindsey, R.W. Removal versus Retention of Orthopaedic Trauma Implants. Orthop. Knowl. Online 2015, 13, 1–20. [Google Scholar] [CrossRef]
- Vos, D.; Hanson, B.; Verhofstad, M. Implant Removal of Osteosynthesis: The Dutch Practice. Results of a Survey. J. Trauma Manag. Outcomes 2012, 6, 6. [Google Scholar] [CrossRef]
- Hayes, J.S.; Seidenglanz, U.; Pearce, A.I.; Pearce, S.G.; Archer, C.W.; Richards, R.G. Surface Polishing Positively Influences Ease of Plate and Screw Removal. Eur. Cell. Mater. 2010, 19, 117–126. [Google Scholar] [CrossRef]
- Carlsson, L.; Röstlund, T.; Albrektsson, B.; Albrektsson, T. Removal Torques for Polished and Rough Titanium Implants. Int. J. Oral Maxillofac. Implants 1988, 3, 21–24. [Google Scholar]
- Elias, W.J.; Simmons, N.E.; Kaptain, G.J.; Chadduck, J.B.; Whitehill, R. Complications of Posterior Lumbar Interbody Fusion When Using a Titanium Threaded Cage Device. J. Neurosurg. 2000, 93, 45–52. [Google Scholar] [CrossRef]
- Boelderl, A.; Daniaux, H.; Kathrein, A.; Maurer, H. Danger of Damaging the Medial Branches of the Posterior Rami of Spinal Nerves during a Dorsomedian Approach to the Spine. Clin. Anat. 2002, 15, 77–81. [Google Scholar] [CrossRef]
- Warburton, A.; Girdler, S.J.; Mikhail, C.M.; Ahn, A.; Cho, S.K. Biomaterials in Spinal Implants: A Review. Neurospine 2020, 17, 101–110. [Google Scholar] [CrossRef]
- Smit, T.H.; Müller, R.; van Dijk, M.; Wuisman, P.I.J.M. Changes in Bone Architecture during Spinal Fusion: Three Years Follow-up and the Role of Cage Stiffness. Spine (Phila. Pa. 1976) 2003, 28, 1802–1808; Discussion 1809. [Google Scholar] [CrossRef] [PubMed]
- Myerburg, R.J.; Feigal, D.W., Jr.; Lindsay, B.D. Life-Threatening Malfunction of Implantable Cardiac Devices. N. Engl. J. Med. 2006, 354, 2309–2311. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, J.C. Crystal Structures of Titanium, Zirconium, and Hafnium at High Pressures. Science 1963, 140, 72–73. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo, R.; Chochlidakis, K.; Galindo-Moreno, P.; Ercoli, C. Titanium Nitride Coated Implant Abutments: From Technical Aspects and Soft Tissue Biocompatibility to Clinical Applications. A Literature Review. J. Prosthodont. 2022, 31, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Mertens, T.; Kollek, H. On the Stability and Composition of Oxide Layers on Pre-Treated Titanium. Int. J. Adhes. Adhes. 2010, 30, 466–477. [Google Scholar] [CrossRef]
- Cunha, A.; Renz, R.P.; Blando, E.; de Oliveira, R.B.; Hübler, R. Osseointegration of Atmospheric Plasma-Sprayed Titanium Implants: Influence of the Native Oxide Layer. J. Biomed. Mater. Res. A 2014, 102, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Akai, A.; Shiozawa, D.; Sakagami, T. Fatigue Limit Estimation of Titanium Alloy Ti-6Al-4V with Infrared Thermography. In Proceedings of the Thermosense: Thermal Infrared Applications XXXIX, Anaheim, CA, USA, 5 May 2017; Bison, P., Burleigh, D., Eds.; SPIE: Bellingham, WA, USA, 2017. [Google Scholar]
- Teoh, S. Fatigue of Biomaterials: A Review. Int. J. Fatigue 2000, 22, 825–837. [Google Scholar] [CrossRef]
- Kopp, C.D. Brånemark Osseointegration. Prognosis and Treatment Rationale. Dent. Clin. N. Am. 1989, 33, 701–731. [Google Scholar] [CrossRef]
- Brånemark, R.; Brånemark, P.I.; Rydevik, B.; Myers, R.R. Osseointegration in Skeletal Reconstruction and Rehabilitation: A Review. J. Rehabil. Res. Dev. 2001, 38, 175–181. [Google Scholar]
- Odman, J.; Lekholm, U.; Jemt, T.; Brånemark, P.I.; Thilander, B. Osseointegrated Titanium Implants—A New Approach in Orthodontic Treatment. Eur. J. Orthod. 1988, 10, 98–105. [Google Scholar] [CrossRef]
- Martín-Cameán, A.; Jos, A.; Puerto, M.; Calleja, A.; Iglesias-Linares, A.; Solano, E.; Cameán, A.M. In Vivo Determination of Aluminum, Cobalt, Chromium, Copper, Nickel, Titanium and Vanadium in Oral Mucosa Cells from Orthodontic Patients with Mini-Implants by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). J. Trace Elem. Med. Biol. 2015, 32, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Shabalovskaya, S.; Anderegg, J.; Van Humbeeck, J. Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications. Acta Biomater. 2008, 4, 447–467. [Google Scholar] [CrossRef] [PubMed]
- Sohn, H.-S. Production Technology of Titanium by Kroll Process. J. Korean Inst. Resour. Recycl. 2020, 29, 3–14. [Google Scholar] [CrossRef]
- Agripa, H.; Botef, I. Modern Production Methods for Titanium Alloys: A Review. In Titanium Alloys—Novel Aspects of Their Manufacturing and Processing; IntechOpen: London, UK, 2019. [Google Scholar]
- Woodside, C.R.; King, P.E.; Nordlund, C. Arc Distribution during the Vacuum Arc Remelting of Ti-6Al-4V. Metall. Mater. Trans. B 2013, 44, 154–165. [Google Scholar] [CrossRef]
- Blackburn, M.J.; Malley, D.R. Plasma Arc Melting of Titanium Alloys. Mater. Eng. 1993, 14, 19–27. [Google Scholar] [CrossRef]
- Fashu, S.; Lototskyy, M.; Davids, M.W.; Pickering, L.; Linkov, V.; Tai, S.; Renheng, T.; Fangming, X.; Fursikov, P.V.; Tarasov, B.P. A Review on Crucibles for Induction Melting of Titanium Alloys. Mater. Des. 2020, 186, 108295. [Google Scholar] [CrossRef]
- Fang, Z.Z.; Paramore, J.D.; Sun, P.; Chandran, K.S.R.; Zhang, Y.; Xia, Y.; Cao, F.; Koopman, M.; Free, M. Powder Metallurgy of Titanium—Past, Present, and Future. Int. Mater. Rev. 2018, 63, 407–459. [Google Scholar] [CrossRef]
- Chan, K.S.; Koike, M.; Johnson, B.W.; Okabe, T. Modeling of Alpha-Case Formation and Its Effects on the Mechanical Properties of Titanium Alloy Castings. Metall. Mater. Trans. A 2008, 39, 171–180. [Google Scholar] [CrossRef]
- Gaddam, R.; Sefer, B.; Pederson, R.; Antti, M.-L. Study of Alpha-Case Depth in Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V. IOP Conf. Ser. Mater. Sci. Eng. 2013, 48, 012002. [Google Scholar] [CrossRef]
- Eisenbarth, E.; Velten, D.; Müller, M.; Thull, R.; Breme, J. Biocompatibility of Beta-Stabilizing Elements of Titanium Alloys. Biomaterials 2004, 25, 5705–5713. [Google Scholar] [CrossRef]
- Li, Y.; Wong, C.; Xiong, J.; Hodgson, P.; Wen, C. Cytotoxicity of Titanium and Titanium Alloying Elements. J. Dent. Res. 2010, 89, 493–497. [Google Scholar] [CrossRef]
- Abdel-Hady Gepreel, M.; Niinomi, M. Biocompatibility of Ti-Alloys for Long-Term Implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef]
- Bania, P.J. Beta Titanium Alloys and Their Role in the Titanium Industry. JOM 1994, 46, 16–19. [Google Scholar] [CrossRef]
- Gupta, R.K.; Pant, B.; Sinha, P.P. Theory and Practice of γ + A2 Ti Aluminide: A Review. Trans. Indian Inst. Met. 2014, 67, 143–165. [Google Scholar] [CrossRef]
- Kim, Y.-W. Gamma Titanium Aluminides. JOM 1995, 47, 38. [Google Scholar] [CrossRef]
- Duwez, P. The Martensite Transformation Temperature in Titanium Binary Alloys. Trans. ASME J. Appl. Mech. 1953, 45, 934–940. [Google Scholar]
- Ivasishin, O.M.; Teliovich, R.V. Transformation Plasticity in Titanium Alpha Double Prime Martensite. J. Phys. IV 2001, 11, Pr4-165–Pr4-172. [Google Scholar] [CrossRef]
- Hickman, B.S. The Formation of Omega Phase in Titanium and Zirconium Alloys: A Review. J. Mater. Sci. 1969, 4, 554–563. [Google Scholar] [CrossRef]
- Weiss, I.; Semiatin, S.L. Thermomechanical Processing of Alpha Titanium Alloys—An Overview. Mater. Sci. Eng. A Struct. Mater. 1999, 263, 243–256. [Google Scholar] [CrossRef]
- Koul, M.K.; Breedis, J.F. Phase Transformations in Beta Isomorphous Titanium Alloys. Acta Metall. 1970, 18, 579–588. [Google Scholar] [CrossRef]
- Mwinteribo, T.V.; Li, C.; Saifu, W.; Li, J.; Xu, X. Mechanical Properties of near Alpha Titanium Alloys for High-Temperature Applications—A Review. Aircr. Eng. Aerosp. Technol. 2020, 92, 521–540. [Google Scholar]
- Semiatin, S.L.; Seetharaman, V.; Weiss, I. The Thermomechanical Processing of Alpha/Beta Titanium Alloys. JOM 1997, 49, 33–39. [Google Scholar] [CrossRef]
- Liu, Y.; Lim, S.C.V.; Ding, C.; Huang, A.; Weyland, M. Unravelling the Competitive Effect of Microstructural Features on the Fracture Toughness and Tensile Properties of near Beta Titanium Alloys. J. Mater. Sci. Technol. 2022, 97, 101–112. [Google Scholar] [CrossRef]
- Sidhu, S.S.; Singh, H.; Gepreel, M.A.-H. A Review on Alloy Design, Biological Response, and Strengthening of β-Titanium Alloys as Biomaterials. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 121, 111661. [Google Scholar] [CrossRef]
- Alipour, S.; Taromian, F.; Ghomi, E.R.; Zare, M.; Singh, S.; Ramakrishna, S. Nitinol: From Historical Milestones to Functional Properties and Biomedical Applications. Proc. Inst. Mech. Eng. H 2022, 236, 1595–1612. [Google Scholar] [CrossRef]
- Elias, C.N.; Lima, J.H.C.; Valiev, R.; Meyers, M.A. Biomedical Applications of Titanium and Its Alloys. JOM 2008, 60, 46–49. [Google Scholar] [CrossRef]
- Elias, C.N.; Meyers, M.A.; Valiev, R.Z.; Monteiro, S.N. Ultrafine Grained Titanium for Biomedical Applications: An Overview of Performance. J. Mater. Res. Technol. 2013, 2, 340–350. [Google Scholar] [CrossRef]
- Marin, E.; Pressacco, M.; Fusi, S.; Lanzutti, A.; Turchet, S.; Fedrizzi, L. Characterization of Grade 2 Commercially Pure Trabecular Titanium Structures. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 2648–2656. [Google Scholar] [CrossRef]
- Ohkubo, C.; Shimura, I.; Aoki, T.; Hanatani, S.; Hosoi, T.; Okabe, T. In Vitro Wear Assessment of Titanium Alloy Teeth. J. Prosthodont. 2002, 11, 263–269. [Google Scholar] [CrossRef]
- Atapour, M.; Pilchak, A.L.; Shamanian, M.; Fathi, M.H. Corrosion Behavior of Ti–8Al–1Mo–1V Alloy Compared to Ti–6Al–4V. Mater. Eng. 2011, 32, 1692–1696. [Google Scholar] [CrossRef]
- Sabarish, S.; Kumar, P.U. Prototyping and Analysis of Knee Implant by Rapid Prototyping. Available online: https://www.academia.edu/ (accessed on 15 October 2023).
- Che Lah, N.A.; Hussin, M.H. Titanium and Titanium Based Alloys as Metallic Biomaterials in Medical Applications-Spine Implant Case Study. Pertanika J. Sci. Technol. 2019, 27, 459–472. [Google Scholar]
- Izri, Z.; Bijanzad, A.; Torabnia, S.; Lazoglu, I. In Silico Evaluation of Lattice Designs for Additively Manufactured Total Hip Implants. Comput. Biol. Med. 2022, 144, 105353. [Google Scholar] [CrossRef]
- Mohseni, E.; Zalnezhad, E.; Bushroa, A.R. Comparative Investigation on the Adhesion of Hydroxyapatite Coating on Ti–6Al–4V Implant: A Review Paper. Int. J. Adhes. Adhes. 2014, 48, 238–257. [Google Scholar] [CrossRef]
- Niu, W.; Bermingham, M.J.; Baburamani, P.S.; Palanisamy, S.; Dargusch, M.S.; Turk, S.; Grigson, B.; Sharp, P.K. The Effect of Cutting Speed and Heat Treatment on the Fatigue Life of Grade 5 and Grade 23 Ti–6Al–4V Alloys. Mater. Eng. 2013, 46, 640–644. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, B.; Puleo, D.A.; Schoop, J.; Jawahir, I.S. Improved Surface Integrity from Cryogenic Machining of Ti-6Al-7Nb Alloy for Biomedical Applications. Procedia CIRP 2016, 45, 63–66. [Google Scholar] [CrossRef]
- Assis, S.L.; Costa, I. Electrochemical Evaluation of Ti-13Nb-13Zr, Ti-6Al-4V and Ti-6Al-7Nb Alloys for Biomedical Application by Long-Term Immersion Tests. Mater. Corros. 2007, 58, 329–333. [Google Scholar] [CrossRef]
- Chandler, H. Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys; ASM International: Almere, The Netherlands, 1996; ISBN 9780871705655. [Google Scholar]
- Canelo-Yubero, D.; Poletti, C.; Warchomicka, F.; Daniels, J.; Requena, G. Load Partition and Microstructural Evolution during Hot Deformation of Ti-6Al-6V-2Sn Matrix Composites, and Possible Strengthening Mechanisms. J. Alloy. Compd. 2018, 764, 937–946. [Google Scholar] [CrossRef]
- Carrozza, A.; Aversa, A.; Fino, P.; Lombardi, M. Towards Customized Heat Treatments and Mechanical Properties in the LPBF-Processed Ti-6Al-2Sn-4Zr-6Mo Alloy. Mater. Des. 2022, 215, 110512. [Google Scholar] [CrossRef]
- Li, H.-M.; Li, M.-Q.; Luo, J.; Wang, K. Microstructure and Mechanical Properties of Heat-Treated Ti–5Al–2Sn–2Zr–4Mo–4Cr. Trans. Nonferrous Met. Soc. China 2015, 25, 2893–2900. [Google Scholar] [CrossRef]
- Kharia, K.K.; Rack, H.J. Martensitic Phase Transformations in IMI 550 (Ti-4Al-4Mo-2Sn-0.5 Si). Metall. Mater. Trans. A 2001, 32, 671–679. [Google Scholar] [CrossRef]
- Yu, S.; Yu, Z.-T.; Han, J.-Y.; Wang, G.; Niu, J.-L.; Dargusch, M.S. Haemocompatibility of Ti–3Zr–2Sn–3Mo–25Nb Biomedical Alloy with Surface Heparinization Using Electrostatic Self Assembly Technology. Trans. Nonferrous Met. Soc. China 2012, 22, 3046–3052. [Google Scholar] [CrossRef]
- Yang, X.; Hutchinson, C.R. Corrosion-Wear of β-Ti Alloy TMZF (Ti-12Mo-6Zr-2Fe) in Simulated Body Fluid. Acta Biomater. 2016, 42, 429–439. [Google Scholar] [CrossRef]
- Yang, X. Mechanical Behaviour of Ti-12Mo-6Zr-2Fe (TMZF) β-Titanium Alloy in Physiological Environments. Doctoral Dissertation, Monash University, Melbourne, Australia, 2017. [Google Scholar]
- Wang, K. The Characterization of Ti-12Mo-6Zr-2Fe A New Biocompatible Titanium Alloy Developed for Surgical Implant. Beta Titanium Alloys in the 1990’s. In Proceedings of the 122 Annual Meeting of the Minerals, Metals and Materials Society (TMS), Denver, CO, USA, 21–25 February 1993; pp. 46–60, ISBN 0-87339-200-0. [Google Scholar]
- Fellah, M.; Hezil, N.; Leila, D.; Abdul Samad, M.; Djellabi, R.; Kosman, S.; Montagne, A.; Iost, A.; Obrosov, A.; Weiss, S. Effect of Sintering Temperature on Structure and Tribological Properties of Nanostructured Ti–15Mo Alloy for Biomedical Applications. Trans. Nonferrous Met. Soc. China 2019, 29, 2310–2320. [Google Scholar] [CrossRef]
- Kumar, S.; Narayanan, T.S.N.S. Corrosion Behaviour of Ti-15Mo Alloy for Dental Implant Applications. J. Dent. 2008, 36, 500–507. [Google Scholar] [CrossRef]
- Zardiackas, L.D.; Mitchell, D.W.; Disegi, J.A. Characterization of Ti-15Mo Beta Titanium Alloy for Orthopaedic Implant Applications. In Medical Applications of Titanium and Its Alloys: The Material and Biological Issues; ASTM International: West Conshohocken, PA, USA, 2009; pp. 60–75. ISBN 9780803120105. [Google Scholar]
- Sun, S.H.; Hagihara, K.; Ishimoto, T.; Suganuma, R.; Xue, Y.F.; Nakano, T. Comparison of Microstructure, Crystallographic Texture, and Mechanical Properties in Ti-15Mo-5Zr-3Al Alloys Fabricated via Electron and Laser Beam Powder Bed Fusion Technologies. Addit. Manuf. 2021, 47, 102329. [Google Scholar] [CrossRef]
- Ishimoto, T.; Hagihara, K.; Hisamoto, K.; Sun, S.-H.; Nakano, T. Crystallographic Texture Control of Beta-Type Ti–15Mo–5Zr–3Al Alloy by Selective Laser Melting for the Development of Novel Implants with a Biocompatible Low Young’s Modulus. Scr. Mater. 2017, 132, 34–38. [Google Scholar] [CrossRef]
- Bhambri, S.K.; Shetty, R.H.; Gilbertson, L.N. Optimization of Properties of Ti-15Mo-2.8 Nb-3Al-0.2 Si & Ti-15Mo-2.8 Nb-0.2 Si-. 260 Beta Titanium Alloys for Application in Prosthetic Implants. Astm Spec. Tech. Publ. 1996, 1272, 88–95. [Google Scholar]
- Niinomi, M.; Hattori, T.; Niwa, S. Material Characteristics and Biocompatibility of Low Rigidity Titanium Alloys for Biomedical Applications. In Biomaterials in Orthopedics; Informa Healthcare: London, UK, 2003; ISBN 9780824742942. [Google Scholar]
- Zhou, Y.L.; Niinomi, M.; Akahori, T. Dynamic Young’s Modulus and Mechanical Properties of Ti−Hf Alloys. Mater. Trans. 2004, 45, 1549–1554. [Google Scholar] [CrossRef]
- Zhou, Y.-L.; Niinomi, M. Passive Films and Corrosion Resistance of Ti–Hf Alloys in 5% HCl Solution. Surf. Coat. Technol. 2009, 204, 180–186. [Google Scholar] [CrossRef]
- Bhola, R.; Bhola, S.M.; Mishra, B.; Ayers, R.A.; Olson, D.L.; Thompson, D.O.; Chimenti, D.E. Electrochemical Characterization of A Low Modulus Ti-35.5nb-7.3zr-5.7ta Alloy in A Simulated Body Fluid Using EIS for Biomedical Applications; AIP: College Park, ML, USA, 2011. [Google Scholar]
- Correa, D.R.N.; Rocha, L.A.; Donato, T.A.G.; Sousa, K.S.J.; Grandini, C.R.; Afonso, C.R.M.; Doi, H.; Tsutsumi, Y.; Hanawa, T. On the Mechanical Biocompatibility of Ti-15Zr-Based Alloys for Potential Use as Load-Bearing Implants. J. Mater. Res. Technol. 2020, 9, 1241–1250. [Google Scholar] [CrossRef]
- Niinomi, M. Fatigue Performance and Cyto-Toxicity of Low Rigidity Titanium Alloy, Ti-29Nb-13Ta-4.6Zr. Biomaterials 2003, 24, 2673–2683. [Google Scholar] [CrossRef]
- Hao, Y.L.; Yang, R.; Niinomi, M.; Kuroda, D.; Zhou, Y.L.; Fukunaga, K.; Suzuki, A. Aging Response of the Young’s Modulus and Mechanical Properties of Ti-29Nb-13Ta-4.6 Zr for Biomedical Applications. Metall. Mater. Trans. A 2003, 34, 1007–1012. [Google Scholar] [CrossRef]
- Ikeda, M.; Komatsu, S.-Y.; Sowa, I.; Niinomi, M. Aging Behavior of the Ti-29Nb-13Ta-4.6Zr New Beta Alloy for Medical Implants. Metall. Mater. Trans. A 2002, 33, 487–493. [Google Scholar] [CrossRef]
- Li, X.; Ye, S.; Yuan, X.; Yu, P. Fabrication of Biomedical Ti-24Nb-4Zr-8Sn Alloy with High Strength and Low Elastic Modulus by Powder Metallurgy. J. Alloys Compd. 2019, 772, 968–977. [Google Scholar] [CrossRef]
- Santos, P.F.; Niinomi, M.; Liu, H.; Cho, K.; Nakai, M.; Itoh, Y.; Narushima, T.; Ikeda, M. Fabrication of Low-Cost Beta-Type Ti-Mn Alloys for Biomedical Applications by Metal Injection Molding Process and Their Mechanical Properties. J. Mech. Behav. Biomed. Mater. 2016, 59, 497–507. [Google Scholar] [CrossRef]
- Santos, P.; Niinomi, M.; Cho, K.; Nakai, M.; Liu, H. Development of New Ti-Mn-Mo Alloys for Use in Biomedical Applications. In Proceedings of the 13th World Conference on Titanium; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 1741–1745. ISBN 9781119296126. [Google Scholar]
- Kuroda, D.; Kawasaki, H.; Yamamoto, A.; Hiromoto, S.; Hanawa, T. Mechanical Properties and Microstructures of New Ti–Fe–Ta and Ti–Fe–Ta–Zr System Alloys. Mater. Sci. Eng. C Mater. Biol. Appl. 2005, 25, 312–320. [Google Scholar] [CrossRef]
- El Kadiri, H.; Wang, L.; Ozkan Gulsoy, H.; Suri, P.; Park, S.J.; Hammi, Y.; German, R.M. Development of a Ti-Based Alloy: Design and Experiment. JOM 2009, 61, 60–66. [Google Scholar] [CrossRef]
- Niinomi, M.; Liu, Y.; Nakai, M.; Liu, H.; Li, H. Biomedical Titanium Alloys with Young’s Moduli Close to That of Cortical Bone. Regen. Biomater. 2016, 3, 173–185. [Google Scholar] [CrossRef]
- Liu, H.; Niinomi, M.; Nakai, M.; Hieda, J.; Cho, K. Deformation Induced Changeable Young’s Modulus in Ternary Ti-Cr-O Alloys for Spinal Fixation Applications. In PRICM; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 1635–1641. ISBN 9781118792148. [Google Scholar]
- Jones, N.G.; Vorontsov, V.A.; Dye, D. The Behaviour of Gum Metal (Ti-36Nb-2Ta-3Zr-0.3 O wt.%) During Superelastic Cycling. In Proceedings of the 13th World Conference on Titanium; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 899–904. [Google Scholar]
- Ramarolahy, A.; Castany, P.; Prima, F.; Laheurte, P.; Péron, I.; Gloriant, T. Microstructure and Mechanical Behavior of Superelastic Ti–24Nb–0.5O and Ti–24Nb–0.5N Biomedical Alloys. J. Mech. Behav. Biomed. Mater. 2012, 9, 83–90. [Google Scholar] [CrossRef]
- Silva, D.G.; de Salvo, J.G.J.; Rodrigues Henriques, V.A. Microstructure Evolution during the Sintering of Blended Elemental Ti-23Nb-0.7Ta-2Zr-1.2O Gum Metal Alloy. In Proceedings of the SAE Technical Paper Series, SAE International: 400 Commonwealth Drive, Warrendale, PA, USA, 26 March 2021. [Google Scholar]
- Gordin, D.M.; Ion, R.; Vasilescu, C.; Drob, S.I.; Cimpean, A.; Gloriant, T. Potentiality of the “Gum Metal” Titanium-Based Alloy for Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 44, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.K.; Gustavson, L.J.; Dumbleton, J.H. Microstructure and Properties of a New Beta Titanium Alloy, Ti-12Mo-6Zr-2Fe, Developed for Surgical Implants. In Medical Applications of Titanium and Its Alloys: The Material and Biological Issues; ASTM International: West Conshohocken, PA, USA, 2009; pp. 76–87. ISBN 9780803120105. [Google Scholar]
- Civjan, S.; Huget, E.F.; DeSimon, L.B. Potential Applications of Certain Nickel-Titanium (Nitinol) Alloys. J. Dent. Res. 1975, 54, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Niinomi, M.; Nakai, M. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. Int. J. Biomater. 2011, 2011, 836587. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, A.; Huynh, T.; Zhou, L.; Hyer, H.; Mehta, A.; Imholte, D.D.; Woolstenhulme, N.E.; Wachs, D.M.; Sohn, Y. Mechanical Behavior Assessment of Ti-6Al-4V ELI Alloy Produced by Laser Powder Bed Fusion. Metals 2021, 11, 1671. [Google Scholar] [CrossRef]
- Afonso, C.R.M.; Aleixo, G.T.; Ramirez, A.J.; Caram, R. Influence of Cooling Rate on Microstructure of Ti–Nb Alloy for Orthopedic Implants. Mater. Sci. Eng. C Mater. Biol. Appl. 2007, 27, 908–913. [Google Scholar] [CrossRef]
- Ahmed, T.; Rack, H.J. Phase Transformations during Cooling in A+β Titanium Alloys. Materials Science and Engineering: A 1998, 243, 206–211. [Google Scholar] [CrossRef]
- Oh, J.-M.; Lim, J.-W.; Lee, B.-G.; Suh, C.-Y.; Cho, S.-W.; Lee, S.-W.; Choi, G.-S. Grain Refinement and Hardness Increase of Titanium via Trace Element Addition. Mater. Trans. 2010, 51, 2009–2012. [Google Scholar] [CrossRef]
- Simbi, D.J.; Scully, J.C. The Effect of Residual Interstitial Elements and Iron on Mechanical Properties of Commercially Pure Titanium. Mater. Lett. 1996, 26, 35–39. [Google Scholar] [CrossRef]
- Rooy, E.L.; Handbook, A. Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Almere, The Netherlands, 1992. [Google Scholar]
- Yumak, N.; Aslantaş, K. A Review on Heat Treatment Efficiency in Metastable β Titanium Alloys: The Role of Treatment Process and Parameters. J. Mater. Res. Technol. 2020, 9, 15360–15380. [Google Scholar] [CrossRef]
- Semiatin, S.L.; Brown, T.M.; Goff, T.A.; Fagin, P.N.; Turner, R.E.; Murry, J.M.; Barker, D.R.; Miller, J.D.; Zhang, F. Diffusion Coefficients for Modeling the Heat Treatment of Ti-6Al-4V. Metall. Mater. Trans. A 2004, 35, 3015–3018. [Google Scholar] [CrossRef]
- Omoniyi, P.O.; Akinlabi, E.T.; Mahamood, R.M. Heat Treatments of Ti6Al4V Alloys for Industrial Applications: An Overview. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1107, 012094. [Google Scholar] [CrossRef]
- Mahardika, M.; Akbar, F. Baroto Neutron Radiography and Tomography Investigations on the Porosity of the As-Cast Titanium Femoral Stem. IOP Conf. Ser. Mater. Sci. Eng. 2017, 172, 012057. [Google Scholar]
- Prayoga, B.T.; Dharmastiti, R.; Akbar, F. Suyitno Microstructural Characterization, Defect and Hardness of Titanium Femoral Knee Joint Produced Using Vertical Centrifugal Investment Casting. J. Mech. Sci. Technol. 2018, 32, 149–156. [Google Scholar] [CrossRef]
- Nakajima, H.; Okabe, T. Titanium in Dentistry Development and Research in the USA. Dent. Mater. J. 1996, 15, 77–90. [Google Scholar] [CrossRef]
- Menani, L.R.; Ribeiro, R.F.; de Almeida, R.P. Tensile Bond Strength of Cast Commercially Pure Titanium and Cast Gold-Alloy Posts and Cores Cemented with Two Luting Agents. J. Prosthet. Dent. 2008, 99, 141–147. [Google Scholar] [CrossRef]
- Gómez-Polo, M.; Llidó, B.; Rivero, A.; Del Río, J.; Celemín, A. A 10-Year Retrospective Study of the Survival Rate of Teeth Restored with Metal Prefabricated Posts versus Cast Metal Posts and Cores. J. Dent. 2010, 38, 916–920. [Google Scholar] [CrossRef]
- Saudi, A.U.; Wibisono, M.; Rianti, W.; Triwibowo, B.; Damisih, D.; Setyadi, I.; Gustiono, D.; Nurlina, N.; Kozin, M.; Jujur, I.N. Evaluation of Ti-6Al-7Nb Femoral Stem Fabricated by Centrifugal Investment Casting Using Fatigue Test. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2022. [Google Scholar]
- Grivas, T.B.; Savvidou, O.D.; Psarakis, S.A.; Bernard, P.-F.; Triantafyllopoulos, G.; Kovanis, I.; Alexandropoulos, P. Neck Fracture of a Cementless Forged Titanium Alloy Femoral Stem Following Total Hip Arthroplasty: A Case Report and Review of the Literature. J. Med. Case Rep. 2007, 1, 174. [Google Scholar] [CrossRef]
- Semilitsch, M.; Willert, H.G. Properties of Implant Alloys for Artificial Hip Joints. Med. Biol. Eng. Comput. 1980, 18, 511–520. [Google Scholar] [CrossRef]
- Morgan-Hough, C.V.J.; Tavakkolizadeh, A.; Purkayastha, S. Fatigue Failure of the Femoral Component of a Cementless Total Hip Arthroplasty. J. Arthroplasty 2004, 19, 658–660. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.C.; Li, Y.J.; Tzou, G.Y. Study of the Titanium Alloy Deformation Behavior in Equal Channel Angular Extrusion. Key Eng. Mater. 2007, 345–346, 177–180. [Google Scholar] [CrossRef]
- Kent, D.; Wang, G.; Yu, Z.; Ma, X.; Dargusch, M. Strength Enhancement of a Biomedical Titanium Alloy through a Modified Accumulative Roll Bonding Technique. J. Mech. Behav. Biomed. Mater. 2011, 4, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Lü, Z.D.; Zhang, C.J.; Feng, H.; Zhang, S.Z.; Han, J.C.; Jia, Y.; Du, Z.X.; Chen, Y.Y. Effect of Heat Treatment on Microstructure and Tensile Properties of 2 Vol.% TiCp/near-β Ti Composite Processed by Isothermal Multidirectional Forging. Mater. Sci. Eng. A Struct. Mater. 2019, 761, 138064. [Google Scholar] [CrossRef]
- Pachla, W.; Kulczyk, M.; Sus-Ryszkowska, M.; Mazur, A.; Kurzydlowski, K.J. Nanocrystalline Titanium Produced by Hydrostatic Extrusion. J. Mater. Process. Technol. 2008, 205, 173–182. [Google Scholar] [CrossRef]
- Zareena, A.R.; Veldhuis, S.C. Tool Wear Mechanisms and Tool Life Enhancement in Ultra-Precision Machining of Titanium. J. Mater. Process. Technol. 2012, 212, 560–570. [Google Scholar] [CrossRef]
- Madyira, D.M.; Laubscher, R.F.; van Rensburg, N.J.; Henning, P.F.J. High Speed Machining Induced Residual Stresses in Grade 5 Titanium Alloy. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 2013, 227, 208–215. [Google Scholar] [CrossRef]
- Pan, Z.; Liang, S.Y.; Garmestani, H. Finite Element Simulation of Residual Stress in Machining of Ti-6Al-4V with a Microstructural Consideration. Proc. Inst. Mech. Eng. Pt. B J. Eng. Manuf. 2019, 233, 1103–1111. [Google Scholar] [CrossRef]
- Murr, L.E.; Amato, K.N.; Li, S.J.; Tian, Y.X.; Cheng, X.Y.; Gaytan, S.M.; Martinez, E.; Shindo, P.W.; Medina, F.; Wicker, R.B. Microstructure and Mechanical Properties of Open-Cellular Biomaterials Prototypes for Total Knee Replacement Implants Fabricated by Electron Beam Melting. J. Mech. Behav. Biomed. Mater. 2011, 4, 1396–1411. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.J.; Hou, W.T.; Hao, Y.L.; Yang, R.; Murr, L.E. Microstructure and Mechanical Properties of Open Cellular Ti–6Al–4V Prototypes Fabricated by Electron Beam Melting for Biomedical Applications. Mater. Technol. 2016, 31, 98–107. [Google Scholar] [CrossRef]
- Del Guercio, G.; Galati, M.; Saboori, A.; Fino, P.; Iuliano, L. Microstructure and Mechanical Performance of Ti–6Al–4V Lattice Structures Manufactured via Electron Beam Melting (EBM): A Review. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 183–203. [Google Scholar] [CrossRef]
- Khomutov, M.; Potapkin, P.; Cheverikin, V.; Petrovskiy, P.; Travyanov, A.; Logachev, I.; Sova, A.; Smurov, I. Effect of Hot Isostatic Pressing on Structure and Properties of Intermetallic NiAl–Cr–Mo Alloy Produced by Selective Laser Melting. Intermetallics (Barking) 2020, 120, 106766. [Google Scholar] [CrossRef]
- Tammas-Williams, S.; Withers, P.J.; Todd, I.; Prangnell, P.B. The Effectiveness of Hot Isostatic Pressing for Closing Porosity in Titanium Parts Manufactured by Selective Electron Beam Melting. Metall. Mater. Trans. A 2016, 47, 1939–1946. [Google Scholar] [CrossRef]
- Ramamurthy, A.; Sivaramakrishnan, R.; Muthuramalingam, T.; Venugopal, S. Performance Analysis of Wire Electrodes on Machining Ti-6Al-4V Alloy Using Electrical Discharge Machining Process. Mach. Sci. Technol. 2015, 19, 577–592. [Google Scholar] [CrossRef]
- Hasçalık, A.; Çaydaş, U. Electrical Discharge Machining of Titanium Alloy (Ti–6Al–4V). Appl. Surf. Sci. 2007, 253, 9007–9016. [Google Scholar] [CrossRef]
- Vasanth, S.; Muthuramalingam, T.; Vinothkumar, P.; Geethapriyan, T.; Murali, G. Performance Analysis of Process Parameters on Machining Titanium (Ti-6Al-4V) Alloy Using Abrasive Water Jet Machining Process. Procedia CIRP 2016, 46, 139–142. [Google Scholar] [CrossRef]
- Hascalik, A.; Çaydaş, U.; Gürün, H. Effect of Traverse Speed on Abrasive Waterjet Machining of Ti–6Al–4V Alloy. Mater. Eng. 2007, 28, 1953–1957. [Google Scholar] [CrossRef]
- Muthuramalingam, T.; Akash, R.; Krishnan, S.; Phan, N.H.; Pi, V.N.; Elsheikh, A.H. Surface Quality Measures Analysis and Optimization on Machining Titanium Alloy Using CO2 Based Laser Beam Drilling Process. J. Manuf. Process. 2021, 62, 1–6. [Google Scholar] [CrossRef]
- Muthuramalingam, T.; Moiduddin, K.; Akash, R.; Krishnan, S.; Hammad Mian, S.; Ameen, W.; Alkhalefah, H. Influence of Process Parameters on Dimensional Accuracy of Machined Titanium (Ti-6Al-4V) Alloy in Laser Beam Machining Process. Opt. Laser Technol. 2020, 132, 106494. [Google Scholar] [CrossRef]
- Singh, R.; Khamba, J.S. Ultrasonic Machining of Titanium and Its Alloys: A Review. J. Mater. Process. Technol. 2006, 173, 125–135. [Google Scholar] [CrossRef]
- Kumar, J.; Khamba, J.S.; Mohapatra, S.K. An Investigation into the Machining Characteristics of Titanium Using Ultrasonic Machining. Int. J. Mach. Mach. Mater. 2008, 3, 143. [Google Scholar] [CrossRef]
- Yang, X.; Richard Liu, C. Machining Titanium and Its Alloys. Mach. Sci. Technol. 1999, 3, 107–139. [Google Scholar] [CrossRef]
- Dewidar, M.M.; Yoon, H.-C.; Lim, J.K. Mechanical Properties of Metals for Biomedical Applications Using Powder Metallurgy Process: A Review. Met. Mater. Int. 2006, 12, 193–206. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Liu, Y. Additive Manufacturing of Titanium Alloys for Biomedical Applications. In Additive Manufacturing of Emerging Materials; Springer International Publishing: Cham, Switzerland, 2019; pp. 179–196. ISBN 9783319917122. [Google Scholar]
- Bolzoni, L.; Ruiz-Navas, E.M.; Gordo, E. Feasibility Study of the Production of Biomedical Ti–6Al–4V Alloy by Powder Metallurgy. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 49, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Manne, P.K.; Shravan Kumar, N.; Buddi, T.; Lakshmi, A.A.; Subbiah, R. Powder Metallurgy Techniques for Titanium Alloys-A Review. E3S Web Conf. 2020, 184, 01045. [Google Scholar] [CrossRef]
- Wen, M.; Wen, C.; Hodgson, P.; Li, Y. Fabrication of Ti–Nb–Ag Alloy via Powder Metallurgy for Biomedical Applications. Mater. Eng. 2014, 56, 629–634. [Google Scholar] [CrossRef]
- Liu, Y.; Li, K.; Luo, T.; Song, M.; Wu, H.; Xiao, J.; Tan, Y.; Cheng, M.; Chen, B.; Niu, X.; et al. Powder Metallurgical Low-Modulus Ti-Mg Alloys for Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 56, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Bolzoni, L.; Yang, F. Development of Cu-Bearing Powder Metallurgy Ti Alloys for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2019, 97, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Lario, J.; Vicente, Á.; Amigó, V. Evolution of the Microstructure and Mechanical Properties of a Ti35Nb2Sn Alloy Post-Processed by Hot Isostatic Pressing for Biomedical Applications. Metals 2021, 11, 1027. [Google Scholar] [CrossRef]
- Abdullah, Z.; Razali, R.; Subuki, I.; Omar, M.A.; Ismail, M.H. An Overview of Powder Metallurgy (PM) Method for Porous Nickel Titanium Shape Memory Alloy (SMA). Adv. Mater. Res. 2016, 1133, 269–274. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Liu, Y.; Li, S.; Hao, Y. Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review. Adv. Eng. Mater. 2018, 20, 1700842. [Google Scholar] [CrossRef]
- Munir, K.; Biesiekierski, A.; Wen, C.; Li, Y. Selective Laser Melting in Biomedical Manufacturing. In Metallic Biomaterials Processing and Medical Device Manufacturing; Elsevier: Amsterdam, The Netherlands, 2020; pp. 235–269. ISBN 9780081029657. [Google Scholar]
- Mishurova, T.; Cabeza, S.; Artzt, K.; Haubrich, J.; Klaus, M.; Genzel, C.; Requena, G.; Bruno, G. An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V. Materials 2017, 10, 348. [Google Scholar] [CrossRef]
- Denlinger, E.R.; Heigel, J.C.; Michaleris, P.; Palmer, T.A. Effect of Inter-Layer Dwell Time on Distortion and Residual Stress in Additive Manufacturing of Titanium and Nickel Alloys. J. Mater. Process. Technol. 2015, 215, 123–131. [Google Scholar] [CrossRef]
- Namavar, F.; Sabirianov, R.; Marton, D.; Rubinstein, A.; Garvin, K. Biocompatibility of Titanium. 1 February 2012; Volume 2012, p. C1.148. Available online: https://ui.adsabs.harvard.edu/ (accessed on 15 October 2023).
- Bhola, R.; Bhola, S.M.; Mishra, B.; Olson, D.L. Corrosion in Titanium Dental Implants/Prostheses—A Review. Trends Biomater. Artif. Organs 2011, 25, 34–46. [Google Scholar]
- Barberi, J.; Spriano, S. Titanium and Protein Adsorption: An Overview of Mechanisms and Effects of Surface Features. Materials 2021, 14, 1590. [Google Scholar] [CrossRef] [PubMed]
- Geetha, M.; Kamachi Mudali, U.; Gogia, A.K.; Asokamani, R.; Raj, B. Influence of Microstructure and Alloying Elements on Corrosion Behavior of Ti–13Nb–13Zr Alloy. Corros. Sci. 2004, 46, 877–892. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, E.; Zhang, L. Microstructure, Mechanical Properties, Bio-Corrosion Properties and Antibacterial Properties of Ti-Ag Sintered Alloys. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 62, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, Y.; Pang, S.; Liaw, P.K.; Zhang, T. Bio-Corrosion Behavior and in Vitro Biocompatibility of Equimolar TiZrHfNbTa High-Entropy Alloy. Intermetallics (Barking) 2020, 124, 106845. [Google Scholar] [CrossRef]
- Niu, J.; Guo, Y.; Li, K.; Liu, W.; Dan, Z.; Sun, Z.; Chang, H.; Zhou, L. Improved Mechanical, Bio-Corrosion Properties and in Vitro Cell Responses of Ti-Fe Alloys as Candidate Dental Implants. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 122, 111917. [Google Scholar] [CrossRef]
- Manoj, A.; Kasar, A.K.; Menezes, P.L. Tribocorrosion of Porous Titanium Used in Biomedical Applications. J. Bio- Tribo-Corros. 2019, 5, 1–16. [Google Scholar] [CrossRef]
- Hacisalihoglu, I.; Samancioglu, A.; Yildiz, F.; Purcek, G.; Alsaran, A. Tribocorrosion Properties of Different Type Titanium Alloys in Simulated Body Fluid. Wear 2015, 332–333, 679–686. [Google Scholar] [CrossRef]
- Diomidis, N.; Mischler, S.; More, N.S.; Roy, M.; Paul, S.N. Fretting-Corrosion Behavior of β Titanium Alloys in Simulated Synovial Fluid. Wear 2011, 271, 1093–1102. [Google Scholar] [CrossRef]
- Kumar, S.; Sankara Narayanan, T.S.N.; Ganesh Sundara Raman, S.; Seshadri, S.K. Evaluation of Fretting Corrosion Behaviour of CP-Ti for Orthopaedic Implant Applications. Tribol. Int. 2010, 43, 1245–1252. [Google Scholar] [CrossRef]
- Souza, M.E.P.; Lima, L.; Lima, C.R.P.; Zavaglia, C.A.C.; Freire, C.M.A. Effects of PH on the Electrochemical Behaviour of Titanium Alloys for Implant Applications. J. Mater. Sci. Mater. Med. 2009, 20, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Manivasagam, G.; Mudali, U.K.; Asokamani, R.; Raj, B. Corrosion and Microstructural Aspects of Titanium and Its Alloys as Orthopaedic Devices. Corros. Rev. 2003, 21, 125–160. [Google Scholar] [CrossRef]
- Woodman, J.L.; Jacobs, J.J.; Galante, J.O.; Urban, R.M. Metal Ion Release from Titanium-Based Prosthetic Segmental Replacements of Long Bones in Baboons: A Long-Term Study. J. Orthop. Res. 1984, 1, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Pitchi, C.S.; Priyadarshini, A.; Sana, G.; Narala, S.K.R. A Review on Alloy Composition and Synthesis of β-Titanium Alloys for Biomedical Applications. Mater. Today 2020, 26, 3297–3304. [Google Scholar] [CrossRef]
- Okulov, I.V.; Volegov, A.S.; Attar, H.; Bönisch, M.; Ehtemam-Haghighi, S.; Calin, M.; Eckert, J. Composition Optimization of Low Modulus and High-Strength TiNb-Based Alloys for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2017, 65, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Markowska-Szczupak, A.; Endo-Kimura, M.; Paszkiewicz, O.; Kowalska, E. Are titania photocatalysts and titanium implants safe? Review on the toxicity of titanium compounds. Nanomaterials 2020, 10, 2065. [Google Scholar] [CrossRef]
- Block, M.S. Dental Implants: The Last 100 Years. J. Oral Maxillofac. Surg. 2018, 76, 11–26. [Google Scholar] [CrossRef]
- Espinoza-Montero, P.J.; Montero-Jiménez, M.; Fernández, L.; Paz, J.L.; Piñeiros, J.L.; Ceballos, S.M. In Vitro Wearing Away of Orthodontic Brackets and Wires in Different Conditions: A Review. Heliyon 2022, 8, e10560. [Google Scholar] [CrossRef]
- Donley, T.G.; Gillette, W.B. Titanium Endosseous Implant-Soft Tissue Interface: A Literature Review. J. Periodontol. 1991, 62, 153–160. [Google Scholar] [CrossRef]
- Nergiz, I.; Schmage, P.; Ozcan, M.; Platzer, U. Effect of Length and Diameter of Tapered Posts on the Retention. J. Oral Rehabil. 2002, 29, 28–34. [Google Scholar] [CrossRef]
- Lambjerg-Hansen, H.; Asmussen, E. Mechanical Properties of Endodontic Posts. J. Oral Rehabil. 2008, 24, 882–887. [Google Scholar] [CrossRef]
- Burstone, C.J.; Goldberg, A.J. Beta Titanium: A New Orthodontic Alloy. Am. J. Orthod. 1980, 77, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Brantley, W.A. Evolution, Clinical Applications, and Prospects of Nickel-Titanium Alloys for Orthodontic Purposes. J. World Fed. Orthod. 2020, 9, S19–S26. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Komatsu, H.; Murata, Y.; Tanaka, T.; Sano, H. A Newly Designed Automatic PH-Cycling System to Simulate Daily PH Fluctuations. Dent. Mater. J. 2006, 25, 280–285. [Google Scholar] [CrossRef]
- Roehling, S.; Astasov-Frauenhoffer, M.; Hauser-Gerspach, I.; Braissant, O.; Woelfler, H.; Waltimo, T.; Kniha, H.; Gahlert, M. In Vitro Biofilm Formation on Titanium and Zirconia Implant Surfaces. J. Periodontol. 2017, 88, 298–307. [Google Scholar] [CrossRef]
- Bürgers, R.; Gerlach, T.; Hahnel, S.; Schwarz, F.; Handel, G.; Gosau, M. In Vivo and in Vitro Biofilm Formation on Two Different Titanium Implant Surfaces. Clin. Oral Implants Res. 2010, 21, 156–164. [Google Scholar] [CrossRef]
- Martínez-Hernández, M.; Olivares-Navarrete, R.; Almaguer-Flores, A. Influence of the Periodontal Status on the Initial-Biofilm Formation on Titanium Surfaces. Clin. Implant Dent. Relat. Res. 2016, 18, 174–181. [Google Scholar] [CrossRef]
- Haraldson, T.; Karlsson, U.; Carlsson, G.E. Bite Force and Oral Function in Complete Denture Wearers. J. Oral Rehabil. 1979, 6, 41–48. [Google Scholar] [CrossRef]
- Haraldson, T.; Carlsson, G.E. Bite Force and Oral Function in Patients with Osseointegrated Oral Implants. Scand. J. Dent. Res. 1977, 85, 200–208. [Google Scholar] [CrossRef]
- van Eijden, T.M. Three-Dimensional Analyses of Human Bite-Force Magnitude and Moment. Arch. Oral Biol. 1991, 36, 535–539. [Google Scholar] [CrossRef]
- Moraschini, V.; Poubel, L.A.D.C.; Ferreira, V.F.; Barboza, E.D.S.P. Evaluation of Survival and Success Rates of Dental Implants Reported in Longitudinal Studies with a Follow-up Period of at Least 10 Years: A Systematic Review. Int. J. Oral Maxillofac. Surg. 2015, 44, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Messias, A.; Nicolau, P.; Guerra, F. Titanium Dental Implants with Different Collar Design and Surface Modifications: A Systematic Review on Survival Rates and Marginal Bone Levels. Clin. Oral Implants Res. 2019, 30, 20–48. [Google Scholar] [CrossRef] [PubMed]
- Madhukar, S.; Nakshatram, S.; Naik, R.P.; Butty, P. Review on Use of Titanium and Its Alloys as Implants in Dental Applications. Int. J. Curr. Eng. Technol. 2020, 10, 513–517. [Google Scholar] [CrossRef]
- Altuna, P.; Lucas-Taulé, E.; Gargallo-Albiol, J.; Figueras-Álvarez, O.; Hernández-Alfaro, F.; Nart, J. Clinical Evidence on Titanium-Zirconium Dental Implants: A Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Surg. 2016, 45, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Sales, P.H.D.H.; Barros, A.W.P.; de Oliveira-Neto, O.B.; de Lima, F.J.C.; Carvalho, A.D.A.T.; Leão, J.C. Do Zirconia Dental Implants Present Better Clinical Results than Titanium Dental Implants? A Systematic Review and Meta-Analysis. J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101324. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Menini, M.; Santori, G.; Rakic, M.; Sculean, A.; Pesce, P. Titanium Abutment Surface Modifications and Peri-Implant Tissue Behavior: A Systematic Review and Meta-Analysis. Clin. Oral Investig. 2020, 24, 1113–1124. [Google Scholar] [CrossRef]
- Haugen, H.J.; Chen, H. Is There a Better Biomaterial for Dental Implants than Titanium?—A Review and Meta-Study Analysis. J. Funct. Biomater. 2022, 13, 46. [Google Scholar] [CrossRef]
- Chang, H.-P.; Tseng, Y.-C. A Novel β-Titanium Alloy Orthodontic Wire. Kaohsiung J. Med. Sci. 2018, 34, 202–206. [Google Scholar] [CrossRef]
- Castro, S.M.; Ponces, M.J.; Lopes, J.D.; Vasconcelos, M.; Pollmann, M.C.F. Orthodontic Wires and Its Corrosion—The Specific Case of Stainless Steel and Beta-Titanium. J. Dent. Sci. 2015, 10, 1–7. [Google Scholar] [CrossRef]
- Kolli, R.; Devaraj, A. A Review of Metastable Beta Titanium Alloys. Metals 2018, 8, 506. [Google Scholar] [CrossRef]
- Chahine, G.; Koike, M.; Okabe, T.; Smith, P.; Kovacevic, R. The Design and Production of Ti-6Al-4V ELI Customized Dental Implants. JOM (1989) 2008, 60, 50–55. [Google Scholar] [CrossRef]
- Chen, X.; Shah, K.; Dong, S.; Peterson, L.; La Plante, E.C.; Sant, G. Elucidating the corrosion-related degradation mechanisms of a Ti-6Al-4V dental implant. Dent. Mater. 2020, 36, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Berbel, L.O.; Banczek, E.D.P.; Karoussis, I.K.; Kotsakis, G.A.; Costa, I. Determinants of Corrosion Resistance of Ti-6Al-4V Alloy Dental Implants in an In Vitro Model of Peri-Implant Inflammation. PLoS ONE 2019, 14, e0217671. [Google Scholar]
- Xiong, Y.; Wang, W.; Gao, R.; Zhang, H.; Dong, L.; Qin, J.; Wang, B.; Jia, W.; Li, X. Fatigue Behavior and Osseointegration of Porous Ti-6Al-4V Scaffolds with Dense Core for Dental Application. Mater. Des. 2020, 195, 108994. [Google Scholar] [CrossRef]
- Cai, Z.; Bunce, N.; Nunn, M.E.; Okabe, T. Porcelain Adherence to Dental Cast CP Titanium: Effects of Surface Modifications. Biomaterials 2001, 22, 979–986. [Google Scholar] [CrossRef]
- McCracken, M. Dental Implant Materials: Commercially Pure Titanium and Titanium Alloys. J. Prosthodont. 1999, 8, 40–43. [Google Scholar] [CrossRef]
- Souza, J.C.M.; Henriques, B.; Ariza, E.; Martinelli, A.E.; Nascimento, R.M.; Silva, F.S.; Rocha, L.A.; Celis, J.-P. Mechanical and Chemical Analyses across Dental Porcelain Fused to CP Titanium or Ti6Al4V. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 37, 76–83. [Google Scholar] [CrossRef]
- Ohkubo, C.; Hanatani, S.; Hosoi, T. Present Status of Titanium Removable Dentures—A Review of the Literature. J. Oral Rehabil. 2008, 35, 706–714. [Google Scholar] [CrossRef]
- Jensen, O.T.; Jansen, C.E.; Seo, Y.; Yellich, G. Guided Nitinol-Retained (Smileloc) Single-Tooth Dental Restorations. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Cutright, D.E.; Bhaskar, S.N.; Perez, B.; Johnson, R.M.; Cowan, G.S., Jr. Tissue Reaction to Nitinol Wire Alloy. Oral Surg. Oral Med. Oral Pathol. 1973, 35, 578–584. [Google Scholar] [CrossRef]
- Development of Novel Implant Abutments Using the Shape Memory Alloy Nitinol: Preliminary Results. J. Prosthet. Dent. 2010, 104, 181. [CrossRef]
- Castagnini, F.; Bordini, B.; Stea, S.; Calderoni, P.P.; Masetti, C.; Busanelli, L. Highly Porous Titanium Cup in Cementless Total Hip Arthroplasty: Registry Results at Eight Years. Int. Orthop. 2019, 43, 1815–1821. [Google Scholar] [CrossRef] [PubMed]
- Campanelli, L.C. A Review on the Recent Advances Concerning the Fatigue Performance of Titanium Alloys for Orthopedic Applications. J. Mater. Res. 2021, 36, 151–165. [Google Scholar] [CrossRef]
- Healy, W.L.; Tilzey, J.F.; Iorio, R.; Specht, L.M.; Sharma, S. Prospective, Randomized Comparison of Cobalt-Chrome and Titanium Trilock Femoral Stems. J. Arthroplast. 2009, 24, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Bridgeman, J.T.; Marker, V.A.; Hummel, S.K.; Benson, B.W.; Pace, L.L. Comparison of Titanium and Cobalt-Chromium Removable Partial Denture Clasps. J. Prosthet. Dent. 1997, 78, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Morwood, M.P.; Garrigues, G.E. Shoulder Arthroplasty in the Patient with Metal Hypersensitivity. J. Shoulder Elbow Surg. 2015, 24, 1156–1164. [Google Scholar] [CrossRef]
- Little, C.P.; Graham, A.J.; Carr, A.J. Total Elbow Arthroplasty. J. Bone Jt. Surg. Br. 2005, 87-B, 437–444. [Google Scholar] [CrossRef]
- Radmer, S.; Andresen, R.; Sparmann, M. Total Wrist Arthroplasty in Patients with Rheumatoid Arthritis. J. Hand Surg. Am. 2003, 28, 789–794. [Google Scholar] [CrossRef]
- Semlitsch, M. Titanium Alloys for Hip Joint Replacements. Clin. Mater. 1987, 2, 1–13. [Google Scholar] [CrossRef]
- King, S.W.; Royeca, J.M.; Cunningham, C.M.; Madegowda, R.; Sha, S.; Pandit, H. Metal Hypersensitivity in Total Knee Arthroplasty. J. Arthrosc. Jt. Surg. 2020, 7, 184–188. [Google Scholar] [CrossRef]
- Easley, M.E.; Vertullo, C.J.; Urban, W.C.; Nunley, J.A. Total Ankle Arthroplasty. J. Am. Acad. Orthop. Surg. 2002, 10, 157–167. [Google Scholar] [CrossRef]
- Miller, P.D.; Holladay, J.W. Friction and Wear Properties of Titanium. Wear 1958, 2, 133–140. [Google Scholar] [CrossRef]
- Marshall, A.D.; Mokris, J.G.; Reitman, R.D.; Dandar, A.; Mauerhan, D.R. Cementless Titanium Tapered-Wedge Femoral Stem: 10- to 15-Year Follow-Up. J. Arthroplasty 2004, 19, 546–552. [Google Scholar] [CrossRef]
- De Meo, F.; Cacciola, G.; Bellotti, V.; Bruschetta, A.; Cavaliere, P. Trabecular Titanium Acetabular Cups in Hip Revision Surgery: Mid-Term Clinical and Radiological Outcomes. Hip Int. 2018, 28, 61–65. [Google Scholar] [CrossRef]
- Hell, A.K.; Campbell, R.M.; Hefti, F. The Vertical Expandable Prosthetic Titanium Rib Implant for the Treatment of Thoracic Insufficiency Syndrome Associated with Congenital and Neuromuscular Scoliosis in Young Children. J. Pediatr. Orthop. B 2005, 14, 287–293. [Google Scholar] [CrossRef]
- Blake, G.B.; MacFarlane, M.R.; Hinton, J.W. Titanium in Reconstructive Surgery of the Skull and Face. Br. J. Plast. Surg. 1990, 43, 528–535. [Google Scholar] [CrossRef]
- Zuo, W.; Yu, L.; Lin, J.; Yang, Y.; Fei, Q. Properties Improvement of Titanium Alloys Scaffolds in Bone Tissue Engineering: A Literature Review. Ann. Transl. Med. 2021, 9, 1259. [Google Scholar] [CrossRef]
- Liang, H.; Yang, Y.; Xie, D.; Li, L.; Mao, N.; Wang, C.; Tian, Z.; Jiang, Q.; Shen, L. Trabecular-like Ti-6Al-4V Scaffolds for Orthopedic: Fabrication by Selective Laser Melting and in Vitro Biocompatibility. J. Mater. Sci. Technol. 2019, 35, 1284–1297. [Google Scholar] [CrossRef]
- Aufa, A.N.; Hassan, M.Z.; Ismail, Z. Recent Advances in Ti-6Al-4V Additively Manufactured by Selective Laser Melting for Biomedical Implants: Prospect Development. J. Alloys Compd. 2022, 896, 163072. [Google Scholar] [CrossRef]
- Shen, X.; Shukla, P.; Subramaniyan, A.K.; Zammit, A.; Swanson, P.; Lawrence, J.; Fitzpatrick, M.E. Residual Stresses Induced by Laser Shock Peening in Orthopaedic Ti-6Al-7Nb Alloy. Opt. Laser Technol. 2020, 131, 106446. [Google Scholar] [CrossRef]
- Milošev, I.; Kosec, T.; Strehblow, H.-H. XPS and EIS Study of the Passive Film Formed on Orthopaedic Ti–6Al–7Nb Alloy in Hank’s Physiological Solution. Electrochim. Acta 2008, 53, 3547–3558. [Google Scholar] [CrossRef]
- Łyczkowska, E.; Szymczyk, P.; Dybała, B.; Chlebus, E. Chemical Polishing of Scaffolds Made of Ti–6Al–7Nb Alloy by Additive Manufacturing. Arch. Civ. Mech. Eng. 2014, 14, 586–594. [Google Scholar] [CrossRef]
- Jablokov, V.R.; Nutt, M.J.; Richelsoph, M.E.; Freese, H.L. The Application of Ti-15Mo Beta Titanium Alloy in High Strength Structural Orthopaedic Applications. In Titanium, Niobium, Zirconium, and Tantalum for Medical and Surgical Applications; ASTM International: West Conshohocken, PA, USA, 2008; pp. 1–18. ISBN 9780803134973. [Google Scholar]
- Oliveira, N.T.; Perrotti, V.; Palmieri, A.; Guastaldi, A.C.; Pellati, A.; Scapin, C.L.; Piattelli, A.; Carinci, F. In Vitro Analysis with Human Bone Marrow Stem Cells on Ti-15Mo Alloy for Dental and Orthopedic Implants Application. J. Osseointegr. 2011, 3, 10–16. [Google Scholar]
- Suresh, K.S.; Geetha, M.; Richard, C.; Landoulsi, J.; Ramasawmy, H.; Suwas, S.; Asokamani, R. Effect of Equal Channel Angular Extrusion on Wear and Corrosion Behavior of the Orthopedic Ti–13Nb–13Zr Alloy in Simulated Body Fluid. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 763–771. [Google Scholar] [CrossRef]
- Cvijović-Alagić, I.; Cvijović, Z.; Mitrović, S.; Rakin, M.; Veljović, Đ.; Babić, M. Tribological Behaviour of Orthopaedic Ti-13Nb-13Zr and Ti-6Al-4V Alloys. Tribol. Lett. 2010, 40, 59–70. [Google Scholar] [CrossRef]
- Khan, M.A.; Williams, R.L.; Williams, D.F. The Corrosion Behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in Protein Solutions. Biomaterials 1999, 20, 631–637. [Google Scholar] [CrossRef]
- Albrektsson, T.; Becker, W.; Coli, P.; Jemt, T.; Mölne, J.; Sennerby, L. Bone Loss around Oral and Orthopedic Implants: An Immunologically Based Condition. Clin. Implant Dent. Relat. Res. 2019, 21, 786–795. [Google Scholar] [CrossRef]
- Albrektsson, T.; Chrcanovic, B.; Mölne, J.; Wennerberg, A. Foreign Body Reactions, Marginal Bone Loss and Allergies in Relation to Titanium Implants. Eur. J. Oral Implantol. 2018, 11 (Suppl. S1), S37–S46. [Google Scholar]
- Lin, C.W.; Ju, C.P.; Lin, J.H.C. A Comparison of the Fatigue Behavior of Cast Ti-7.5 Mo with Cp Titanium, Ti-6Al-4V and Ti-13Nb-13Zr Alloys. Biomaterials 2005, 26, 2899–2907. [Google Scholar] [CrossRef]
- Pelton, A.R.; Stöckel, D.; Duerig, T.W. Medical uses of nitinol. In Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2000; Volume 327, pp. 63–70. [Google Scholar]
- Banovetz, J.M.; Sharp, R.; Probe, R.A.; Anglen, J.O. Titanium Plate Fixation: A Review of Implant Failures. J. Orthop. Trauma 1996, 10, 389–394. [Google Scholar] [CrossRef]
- Perren, S.M.; Regazzoni, P.; Fernandez, A.A. How to Choose between the Implant Materials Steel and Titanium in Orthopedic Trauma Surgery: Part 2—Biological Aspects. Acta Chir. Orthop. Traumatol. Cech. 2017, 84, 85–90. [Google Scholar] [CrossRef]
- Arens, S.; Schlegel, U.; Printzen, G.; Ziegler, W.J.; Perren, S.M.; Hansis, M. Influence of Materials for Fixation Implants on Local Infection. An Experimental Study of Steel versus Titanium DCP in Rabbits. J. Bone Jt. Surg. Br. 1996, 78, 647–651. [Google Scholar] [CrossRef]
- Vancleef, S.; Wesseling, M.; Duflou, J.R.; Nijs, S.; Jonkers, I.; Vander Sloten, J. Thin Patient-Specific Clavicle Fracture Fixation Plates Can Mechanically Outperform Commercial Plates: An in Silico Approach. J. Orthop. Res. 2022, 40, 1695–1706. [Google Scholar] [CrossRef]
- Kumazawa, R.; Watari, F.; Takashi, N.; Tanimura, Y.; Uo, M.; Totsuka, Y. Effects of Ti Ions and Particles on Neutrophil Function and Morphology. Biomaterials 2002, 23, 3757–3764. [Google Scholar] [CrossRef]
- Mohi Eldin, M.M.; Ali, A.M.A. Lumbar Transpedicular Implant Failure: A Clinical and Surgical Challenge and Its Radiological Assessment. Asian Spine J. 2014, 8, 281–297. [Google Scholar] [CrossRef]
- Szypryt, P.; Forward, D. The Use and Abuse of Locking Plates. Orthop. Trauma 2009, 23, 281–290. [Google Scholar] [CrossRef]
- Jost, B.; Spross, C.; Grehn, H.; Gerber, C. Locking Plate Fixation of Fractures of the Proximal Humerus: Analysis of Complications, Revision Strategies and Outcome. J. Shoulder Elbow Surg. 2013, 22, 542–549. [Google Scholar] [CrossRef]
- Disegi, J.A. Titanium Alloys for Fracture Fixation Implants. Injury 2000, 31 (Suppl. 4), 14–17. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Semenova, I.P.; Latysh, V.V.; Rack, H.; Lowe, T.C.; Petruzelka, J.; Dluhos, L.; Hrusak, D.; Sochova, J. Nanostructured Titanium for Biomedical Applications. Adv. Eng. Mater. 2008, 10, B15–B17. [Google Scholar] [CrossRef]
- Krischak, G.D.; Gebhard, F.; Mohr, W.; Krivan, V.; Ignatius, A.; Beck, A.; Wachter, N.J.; Reuter, P.; Arand, M.; Kinzl, L.; et al. Difference in Metallic Wear Distribution Released from Commercially Pure Titanium Compared with Stainless Steel Plates. Arch. Orthop. Trauma Surg. 2004, 124, 104–113. [Google Scholar] [CrossRef]
- Koller, H.; Zenner, J.; Hempfing, A.; Ferraris, L.; Meier, O. Reinforcement of Lumbosacral Instrumentation Using S1-Pedicle Screws Combined with S2-Alar Screws. Oper. Orthop. Traumatol. 2013, 25, 294–314. [Google Scholar] [CrossRef]
- Fourney, D.R.; Abi-Said, D.; Lang, F.F.; McCutcheon, I.E.; Gokaslan, Z.L. Use of Pedicle Screw Fixation in the Management of Malignant Spinal Disease: Experience in 100 Consecutive Procedures. J. Neurosurg. Spine 2001, 94, 25–37. [Google Scholar] [CrossRef]
- Fukutake, K.; Wada, A.; Kamakura, D.; Nakamura, K.; Tsuge, S.; Hasegawa, K.; Takahashi, H. Evaluation of Percutaneous Pedicle Screw Fixation in Patients with Pyogenic Spondylitis of the Thoracolumbar Spine. Open J. Orthop. 2020, 10, 303–312. [Google Scholar] [CrossRef]
- Yamanaka, K.; Mori, M.; Yamazaki, K.; Kumagai, R.; Doita, M.; Chiba, A. Analysis of the Fracture Mechanism of Ti-6Al-4V Alloy Rods That Failed Clinically after Spinal Instrumentation Surgery. Spine 2015, 40, E767–E773. [Google Scholar] [CrossRef]
- Massaad, E.; Fatima, N.; Kiapour, A.; Hadzipasic, M.; Shankar, G.M.; Shin, J.H. Polyetheretherketone versus Titanium Cages for Posterior Lumbar Interbody Fusion: Meta-Analysis and Review of the Literature. Neurospine 2020, 17, 473. [Google Scholar] [CrossRef]
- Jain, S.; Eltorai, A.E.M.; Ruttiman, R.; Daniels, A.H. Advances in Spinal Interbody Cages. Orthop. Surg. 2016, 8, 278–284. [Google Scholar] [CrossRef]
- Tan, J.-H.; Cheong, C.K.; Hey, H.W.D. Titanium (Ti) Cages May Be Superior to Polyetheretherketone (PEEK) Cages in Lumbar Interbody Fusion: A Systematic Review and Meta-Analysis of Clinical and Radiological Outcomes of Spinal Interbody Fusions Using Ti versus PEEK Cages. Eur. Spine J. 2021, 30, 1285–1295. [Google Scholar] [CrossRef]
- Bao, Q.B.; McCullen, G.M.; Higham, P.A.; Dumbleton, J.H.; Yuan, H.A. The Artificial Disc: Theory, Design and Materials. Biomaterials 1996, 17, 1157–1167. [Google Scholar] [CrossRef]
- Othman, Y.A.; Verma, R.; Qureshi, S.A. Artificial Disc Replacement in Spine Surgery. Ann. Transl. Med. 2019, 7, S170. [Google Scholar] [CrossRef]
- Lemaire, J.P.; Carrier, H.; Ali, E.H.S.; Skalli, W.; Lavaste, F. Clinical and Radiological Outcomes with the CHARITÉTM Artificial Disc: A 10-Year Minimum Follow-Up. Clin. Spine Surg. 2005, 18, 353–359. [Google Scholar]
- Allen, M. Pacemakers and Implantable Cardioverter Defibrillators. Anaesthesia 2006, 61, 883–890. [Google Scholar] [CrossRef]
- Merritt, K.; Rodrigo, J.J. Immune Response to Synthetic Materials. Clin. Orthop. Relat. Res. 1996, 326, 71–79. [Google Scholar] [CrossRef]
- Hirshorn, M.S.; Holley, L.K.; Money, D.K.; Spector, M.; Young, F.A.; Hales, J.R. Histological Evaluation of Porous Titanium Cardiac Pacemaker Electrode Tips. J. Biomed. Mater. Res. 1984, 18, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Norlin, A.; Pan, J.; Leygraf, C. Investigation of Pt, Ti, TiN, and Nano-Porous Carbon Electrodes for Implantable Cardioverter-Defibrillator Applications. Electrochim. Acta 2004, 49, 4011–4020. [Google Scholar] [CrossRef]
- Ahadi, F.; Azadi, M.; Biglari, M.; Bodaghi, M.; Khaleghian, A. Evaluation of Coronary Stents: A Review of Types, Materials, Processing Techniques, Design, and Problems. Heliyon 2023, 9, e13575. [Google Scholar] [CrossRef] [PubMed]
- Hanawa, T. Materials for Metallic Stents. J. Artif. Organs 2009, 12, 73–79. [Google Scholar] [CrossRef]
- Beshchasna, N.; Saqib, M.; Kraskiewicz, H.; Wasyluk, Ł.; Kuzmin, O.; Duta, O.C.; Ficai, D.; Ghizdavet, Z.; Marin, A.; Ficai, A.; et al. Recent Advances in Manufacturing Innovative Stents. Pharmaceutics 2020, 12, 349. [Google Scholar] [CrossRef] [PubMed]
- Beshchasna, N.; Ho, A.Y.K.; Saqib, M.; Kraśkiewicz, H.; Wasyluk, Ł.; Kuzmin, O.; Duta, O.C.; Ficai, D.; Trusca, R.D.; Ficai, A.; et al. Surface Evaluation of Titanium Oxynitride Coatings Used for Developing Layered Cardiovascular Stents. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Bhuvaneshwar, G.S.; Muraleedharan, C.V.; Ramani, A.V.; Valiathan, M.S. Evaluation of Materials for Artificial Heart Valves. Bull. Mater. Sci. 1991, 14, 1363–1374. [Google Scholar] [CrossRef]
- Olszyna, A.; Smolik, J. Nanocrystalline Diamond-like Carbon Coatings Produced on the Si3N4–TiC Composites Intended for the Edges of Cutting Tools. Thin Solid Films 2004, 459, 224–227. [Google Scholar] [CrossRef]
- Dion, I.; Roques, X.; Baquey, C.; Baudet, E.; Basse Cathalinat, B.; More, N. Hemocompatibility of Diamond-like Carbon Coating. Biomed. Mater. Eng. 1993, 3, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, X.; Mao, Y.; Huang, N.; Chen, Y.; Zheng, Z.; Zhou, Z.; Chen, A.; Jiang, Z. Artificial Heart Valves:: Improved Hemocompatibility by Titanium Oxide Coatings Prepared by Ion Beam Assisted Deposition. Surf. Coat. Technol. 1998, 103–104, 146–150. [Google Scholar] [CrossRef]
- Grenadyorov, A.S.; Zhulkov, M.O.; Solovyev, A.A.; Oskomov, K.V.; Semenov, V.A.; Chernyavskiy, A.M.; Sirota, D.A.; Karmadonova, N.A.; Malashchenko, V.V.; Litvinova, L.S.; et al. Surface Characterization and Biological Assessment of Corrosion-Resistant AC: H: SiOx PACVD Coating for Ti-6Al-4V Alloy. Mater. Sci. Eng. C. 2021, 123, 112002. [Google Scholar]
- Jiang, J.Y.; Xu, J.L.; Liu, Z.H.; Deng, L.; Sun, B.; Liu, S.D.; Wang, L.; Liu, H.Y. Preparation, Corrosion Resistance and Hemocompatibility of the Superhydrophobic TiO2 Coatings on Biomedical Ti-6Al-4V Alloys. Appl. Surf. Sci. 2015, 347, 591–595. [Google Scholar] [CrossRef]
- Asirvatham, A.; Devadoss, D.; Kujur, A.; Selvam, A.; Devi, J.N.; Mary, S.J. Anti Corrosion Activity of CRF (Cardiac Risk Free) Drug for SS316L, Ni-Ti, and Ti-6Al-4V in Artificial Blood Plasma. Chem. Afr. 2023, 29, 1–3. [Google Scholar] [CrossRef]
- Mohanta, M.; Thirugnanam, A. Commercial Pure Titanium—A Potential Candidate for Cardiovascular Stent. Materwiss. Werksttech. 2022, 53, 1518–1543. [Google Scholar] [CrossRef]
- Mohanta, M.; Thirugnanam, A. Evolution of Commercially Pure Titanium/Heparin/Poly (Ethylene Glycol) Substrate with Improved Biocompatibility for Cardiovascular Device Applications. Mater. Technol. 2022, 37, 3100–3109. [Google Scholar] [CrossRef]
- Bahl, S.; Aleti, B.T.; Suwas, S.; Chatterjee, K. Surface Nanostructuring of Titanium Imparts Multifunctional Properties for Orthopedic and Cardiovascular Applications. Mater. Des. 2018, 144, 169–181. [Google Scholar] [CrossRef]
- Nagaraja, S.; Brown, R.; Saylor, D.; Undisz, A. Oxide Layer Formation, Corrosion, and Biocompatibility of Nitinol Cardiovascular Devices. Shape Mem. Superelasticity 2022, 8, 45–63. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; Li, Z.; Sun, X.; Liu, H.; Jing, X.; Gong, Z. Experimental Investigation on the Effects of Different Electrolytic Polishing Solutions on Nitinol Cardiovascular Stents. J. Mater. Eng. Perform. 2021, 30, 4318–4327. [Google Scholar] [CrossRef]
- Beyar, R.; Henry, M.; Shofti, R.; Grenedier, E.; Globerman, O.; Beyar, M. Self-Expandable Nitinol Stent for Cardiovascular Applications: Canine and Human Experience. Cathet. Cardiovasc. Diagn. 1994, 32, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Shemyatovsky, K.A.; Azimov, R.H.; Alekhin, A.I.; Kazantsev, A.A.; Alekhin, A.A. Computed Tomography Options in the Evaluation of Hernia Repair Outcomes Using “Titanium Silk” Mesh Implants. J. Tissue Eng. Regen. Med. 2020, 14, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Orbital Defect Repair and Secondary Reconstruction of Enophthalmos with Mirror-Technique Fabricated Titanium Mesh. J. Oral Maxillofac. Surg. 2008, 66, 19–20. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Y.; Weng, Y.Q.; Li, J.; Zhang, Z.Y. Maxillary Reconstruction after Total Maxillectomy with Vascularised Fibula Osteomyocutaneous Flap and Titanium Mesh. Int. J. Oral Maxillofac. Surg. 2009, 38, 502. [Google Scholar] [CrossRef]
- Janssen, L.M.; van Osch, G.J.V.M.; Li, J.P.; Kops, N.; de Groot, K.; Feenstra, L.; Hardillo, J.A.U. Laryngotracheal Reconstruction with Porous Titanium in Rabbits: Are Vascular Carriers and Mucosal Grafts Really Necessary? J. Tissue Eng. Regen. Med. 2010, 4, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Pluhator-Murton, M.M.; Fedorak, R.N.; Audette, R.J.; Marriage, B.J.; Yatscoff, R.W.; Gramlich, L.M. Trace Element Contamination of Total Parenteral Nutrition. 1. Contribution of Component Solutions. JPEN J. Parenter. Enteral Nutr. 1999, 23, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.A. Lange’s Handbook of Chemistry; Translated by V. Glyanchenko Tl; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Saxena, M.; Loza-Rosas, S.A.; Gaur, K.; Sharma, S.; Pérez Otero, S.C.; Tinoco, A.D. Exploring Titanium(IV) Chemical Proximity to Iron(III) to Elucidate a Function for Ti(IV) in the Human Body. Coord. Chem. Rev. 2018, 363, 109–125. [Google Scholar] [CrossRef]
- McGarry, S.; Morgan, S.J.; Grosskreuz, R.M.; Williams, A.E.; Smith, W.R. Serum Titanium Levels in Individuals Undergoing Intramedullary Femoral Nailing with a Titanium Implant. J. Trauma 2008, 64, 430–433. [Google Scholar] [CrossRef]
- Fragata, M.; Bellemare, F. Dielectric Constant Dependence of Biological Oxidation-Reduction. 1. A Model of Polarity-Dependent Ferrocytochrome c Oxidation. Biophys. Chem. 1982, 15, 111–119. [Google Scholar] [CrossRef]
- Sundgren, J.-E.; Bodö, P.; Lundström, I. Auger Electron Spectroscopic Studies of the Interface between Human Tissue and Implants of Titanium and Stainless Steel. J. Colloid Interface Sci. 1986, 110, 9–20. [Google Scholar] [CrossRef]
- Albrektsson, T.; Brånemark, P.-I.; Hansson, H.-A.; Kasemo, B.; Larsson, K.; Lundström, I.; McQueen, D.H.; Skalak, R. The Interface Zone of Inorganic ImplantsIn Vivo: Titanium Implants in Bone. Ann. Biomed. Eng. 1983, 11, 1–27. [Google Scholar] [CrossRef]
- Kang, Y.; Li, X.; Tu, Y.; Wang, Q.; Ågren, H. On the Mechanism of Protein Adsorption onto Hydroxylated and Nonhydroxylated TiO2 Surfaces. J. Phys. Chem. C 2010, 114, 14496–14502. [Google Scholar] [CrossRef]
- Sousa, S.R.; Moradas-Ferreira, P.; Saramago, B.; Melo, L.V.; Barbosa, M.A. Human Serum Albumin Adsorption on TiO2 from Single Protein Solutions and from Plasma. Langmuir 2004, 20, 9745–9754. [Google Scholar] [CrossRef] [PubMed]
- Strehle, M.A.; Rösch, P.; Petry, R.; Hauck, A.; Thull, R.; Kiefer, W.; Popp, J. A Raman Spectroscopic Study of the Adsorption of Fibronectin and Fibrinogen on Titanium Dioxide Nanoparticles. Phys. Chem. Chem. Phys. 2004, 6, 5232–5236. [Google Scholar] [CrossRef]
- Tamura, R.N.; Oda, D.; Quaranta, V.; Plopper, G.; Lambert, R.; Glaser, S.; Jones, J.C. Coating of Titanium Alloy with Soluble Laminin-5 Promotes Cell Attachment and Hemidesmosome Assembly in Gingival Epithelial Cells: Potential Application to Dental Implants. J. Periodontal Res. 1997, 32, 287–294. [Google Scholar] [CrossRef]
- Ellingsen, J.E. A Study on the Mechanism of Protein Adsorption to TiO2. Biomaterials 1991, 12, 593–596. [Google Scholar] [CrossRef]
- Kulkarni, M.; Mazare, A.; Park, J.; Gongadze, E.; Killian, M.S.; Kralj, S.; von der Mark, K.; Iglič, A.; Schmuki, P. Protein Interactions with Layers of TiO2 Nanotube and Nanopore Arrays: Morphology and Surface Charge Influence. Acta Biomater. 2016, 45, 357–366. [Google Scholar] [CrossRef]
- Topoglidis, E.; Cass, A.E.; Gilardi, G.; Sadeghi, S.; Beaumont, N.; Durrant, J.R. Protein Adsorption on Nanocrystalline TiO2 Films: An Immobilization Strategy for Bioanalytical Devices. Anal. Chem. 1998, 70, 5111–5113. [Google Scholar] [CrossRef]
- Ranjan, S.; Dasgupta, N.; Chinnappan, S.; Ramalingam, C.; Kumar, A. Titanium Dioxide Nanoparticle–Protein Interaction Explained by Docking Approach. Int. J. Nanomed. 2018, 13, 47–50. [Google Scholar] [CrossRef]
- Li, N.; Xu, Z.; Zheng, S.; Dai, H.; Wang, L.; Tian, Y.; Dong, Z.; Jiang, L. Superamphiphilic TiO2 Composite Surface for Protein Antifouling. Adv. Mater. 2021, 33, e2003559. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Q.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Xie, Y.; Yao, W. Protein Corona Formed on the TiO2 Nanoparticles Promotes the Hydrolysis of Collagen in Simulated Gastrointestinal Fluids. Food Biosci. 2023, 53, 102786. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Zhang, H.-M.; Wang, R.-H. Investigation of the Interaction between Colloidal TiO2 and Bovine Hemoglobin Using Spectral Methods. Colloids Surf. B Biointerfaces 2008, 65, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Barber, T.; Aldinger, J.; Bowman, L.; Leonard, S.; Zhao, J.; Ding, M. ROS Generation Is Involved in Titanium Dioxide Nanoparticle-Induced AP-1 Activation through P38 MAPK and ERK Pathways in JB6 Cells. Environ. Toxicol. 2022, 37, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Martinet, W.; Knaapen, M.W.; De Meyer, G.R.; Herman, A.G.; Kockx, M.M. Oxidative DNA Damage and Repair in Experimental Atherosclerosis Are Reversed by Dietary Lipid Lowering. Circ. Res. 2001, 88, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Charles, S.; Jomini, S.; Fessard, V.; Bigorgne-Vizade, E.; Rousselle, C.; Michel, C. Assessment of the in Vitro Genotoxicity of TiO2 Nanoparticles in a Regulatory Context. Nanotoxicology 2018, 12, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.K.; Sharma, V.; Pandey, A.K.; Singh, S.; Sultana, S.; Dhawan, A. ROS-Mediated Genotoxicity Induced by Titanium Dioxide Nanoparticles in Human Epidermal Cells. Toxicol. Vitr. 2011, 25, 231–241. [Google Scholar] [CrossRef]
- Tan, K.S.; Qian, L.; Rosado, R.; Flood, P.M.; Cooper, L.F. The Role of Titanium Surface Topography on J774A.1 Macrophage Inflammatory Cytokines and Nitric Oxide Production. Biomaterials 2006, 27, 5170–5177. [Google Scholar] [CrossRef]
- Nowzari, H.; Botero, J.E.; DeGiacomo, M.; Villacres, M.C.; Rich, S.K. Microbiology and Cytokine Levels around Healthy Dental Implants and Teeth. Clin. Implant Dent. Relat. Res. 2008, 10, 166–173. [Google Scholar] [CrossRef]
- Preti, G.; Martinasso, G.; Peirone, B.; Navone, R.; Manzella, C.; Muzio, G.; Russo, C.; Canuto, R.A.; Schierano, G. Cytokines and Growth Factors Involved in the Osseointegration of Oral Titanium Implants Positioned Using Piezoelectric Bone Surgery versus a Drill Technique: A Pilot Study in Minipigs. J. Periodontol. 2007, 78, 716–722. [Google Scholar] [CrossRef]
- Pitchai, M.; Ipe, D.; Tadakamadla, S.; Hamlet, S. Titanium Implant Surface Effects on Adherent Macrophage Phenotype: A Systematic Review. Materials 2022, 15, 7314. [Google Scholar] [CrossRef]
- Krause, A.; Cowles, E.A.; Gronowicz, G. Integrin-Mediated Signaling in Osteoblasts on Titanium Implant Materials. J. Biomed. Mater. Res. 2000, 52, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-J.; Choi, M.-U.; Kim, C.-W. Activation of Phospholipase D1 by Surface Roughness of Titanium in MG63 Osteoblast-like Cell. Biomaterials 2006, 27, 5502–5511. [Google Scholar] [CrossRef] [PubMed]
- Berthet, J.-P.; Gomez Caro, A.; Solovei, L.; Gilbert, M.; Bommart, S.; Gaudard, P.; Canaud, L.; Alric, P.; Marty-Ané, C.-H. Titanium Implant Failure after Chest Wall Osteosynthesis. Ann. Thorac. Surg. 2015, 99, 1945–1952. [Google Scholar] [CrossRef] [PubMed]
- Shemtov-Yona, K.; Rittel, D. An Overview of the Mechanical Integrity of Dental Implants. Biomed Res. Int. 2015, 2015, 547384. [Google Scholar] [CrossRef] [PubMed]
- Kronström, M.; Svenson, B.; Hellman, M.; Persson, G.R. Early Implant Failures in Patients Treated with Brånemark System Titanium Dental Implants: A Retrospective Study. Int. J. Oral Maxillofac. Implants 2001, 16, 201–207. [Google Scholar] [PubMed]
- Iijima, R.; Ikari, Y.; Amiya, E.; Tanimoto, S.; Nakazawa, G.; Kyono, H.; Hatori, M.; Miyazawa, A.; Nakayama, T.; Aoki, J.; et al. The Impact of Metallic Allergy on Stent Implantation: Metal Allergy and Recurrence of in-Stent Restenosis. Int. J. Cardiol. 2005, 104, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, P.J. Infection in Orthopaedic Implants. J. Hosp. Infect. 1991, 18, 367–375. [Google Scholar] [CrossRef]
- Trampuz, A.; Widmer, A.F. Infections Associated with Orthopedic Implants. Curr. Opin. Infect. Dis. 2006, 19, 349–356. [Google Scholar] [CrossRef]
- Yuan, K.; Chen, H.-L. Obesity and Surgical Site Infections Risk in Orthopedics: A Meta-Analysis. Int. J. Surg. 2013, 11, 383–388. [Google Scholar] [CrossRef]
- de Boer, A.S.; Mintjes-de Groot, A.J.; Severijnen, A.J.; van den Berg, J.M.; van Pelt, W. Risk Assessment for Surgical-Site Infections in Orthopedic Patients. Infect. Control Hosp. Epidemiol. 1999, 20, 402–407. [Google Scholar] [CrossRef]
- Fisichella, L.; Fenga, D.; Rosa, M.A. Surgical Site Infection in Orthopaedic Surgery: Correlation between Age, Diabetes, Smoke and Surgical Risk. Folia Med. 2014, 56, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Singletary, R.; Schmader, K.; Anderson, D.J.; Bolognesi, M.; Kaye, K.S. Surgical Site Infection in the Elderly Following Orthopaedic Surgery. J. Bone Jt. Surg. Am. 2006, 88, 1705–1712. [Google Scholar] [CrossRef] [PubMed]
- Johansen, J.B.; Jørgensen, O.D.; Møller, M.; Arnsbo, P.; Mortensen, P.T.; Nielsen, J.C. Infection after Pacemaker Implantation: Infection Rates and Risk Factors Associated with Infection in a Population-Based Cohort Study of 46299 Consecutive Patients. Eur. Heart J. 2011, 32, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Monteiro, F.J.; Ferraz, M.P. Infection of Orthopedic Implants with Emphasis on Bacterial Adhesion Process and Techniques Used in Studying Bacterial-Material Interactions. Biomatter 2012, 2, 176–194. [Google Scholar] [CrossRef] [PubMed]
- Hadeed, M.M.; Evans, C.L.; Werner, B.C.; Novicoff, W.M.; Weiss, D.B. Does External Fixator Pin Site Distance from Definitive Implant Affect Infection Rate in Pilon Fractures? Injury 2019, 50, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Dombrowsky, A.; Abyar, E.; McGwin, G.; Johnson, M. Is Definitive Plate Fixation Overlap with External Fixator Pin Sites a Risk Factor for Infection in Pilon Fractures? J. Orthop. Trauma 2021, 35, e7–e12. [Google Scholar] [CrossRef] [PubMed]
- Mosseri, M.; Miller, H.; Tamari, I.; Plich, M.; Hasin, Y.; Brizines, M.; Frimerman, A.; Jefary, J.; Guetta, V.; Solomon, M.; et al. The Titanium-NO Stent:Results of a Multicenter Registry. EuroIntervention 2006, 2, 192–196. [Google Scholar] [PubMed]
- Mazzaccaro, D.; Giannetta, M.; Fancoli, F.; Righini, P.; Nano, G. Endovascular Treatment of Extracranial Carotid Artery Stenosis Using a Dual-Layer Micromesh Stents: A Systematic Review. Expert Rev. Med. Devices 2021, 18, 545–552. [Google Scholar] [CrossRef]
- Tortamano, P.; Camargo, L.O.A.; Bello-Silva, M.S.; Kanashiro, L.H. Immediate Implant Placement and Restoration in the Esthetic Zone: A Prospective Study with 18 Months of Follow-Up. Int. J. Oral Maxillofac. Implants 2010, 25, 345–350. [Google Scholar]
- Sezai, A.; Akiyama, K.; Hata, M.; Niino, T.; Yoshitake, I.; Wakui, S.; Fujita, K.; Takasaka, A.; Kawachi, H.; Murakami, T.; et al. Total Arch Replacement and Open Stent Graft Implantation Using a Newly Developed Stent Graft: Report of a Case. Surg. Today 2011, 41, 396–398. [Google Scholar] [CrossRef]
- Valdés Chavarri, M.; Bethencourt, A.; Pinar, E.; Gomez, A.; Portales, J.F.; Pomar, F.; Calvo, I.; López-Minguez, J.R.; Valdesuso, R.; Moreu, J.; et al. Titanium-Nitride-OxIde-Coated Stents Multicenter Registry in DiaBEtic PatienTs: The TIBET Registry. Heart Vessels 2012, 27, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Sbordone, L.; Toti, P.; Menchini-Fabris, G.; Sbordone, C.; Guidetti, F. Implant Survival in Maxillary and Mandibular Osseous Onlay Grafts and Native Bone: A 3-Year Clinical and Computerized Tomographic Follow-Up. Int. J. Oral Maxillofac. Implants 2009, 24, 695–703. [Google Scholar] [PubMed]
- Ma, L.; Zhou, Y.; Zhu, Y.; Lin, Z.; Chen, L.; Zhang, Y.; Xia, H.; Mao, C. 3D Printed Personalized Titanium Plates Improve Clinical Outcome in Microwave Ablation of Bone Tumors around the Knee. Sci. Rep. 2017, 7, 7626. [Google Scholar] [CrossRef] [PubMed]
- Martola, M.; Lindqvist, C.; Hänninen, H.; Al-Sukhun, J. Fracture of Titanium Plates Used for Mandibular Reconstruction Following Ablative Tumor Surgery. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 80, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Irish, J.C.; Gullane, P.J.; Gilbert, R.W.; Brown, D.H.; Birt, B.D.; Boyd, J.B. Primary Mandibular Reconstruction with the Titanium Hollow Screw Reconstruction Plate: Evaluation of 51 Cases. Plast. Reconstr. Surg. 1995, 96, 93–99. [Google Scholar] [CrossRef]
- Jain, N.S.; Hah, R.J. Pedicle Screw Fixation. In Handbook of Spine Technology; Springer International Publishing: Cham, Switzerland, 2021; pp. 541–560. ISBN 9783319444239. [Google Scholar]
- Allam, A.F.A.; Allam, M.F.A.; Koptan, W.; Abotakia, T.A.A. Pedicle Screw/Sublaminar Hook Fixation versus Pedicle Screw/Infraspinous Wire Fixation for Spondylolysis Repair: A Retrospective Comparative Study with MSCT Assessment. Egypt. Spine J. 2023, 41, 7. [Google Scholar] [CrossRef]
- Changoor, S.; Faloon, M.J.; Dunn, C.J.; Sahai, N.; Issa, K.; Sinha, K.; Hwang, K.S.; Emami, A. Does Percutaneous Lumbosacral Pedicle Screw Instrumentation Prevent Long-Term Adjacent Segment Disease after Lumbar Fusion? Asian Spine J. 2021, 15, 301–307. [Google Scholar] [CrossRef]
- Wedin, R.; Hansen, B.H.; Laitinen, M.; Trovik, C.; Zaikova, O.; Bergh, P.; Kalén, A.; Schwarz-Lausten, G.; Vult von Steyern, F.; Walloe, A.; et al. Complications and Survival after Surgical Treatment of 214 Metastatic Lesions of the Humerus. J. Shoulder Elbow Surg. 2012, 21, 1049–1055. [Google Scholar] [CrossRef]
- Miwa, S.; Shirai, T.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Tada, K.; Kajino, Y.; Higuchi, T.; Abe, K.; Aiba, H.; et al. Risk Factors for Surgical Site Infection after Malignant Bone Tumor Resection and Reconstruction. BMC Cancer 2019, 19, 33. [Google Scholar] [CrossRef]
- Machecourt, J.; Danchin, N.; Lablanche, J.M.; Fauvel, J.M.; Bonnet, J.L.; Marliere, S.; Foote, A.; Quesada, J.L.; Eltchaninoff, H.; Vanzetto, G.; et al. Risk Factors for Stent Thrombosis after Implantation of Sirolimus-Eluting Stents in Diabetic and Nondiabetic Patients: The EVASTENT Matched-Cohort Registry. J. Am. Coll. Cardiol. 2007, 50, 501–508. [Google Scholar] [CrossRef]
- Hawn, M.T.; Graham, L.A.; Richman, J.S.; Itani, K.M.F.; Henderson, W.G.; Maddox, T.M. Risk of Major Adverse Cardiac Events Following Noncardiac Surgery in Patients with Coronary Stents. Surv. Anesthesiol. 2014, 58, 291. [Google Scholar] [CrossRef]
- Costanzo, R.; Ferini, G.; Brunasso, L.; Bonosi, L.; Porzio, M.; Benigno, U.E.; Musso, S.; Gerardi, R.M.; Giammalva, G.R.; Paolini, F.; et al. The Role of 3D-Printed Custom-Made Vertebral Body Implants in the Treatment of Spinal Tumors: A Systematic Review. Life 2022, 12, 489. [Google Scholar] [CrossRef] [PubMed]
- Bridwell, K.H.; Baldus, C.; Berven, S.; Edwards, C., 2nd; Glassman, S.; Hamill, C.; Horton, W.; Lenke, L.G.; Ondra, S.; Schwab, F.; et al. Changes in Radiographic and Clinical Outcomes with Primary Treatment Adult Spinal Deformity Surgeries from Two Years to Three- to Five-Years Follow-Up. Spine 2010, 35, 1849–1854. [Google Scholar] [CrossRef] [PubMed]
- David, T. Long-Term Results of One-Level Lumbar Arthroplasty: Minimum 10-Year Follow-up of the CHARITE Artificial Disc in 106 Patients. Spine 2007, 32, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.; Asher, M.; Lai, S.-M.; Shobe, J. Reoperation after Primary Posterior Instrumentation and Fusion for Idiopathic Scoliosis. Spine 2000, 25, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Bago, J.; Ramirez, M.; Pellise, F.; Villanueva, C. Survivorship Analysis of Cotrel-Dubousset Instrumentation in Idiopathic Scoliosis. Eur. Spine J. 2003, 12, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Richards, B.S. Delayed Infections Following Posterior Spinal Instrumentation for the Treatment of Idiopathic Scoliosis. J. Bone Jt. Surg. Am. 1995, 77, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Pompa, G.; Saccucci, M.; Di Carlo, G.; Brauner, E.; Valentini, V.; Di Carlo, S.; Gentile, T.; Guarino, G.; Polimeni, A. Survival of Dental Implants in Patients with Oral Cancer Treated by Surgery and Radiotherapy: A Retrospective Study. BMC Oral Health 2015, 15, 5. [Google Scholar] [CrossRef]
- Cheung, L.K.; Leung, A.C.F. Dental Implants in Reconstructed Jaws: Implant Longevity and Peri-Implant Tissue Outcomes. J. Oral Maxillofac. Surg. 2003, 61, 1263–1274. [Google Scholar] [CrossRef]
- Alfaro, M.F.; Rossman, P.K.; Viera Marques, I.D.S.; Dube, A.; Takoudis, C.; Shokuhfar, T.; Mathew, M.T.; Sukotjo, C. Interface Damage in Titanium Dental Implant Due to Tribocorrosion: The Role of Mastication Frequencies. J. Bio-Tribo-Corros. 2019, 5, 1–2. [Google Scholar] [CrossRef]
- Gao, S.-S.; Zhang, Y.-R.; Zhu, Z.-L.; Yu, H.-Y. Micromotions and Combined Damages at the Dental Implant/Bone Interface. Int. J. Oral Sci. 2012, 4, 182–188. [Google Scholar] [CrossRef] [PubMed]
- van der Bilt, A.; Engelen, L.; Pereira, L.J.; van der Glas, H.W.; Abbink, J.H. Oral Physiology and Mastication. Physiol. Behav. 2006, 89, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Pileicikiene, G.; Surna, A. The Human Masticatory System from a Biomechanical Perspective: A Review. Stomatologija 2004, 6, 81–84. [Google Scholar]
- Takamiya, A.S.; Goiato, M.C.; Gennari Filho, H. Effect of Smoking on the Survival of Dental Implants. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2014, 158, 650–653. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Bae, J.-H.; Kim, Y.-K. Implant Prosthetic Complications, Fractures of the Implant Fixtures—Retrospective Clinical Study. Clin. Oral Implant. Res. 2019, 30, 342. [Google Scholar] [CrossRef]
- Sedghi, L.; DiMassa, V.; Harrington, A.; Lynch, S.V.; Kapila, Y.L. The Oral Microbiome: Role of Key Organisms and Complex Networks in Oral Health and Disease. Periodontology 2000 2021, 87, 107–131. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi Bolla, V.; Munnangi, S.R.; Chowdary, U.K.; Koppulu, P.; Swapna, L.A. Correlation between the PH of Saliva, Plaque and Buffering Capacity of Saliva. Int. J. Appl. Dent. Sci. 2017, 53, 48–50. [Google Scholar]
- Wirtz, D.C.; Gravius, S.; Ascherl, R.; Thorweihe, M.; Forst, R.; Noeth, U.; Maus, U.M.; Wimmer, M.D.; Zeiler, G.; Deml, M.C. Uncemented Femoral Revision Arthroplasty Using a Modular Tapered, Fluted Titanium Stem: 5- to 16-Year Results of 163 Cases. Acta Orthop. 2014, 85, 562–569. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Deshmukh, A.J.; Robinson, J.; Cornell, C.N.; Rasquinha, V.J.; Ranawat, A.S.; Ranawat, C.S. Reproducible Fixation with a Tapered, Fluted, Modular, Titanium Stem in Revision Hip Arthroplasty at 8–15 Years Follow-Up. J. Arthroplast. 2014, 29, 214–218. [Google Scholar] [CrossRef]
- Aoki, Y.; Tome, Y.; Oshiro, H.; Mizuta, K.; Katsuki, R.; Hoffman, R.M.; Nishida, K. Long-Lasting Limb Salvage after Malignant Femoral-Bone Tumor Resection Reconstructed with a Thin-Mantle Titanium Stem Fixated with Cement. Anticancer Res. 2023, 43, 3507–3511. [Google Scholar] [CrossRef]
- Zampieri, A.; Lukas, S.; Ibrahim, M.; Talbi, A.; Prodhomme, G.; Chantelot, C. Cementless, Modular, Titanium Stem in Vancouver B2 and B3 Periprosthetic Femoral Fractures. Eur. J. Orthop. Surg. Traumatol. 2023, 33, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Eingartner, C.; Ihm, A.; Maurer, F.; Volkmann, R.; Weise, K.; Weller, S. Good long term results with a cemented straight femoral shaft prosthesis made of titanium. Unfallchirurg 2002, 105, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Tone, S.; Naito, Y.; Wakabayashi, H.; Sudo, A. Minimum Ten-Year Results in Revision Total Hip Arthroplasty Using Titanium Fully Porous Long Stem. Int. Orthop. 2021, 45, 1727–1733. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, Y.; Goto, K.; Kuroda, Y.; Kawai, T.; Matsuda, S. The Long-Term Results of Total Hip Arthroplasty with a Cemented β-Titanium Stem. J. Arthroplast. 2020, 35, 2167–2172. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.W.; Goetz, D.D.; Liu, S.S.; Greiner, J.J.; Callaghan, J.J. Minimum 10-Year Follow-up of Cementless Total Hip Arthroplasty Using a Contemporary Triple-Tapered Titanium Stem. J. Arthroplasty 2016, 31, 2231–2236. [Google Scholar] [CrossRef]
- Akiyama, H.; Kawanabe, K.; Yamamoto, K.; So, K.; Kuroda, Y.; Nakamura, T. Clinical Outcomes of Cemented Double-Tapered Titanium Femoral Stems: A Minimum 5-Year Follow-Up. J. Orthop. Sci. 2011, 16, 689–697. [Google Scholar] [CrossRef]
- Danesh-Clough, T.; Bourne, R.B.; Rorabeck, C.H.; McCalden, R. The Mid-Term Results of a Dual Offset Uncemented Stem for Total Hip Arthroplasty. J. Arthroplast. 2007, 22, 195–203. [Google Scholar] [CrossRef]
- Goetz, D.D.; Reddy, A.; Callaghan, J.J.; Hennessy, D.W.; Bedard, N.A.; Liu, S.S. Four- to Six-Year Follow-up of Primary THA Using Contemporary Titanium Tapered Stems. Orthopedics 2013, 36, e1521–e1526. [Google Scholar] [CrossRef]
- Han, C.-D.; Shin, K.-Y.; Lee, H.-H.; Park, K.-K.; Yang, I.-H.; Lee, W.-S. The Results of Long-Term Follow-up of Total Hip Arthroplasty Using Hydroxyapatite-Coated Cups. Hip Pelvis 2015, 27, 209–215. [Google Scholar] [CrossRef]
- Reikerås, O. Total Hip Arthroplasty with a Fully Hydroxyapatite Coated Stem: A Cohort Study during Twenty Three to Twenty Eight Years. J. Arthroplast. 2017, 32, 1543–1546. [Google Scholar] [CrossRef]
- Aldinger, P.R.; Jung, A.W.; Pritsch, M.; Breusch, S.; Thomsen, M.; Ewerbeck, V.; Parsch, D. Uncemented Grit-Blasted Straight Tapered Titanium Stems in Patients Younger than Fifty-Five Years of Age. Fifteen to Twenty-Year Results. J. Bone Jt. Surg. Am. 2009, 91, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Aldinger, P.R.; Thomsen, M.; Mau, H.; Ewerbeck, V.; Breusch, S.J. Cementless Spotorno Tapered Titanium Stems: Excellent 10-15-Year Survival in 141 Young Patients. Acta Orthop. Scand. 2003, 74, 253–258. [Google Scholar] [CrossRef]
- Streit, M.R.; Innmann, M.M.; Merle, C.; Bruckner, T.; Aldinger, P.R.; Gotterbarm, T. Long-Term (20- to 25-Year) Results of an Uncemented Tapered Titanium Femoral Component and Factors Affecting Survivorship. Clin. Orthop. Relat. Res. 2013, 471, 3262–3269. [Google Scholar] [CrossRef] [PubMed]
- Philippot, R.; Farizon, F.; Camilleri, J.-P.; Boyer, B.; Derhi, G.; Bonnan, J.; Fessy, M.-H.; Lecuire, F. Survival of Cementless Dual Mobility Socket with a Mean 17 Years Follow-Up. Rev. Chir. Orthop. Reparatrice Appar. Mot. 2008, 94, e23–e27. [Google Scholar] [CrossRef]
- Delaunay, C.; Hamadouche, M.; Girard, J.; Duhamel, A.; SoFCOT Group. What are the Causes for Failures of Primary Hip Arthroplasties in France? Clin. Orthop. Relat. Res. 2013, 471, 3863–3869. [Google Scholar] [CrossRef] [PubMed]
- Simka, W.; Iwaniak, A.; Nawrat, G.; Maciej, A.; Michalska, J.; Radwański, K.; Gazdowicz, J. Modification of Titanium Oxide Layer by Calcium and Phosphorus. Electrochim. Acta 2009, 54, 6983–6988. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, W.; Jia, X.; Akasaka, T.; Liao, S.; Watari, F. Deposition of TiC Film on Titanium for Abrasion Resistant Implant Material by Ion-Enhanced Triode Plasma CVD. Appl. Surf. Sci. 2012, 262, 156–158. [Google Scholar] [CrossRef]
- Jergesen, H.E.; Karlen, J.W. Clinical Outcome in Total Hip Arthroplasty Using a Cemented Titanium Femoral Prosthesis. J. Arthroplasty 2002, 17, 592–599. [Google Scholar] [CrossRef]
- Najjar, D.; Bigerelle, M.; Migaud, H.; Iost, A. Identification of Scratch Mechanisms on a Retrieved Metallic Femoral Head. Wear 2005, 258, 240–250. [Google Scholar] [CrossRef]
- Łapaj, Ł.; Wendland, J.; Markuszewski, J.; Mróz, A.; Wiśniewski, T. Retrieval Analysis of Titanium Nitride (TiN) Coated Prosthetic Femoral Heads Articulating with Polyethylene. J. Mech. Behav. Biomed. Mater. 2015, 55, 127–139. [Google Scholar] [CrossRef]
- Marin, E.; Offoiach, R.; Regis, M.; Fusi, S.; Lanzutti, A.; Fedrizzi, L. Diffusive Thermal Treatments Combined with PVD Coatings for Tribological Protection of Titanium Alloys. Mater. Des. 2016, 89, 314–322. [Google Scholar] [CrossRef]
- Hauert, R. A Review of Modified DLC Coatings for Biological Applications. Diam. Relat. Mater. 2003, 12, 583–589. [Google Scholar] [CrossRef]
- Malisz, K.; Świeczko-Żurek, B.; Sionkowska, A. Preparation and Characterization of Diamond-like Carbon Coatings for Biomedical Applications-A Review. Materials 2023, 16, 3420. [Google Scholar] [CrossRef] [PubMed]
- Hamada, K.; Kon, M.; Hanawa, T.; Yokoyama, K.; Miyamoto, Y.; Asaoka, K. Hydrothermal Modification of Titanium Surface in Calcium Solutions. Biomaterials 2002, 23, 2265–2272. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiang, T.; Zhou, Y.; Zhang, Z.; Wang, Z.; Tong, H.; Shen, X.; Wang, Y. Evaluation of the Attachment, Proliferation, and Differentiation of Osteoblast on a Calcium Carbonate Coating on Titanium Surface. Mater. Sci. Eng. C Mater. Biol. Appl. 2011, 31, 1055–1061. [Google Scholar] [CrossRef]
- Canillas, M.; Pena, P.; de Aza, A.H.; Rodríguez, M.A. Calcium Phosphates for Biomedical Applications. Bol. Soc. Esp. Ceram. Vidr. 2017, 56, 91–112. [Google Scholar] [CrossRef]
- Montazerian, M.; Hosseinzadeh, F.; Migneco, C.; Fook, M.V.L.; Baino, F. Bioceramic Coatings on Metallic Implants: An Overview. Ceram. Int. 2022, 48, 8987–9005. [Google Scholar] [CrossRef]
- DileepKumar, V.G.; Sridhar, M.S.; Aramwit, P.; Krut’ko, V.K.; Musskaya, O.N.; Glazov, I.E.; Reddy, N. A Review on the Synthesis and Properties of Hydroxyapatite for Biomedical Applications. J. Biomater. Sci. Polym. Ed. 2022, 33, 229–261. [Google Scholar] [CrossRef]
- Zhecheva, A.; Sha, W.; Malinov, S.; Long, A. Enhancing the Microstructure and Properties of Titanium Alloys through Nitriding and Other Surface Engineering Methods. Surf. Coat. Technol. 2005, 200, 2192–2207. [Google Scholar] [CrossRef]
- Schaaf, P.; Kaspar, J.; Höche, D. Laser Gas–Assisted Nitriding of Ti Alloys. In Comprehensive Materials Processing; Elsevier: Amsterdam, The Netherlands, 2014; Volume 9, pp. 261–278. ISBN 9780080965338. [Google Scholar]
- Kamat, A.M.; Copley, S.M.; Segall, A.E.; Todd, J.A. Laser-Sustained Plasma (LSP) Nitriding of Titanium: A Review. Coatings 2019, 9, 283. [Google Scholar] [CrossRef]
- Lanzutti, A.; Raffaelli, A.; Magnan, M.; Fedrizzi, L.; Regis, M.; Marin, E. Microstructural and Mechanical Study of an Induction Nitrided Ti Gr. 5 Hip Prosthesis Component. Surf. Coat. Technol. 2019, 377, 124895. [Google Scholar] [CrossRef]
- Zhecheva, A.; Malinov, S.; Sha, W. Titanium Alloys after Surface Gas Nitriding. Surf. Coat. Technol. 2006, 201, 2467–2474. [Google Scholar] [CrossRef]
- Morita, T.; Takahashi, H.; Shimizu, M.; Kawasaki, K. Factors Controlling the Fatigue Strength of Nitrided Titanium. Fatigue Fract. Eng. Mater. Struct. 1997, 20, 85–92. [Google Scholar] [CrossRef]
- Oliveira, W.F.; Arruda, I.R.S.; Silva, G.M.M.; Machado, G.; Coelho, L.C.B.B.; Correia, M.T.S. Functionalization of Titanium Dioxide Nanotubes with Biomolecules for Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 81, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Schliephake, H.; Scharnweber, D. Chemical and Biological Functionalization of Titanium for Dental Implants. J. Mater. Chem. 2008, 18, 2404. [Google Scholar] [CrossRef]
- Kashiwagi, K.; Tsuji, T.; Shiba, K. Directional BMP-2 for Functionalization of Titanium Surfaces. Biomaterials 2009, 30, 1166–1175. [Google Scholar] [CrossRef] [PubMed]
- Royhman, D.; Patel, M.; Runa, M.J.; Jacobs, J.J.; Hallab, N.J.; Wimmer, M.A.; Mathew, M.T. Fretting-Corrosion in Hip Implant Modular Junctions: New Experimental Set-up and Initial Outcome. Tribol. Int. 2015, 91, 235–245. [Google Scholar] [CrossRef]
- Hoeppner, D.W.; Chandrasekaran, V. Fretting in Orthopaedic Implants: A Review. Wear 1994, 173, 189–197. [Google Scholar] [CrossRef]
- Ouellette, E.S.; Mali, S.A.; Kim, J.; Grostefon, J.; Gilbert, J.L. Design, Material, and Seating Load Effects on in Vitro Fretting Corrosion Performance of Modular Head-Neck Tapers. J. Arthroplasty 2019, 34, 991–1002. [Google Scholar] [CrossRef]
- Guan, J.; Jiang, X.; Xiang, Q.; Yang, F.; Liu, J. Corrosion and Tribocorrosion Behavior of Titanium Surfaces Designed by Electromagnetic Induction Nitriding for Biomedical Applications. Surf. Coat. Technol. 2021, 409, 126844. [Google Scholar] [CrossRef]
- Szymczyk, P.; Junka, A.; Ziółkowski, G.; Smutnicka, D.; Bartoszewicz, M.; Chlebus, E. The Ability of S. Aureus to Form Biofilm on the Ti-6Al-7Nb Scaffolds Produced by Selective Laser Melting and Subjected to the Different Types of Surface Modifications. Acta Bioeng. Biomech. 2013, 15, 69–76. [Google Scholar] [PubMed]
- Baume, A.S.; Boughton, P.C.; Coleman, N.V.; Ruys, A.J. Sterilization of Tissue Scaffolds. In Characterisation and Design of Tissue Scaffolds; Elsevier: Amsterdam, The Netherlands, 2016; pp. 225–244. ISBN 9781782420873. [Google Scholar]
- Tan, X.P.; Tan, Y.J.; Chow, C.S.L.; Tor, S.B.; Yeong, W.Y. Metallic Powder-Bed Based 3D Printing of Cellular Scaffolds for Orthopaedic Implants: A State-of-the-Art Review on Manufacturing, Topological Design, Mechanical Properties and Biocompatibility. Mater. Sci. Eng. C 2017, 76, 1328–1343. [Google Scholar] [CrossRef] [PubMed]
- Sidambe, A.T. Biocompatibility of advanced manufactured titanium implants—A review. Materials 2014, 7, 8168–8188. [Google Scholar] [CrossRef] [PubMed]
- Parithimarkalaignan, S.; Padmanabhan, T.V. Osseointegration: An update. J. Indian Prosthodont. Soc. 2013, 13, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Hu, B.; Zhao, L.; Liu, S. Titanium alloy production technology, market prospects and industry development. Mater. Des. 2011, 2, 1684–1691. [Google Scholar] [CrossRef]
- Silva, D.; Arcos, C.; Montero, C.; Guerra, C.; Martínez, C.; Li, X.; Ringuedé, A.; Cassir, M.; Ogle, K.; Guzmán, D.; et al. A tribological and ion released research of Ti-materials for medical devices. Materials 2022, 15, 131. [Google Scholar] [CrossRef]
- Mohammed, M.T.; Khan, Z.A.; Siddiquee, A.N. Beta titanium alloys: The lowest elastic modulus for biomedical applications: A review. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2014, 8, 726–731. [Google Scholar]
- Senopati, G.; Rahman Rashid, R.A.; Kartika, I.; Palanisamy, S. Recent Development of Low-Cost β-Ti Alloys for Biomedical Applications: A Review. Metals 2023, 13, 194. [Google Scholar] [CrossRef]
- Manam, N.S.; Harun, W.S.W.; Shri, D.N.A.; Ghani, S.A.C.; Kurniawan, T.; Ismail, M.H.; Ibrahim, M.H.I. Study of corrosion in biocompatible metals for implants: A review. J. Alloys Compd. 2017, 701, 698–715. [Google Scholar] [CrossRef]
- Shastri, V.P. Non-degradable biocompatible polymers in medicine: Past, present and future. Curr. Pharm. Biotechnol. 2003, 4, 331–337. [Google Scholar] [CrossRef]
- Verma, S.; Sharma, N.; Kango, S.; Sharma, S. Developments of PEEK (Polyetheretherketone) as a biomedical material: A focused review. Eur. Polym. J. 2021, 147, 110295. [Google Scholar] [CrossRef]
- Pituru, S.M.; Greabu, M.; Totan, A.; Imre, M.; Pantea, M.; Spinu, T.; Tancu, A.M.C.; Popoviciu, N.O.; Stanescu, I.I.; Ionescu, E. A review on the biocompatibility of PMMA-based dental materials for interim prosthetic restorations with a glimpse into their modern manufacturing techniques. Materials 2020, 13, 2894. [Google Scholar] [CrossRef] [PubMed]
- Paxton, N.C.; Allenby, M.C.; Lewis, P.M.; Woodruff, M.A. Biomedical applications of polyethylene. Eur. Polym. J. 2019, 118, 412–428. [Google Scholar] [CrossRef]
- Delfi, M.; Ghomi, M.; Zarrabi, A.; Mohammadinejad, R.; Taraghdari, Z.B.; Ashrafizadeh, M.; Zare, E.N.; Agarwal, T.; Padil, V.V.; Mokhtari, B.; et al. Functionalization of polymers and nanomaterials for biomedical applications: Antimicrobial platforms and drug carriers. Prosthesis 2020, 2, 12. [Google Scholar] [CrossRef]
- Sun, W.; Liu, W.; Wu, Z.; Chen, H. Chemical surface modification of polymeric biomaterials for biomedical applications. Macromol. Rapid Commun. 2020, 41, 1900430. [Google Scholar] [CrossRef]
Phase | Symbol | Structure | Description | References |
---|---|---|---|---|
Alpha | α | HCP | Allotropic form of titanium at low temperature | |
Beta | β | BCC | Allotropic form of titanium at high temperature | [56] |
Alpha2 | α2 | HCP | A compound, Ti3Al, which appears in a wide range of Al content | [57] |
Gamma | γ | The intermetallic compound TiAl | [58] | |
Alpha prime | α′ | HCP | Martensitic metastable structure | [59] |
Alpha double prime | A″ | OR | Orthorhombic metastable martensitic structure | [60] |
Beta prime or omega | β′ or ω | BCC | Metastable phases formed during quenching or aging | [61] |
Alloy Name | Phase | Area of Application | References |
---|---|---|---|
CP-Ti (Grade 1) | α | Dental (uncommon) | [69,70] |
CP-Ti (Grade 2) | α | Dental, Joint replacement | [71] |
CP-Ti (Grade 3) | α | Dental | [72] |
CP-Ti (Grade 4) | α | Joint replacement | [72] |
Ti-8Al-1Mo-1V | α | - | [73] |
Ti-6Al-2Nb-1Ta-0.8Mo | α | Joint replacement | [74,75] |
Ti-6Al-2Zr-1Mo-1V | α | Joint replacement | [76] |
Ti-6Al-4V (Grade 5) | α-β | Joint replacement, trauma, dental, spinal, etc. | [77] |
Ti-6Al-4V ELI (Grade 23) | α-β | Joint replacement, trauma, cardiovascular, dental, spinal, etc. | [78] |
Ti-6Al-7Nb | α-β | Joint replacement and dental | [79,80] |
Ti-5Al-2.5Fe (Grade 9) | α-β | Dental | [81] |
Ti3Al-2.5V | α-β | Joint replacement | [81] |
Ti-6Al-6V-2Sn | α-β | Joint replacement | [82] |
Ti-10Fe-10Ta-4Zr | α-β | Joint replacement | [83] |
Ti-5Al-2Sn-2Zr-4Mo-4Cr | α-β | Joint replacement | [84] |
Ti-4Al-4Mo-2Sn-0.5Si | α-β | Joint replacement | [85] |
Ti-3Zr-2Sn-3Mo-25Nb | β | Joint replacement | [86] |
Ti-13Nb-13Zr | β | Joint replacement and dental | [80] |
Ti-12Mo-6Zr-2Fe | β | Joint replacement | [87,88,89] |
Ti-15Mo | β | Joint replacement and dental | [90,91,92] |
Ti-15Mo-5Zr-3Al | β | Joint replacement | [93,94] |
Ti-15Mo-2.8Nb-0.2Si-0.260 | β | Joint replacement | [92,95,96] |
Ti-16Nb-10Hf | β | Joint replacement | [97,98] |
Ti-35.5Nb-7.3Zr-5.7Ta | β | Joint replacement | [99,100] |
Ti-29Nb-13Ta-4.6Zr | β | Joint replacement | [101,102,103] |
Ti-24Nb-4Zr-8Sn | β | Joint replacement | [104] |
Ti-9Mn | β | Joint replacement | [105,106] |
Ti-6Mn-4Mo | β | Joint replacement | [106] |
Ti-10Fe-10Ta-4Zr | β | Joint replacement | [107,108] |
Ti-12Cr | β | Joint replacement | [109] |
Ti-11Cr-0.xO | β | Joint replacement | [110] |
Ti-36Nb-2Ta-3Zr-0.3O | β | Joint replacement | [111] |
Ti-24Nb-0.5O | β | Joint replacement | [112] |
Ti-24Nb-0.5N | β | Joint replacement | [112] |
Ti-23Nb-0.7Ta-2Zr | β | Joint replacement | [113] |
Ti-23Nb-0.7Ta-2Zr-1.2O | β | Joint replacement | [113,114] |
Ti-12Mo-6Zr-2Fe | β | Joint replacement | [115] |
NiTi (Nitinol) | Cardiovascular, dental, joint replacement | [116] | |
Ti-30Zr-xMo | Joint replacement | [117] |
Category | Uses | Alloys | Ref. |
---|---|---|---|
Dental implants | Braces, bridges, abutments, orthodontics, fixation devices | β-titanium, pure titanium, Ti-6Al-4V, Nitinol | [187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221] |
Orthopedic implants | joint components (stems, cups, …), meshes, bone substitutes, fixation devices | Ti-6Al-4V, Ti-6Al-7Nb, Ti-15Mo, Ti-13Nb-13Zr, pure titanium, Nitinol | [222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250] |
Trauma devices | Plates, screws, rods, nails | Ti-6Al-4V, Ti-6Al-7Nb, and pure titanium | [251,252,253,254,255,256,257,258,259,260,261] |
Spinal implants | cages, discs, fixation devices | Ti-6Al-4V, pure titanium | [262,263,264,265,266,267,268,269,270,271] |
Cardiovascular devices | Heart valves, catheters, guidewires, clips, stents, implantable defibrillators, ventricular assist devices | Nitinol, Ti-6Al-4V, Ti-6Al-7Nb, Ti-15Mo, pure titanium | [272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292] |
Soft tissue implants | Fixation devices, hernia meshes, breast reconstruction meshes | Ti-6Al-4V, Ti-6Al-7Nb, pure titanium | [293,294,295,296] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin, E.; Lanzutti, A. Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials 2024, 17, 114. https://doi.org/10.3390/ma17010114
Marin E, Lanzutti A. Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials. 2024; 17(1):114. https://doi.org/10.3390/ma17010114
Chicago/Turabian StyleMarin, Elia, and Alex Lanzutti. 2024. "Biomedical Applications of Titanium Alloys: A Comprehensive Review" Materials 17, no. 1: 114. https://doi.org/10.3390/ma17010114
APA StyleMarin, E., & Lanzutti, A. (2024). Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials, 17(1), 114. https://doi.org/10.3390/ma17010114