On the Durability of Icephobic Coatings: A Review
Abstract
:1. Introduction
2. What Is an Icephobic Surface?
2.1. Ice Formation and Accretion in Nature
2.1.1. Precipitation Icing
2.1.2. In-Cloud Icing
2.1.3. Hoar Frost Icing
2.1.4. Sea Spray Icing
2.2. Icephobic Performance and Measurement
2.2.1. Ice Adhesion Strength
2.2.2. Freezing Delay Measurements
2.2.3. Wettability and Related Measurements
2.2.4. Approximations to Real Icing Scenarios
3. Durability of the Icephobic Coatings: Resistance Assessment
3.1. Mechanical Methods to Assess the Durability of an Icephobic Coating
3.1.1. Icing/Deicing Cycles
3.1.2. Sandpaper Abrasion Test
3.1.3. Taber Abrasion Test
3.1.4. Sand/Water Impact Test
3.1.5. Tape-Peeling Test
3.1.6. Wiping Test
3.1.7. Mechanical Properties of the Icephobic Coatings
3.1.8. Icephobic Coating-Substrate Adhesion
3.2. Chemical Methods to Assess the Durability of an Icephobic Coating
3.2.1. Acid, Basic or Organic Solvent Immersion
3.2.2. Corrosion Methods
3.3. Environmental Methods to Assess the Durability of an Icephobic Coating
3.3.1. UV Irradiation Exposure
3.3.2. Thermal Exposure
4. Icephobic Surfaces and Different Strategies to Enhance Their Durability
4.1. Superhydrophobic Icephobic Coatings
4.1.1. Durable Superhydrophobic Coatings
4.1.2. Two-Step Preparation of SHSs: Roughen the Substrate and Lower the Surface Energy
4.1.3. Self-Healing SHSs
4.2. Icephobic Coatings with Low-Surface-Energy Chemicals
4.2.1. Fluorinated
4.2.2. Non-Fluorinated
4.3. Icephobic Coatings with Low Shear Modulus
4.4. SLIPS and Organogels as Icephobic Coatings
4.4.1. Enhanced Durability Strategies for SLIPS and Organogels
4.4.2. Self-Healing SLIPS and Organogels
4.5. Icephobic Surfaces by Stress Concentration at the Ice–Surface Interface
4.5.1. Icephobic Materials with Crack Initiators
4.5.2. Icephobic Materials with Low Interfacial Toughness
4.6. Bioinspired Icephobic Coatings
4.7. Smart Icephobic Materials
4.7.1. Photothermal Icephobic Materials
4.7.2. Magnetosensitive Icephobic Materials
4.7.3. Phase Change Materials
4.7.4. Other Types of Smart Icephobic Materials
4.8. Nanocomposite Icephobic Coatings
4.8.1. Epoxy-Based Nanocomposite Icephobic Coatings
4.8.2. Non-Epoxy Based Nanocomposite Icephobic Coatings
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, Y.; Tan, W.; Wu, Z. Aircraft Icing: An Ongoing Threat to Aviation Safety. Aerosp. Sci. Technol. 2018, 75, 353–385. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, Z.; Su, Y.; Xu, Z. Aircraft Flight Characteristics in Icing Conditions. Prog. Aerosp. Sci. 2015, 74, 62–80. [Google Scholar] [CrossRef]
- Jäckel, R.; Gutiérrez-Urueta, G.; Tapia, F. A Review on Pitot Tube Icing in Aeronautics: Research-Design and Characterization—Future Trends. Flow Meas. Instrum. 2021, 81, 102033. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Xie, F.; Zhang, Y.; Gao, G. A Study of Snow Accumulating on the Bogie and the Effects of Deflectors on the De-Icing Performance in the Bogie Region of a High-Speed Train. Cold Reg. Sci. Technol. 2018, 148, 121–130. [Google Scholar] [CrossRef]
- Nilsson, F.; Moyassari, A.; Bautista, Á.; Castro, A.; Arbeloa, I.; Järn, M.; Lundgren, U.; Welinder, J.; Johansson, K. Modelling Anti-Icing of Railway Overhead Catenary Wires by Resistive Heating. Int. J. Heat Mass Transf. 2019, 143, 118505. [Google Scholar] [CrossRef]
- Dixon, B.; Walsh, A.; Gall, B.; Goodwin, M. Novel Phase Change Material Icephobic Coating for Ice Mitigation in Marine Environments. In Proceedings of the 12th General Assembly of IAMU, Gydnia, Poland, 27–29 October 2014; pp. 113–122. [Google Scholar]
- Irajizad, P.; Nazifi, S.; Ghasemi, H. Icephobic Surfaces: Definition and Figures of Merit. Adv. Colloid Interface Sci. 2019, 269, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Rashid, T.; Khawaja, H.A.; Edvardsen, K. Review of Marine Icing and Anti-/de-Icing Systems. J. Mar. Eng. Technol. 2016, 15, 79–87. [Google Scholar] [CrossRef]
- Kraj, A.G.; Bibeau, E.L. Phases of Icing on Wind Turbine Blades Characterized by Ice Accumulation. Renew. Energy 2010, 35, 966–972. [Google Scholar] [CrossRef]
- Stoyanov, D.B.; Nixon, J.D.; Sarlak, H. Analysis of Derating and Anti-Icing Strategies for Wind Turbines in Cold Climates. Appl. Energy 2021, 288, 116610. [Google Scholar] [CrossRef]
- Laforte, J.L.; Allaire, M.A.; Laflamme, J. State-of-the-Art on Power Line de-Icing. Atmos. Res. 1998, 46, 143–158. [Google Scholar] [CrossRef]
- Jelle, B.P.; Gao, T.; Mofid, S.A.; Kolås, T.; Stenstad, P.M.; Ng, S. Avoiding Snow and Ice Formation on Exterior Solar Cell Surfaces—A Review of Research Pathways and Opportunities. Procedia Eng. 2016, 145, 699–706. [Google Scholar] [CrossRef]
- Autelitano, F.; Rinaldi, M.; Giuliani, F. Winter Highway Maintenance Strategies: Are All the Sodium Chloride Salts the Same? Constr. Build. Mater. 2019, 226, 945–952. [Google Scholar] [CrossRef]
- Wang, Y.; Hudson, N.E.; Pethrick, R.A.; Schaschke, C.J. Poly(Acrylic Acid)-Poly(Vinyl Pyrrolidone)-Thickened Water/Glycol de-Icing Fluids. Cold Reg. Sci. Technol. 2014, 101, 24–30. [Google Scholar] [CrossRef]
- Sojoudi, H.; Wang, M.; Boscher, N.D.; McKinley, G.H.; Gleason, K.K. Durable and Scalable Icephobic Surfaces: Similarities and Distinctions from Superhydrophobic Surfaces. Soft Matter 2016, 12, 1938–1963. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wu, X.; Tao, J.; Zhu, C.; Lai, Y.; Chen, Z. Icephobic Materials: Fundamentals, Performance Evaluation, and Applications. Prog. Mater. Sci. 2019, 103, 509–557. [Google Scholar] [CrossRef]
- Fay, L.; Shi, X. Environmental Impacts of Chemicals for Snow and Ice Control: State of the Knowledge. Water. Air. Soil Pollut. 2012, 223, 2751–2770. [Google Scholar] [CrossRef]
- Gao, Y.; Qu, L.; He, B.; Dai, K.; Fang, Z.; Zhu, R. Study on Effectiveness of Anti-Icing and Deicing Performance of Super-Hydrophobic Asphalt Concrete. Constr. Build. Mater. 2018, 191, 270–280. [Google Scholar] [CrossRef]
- Petrenko, V.F.; Sullivan, C.R.; Kozlyuk, V.; Petrenko, F.V.; Veerasamy, V. Pulse Electro-Thermal de-Icer (PETD). Cold Reg. Sci. Technol. 2011, 65, 70–78. [Google Scholar] [CrossRef]
- Thomas, S.K.; Cassoni, R.P.; MacArthur, C.D. Aircraft Anti-Icing and de-Icing Techniques and Modeling. J. Aircr. 1996, 33, 841–854. [Google Scholar] [CrossRef]
- Habibi, H.; Edwards, G.; Sannassy, C.; Kappatos, V.; Lage, Y.; Stein, J.; Selcuk, C.; Gan, T.H. Modelling and Empirical Development of an Anti/de-Icing Approach for Wind Turbine Blades through Superposition of Different Types of Vibration. Cold Reg. Sci. Technol. 2016, 128, 1–12. [Google Scholar] [CrossRef]
- Habibi, H.; Cheng, L.; Zheng, H.; Kappatos, V.; Selcuk, C.; Gan, T.H. A Dual De-Icing System for Wind Turbine Blades Combining High-Power Ultrasonic Guided Waves and Low-Frequency Forced Vibrations. Renew. Energy 2015, 83, 859–870. [Google Scholar] [CrossRef]
- Bai, T.; Zhu, C.; Miao, B.; Li, Q.; Zhang, Q. Vibration De-Icing Method with Piezoelectric Actuators on Flat Aluminum Plate. J. Vibroengineering 2015, 17, 61–73. [Google Scholar] [CrossRef]
- Huang, X.; Tepylo, N.; Pommier-Budinger, V.; Budinger, M.; Bonaccurso, E.; Villedieu, P.; Bennani, L. A Survey of Icephobic Coatings and Their Potential Use in a Hybrid Coating/Active Ice Protection System for Aerospace Applications. Prog. Aerosp. Sci. 2019, 105, 74–97. [Google Scholar] [CrossRef]
- Parent, O.; Ilinca, A. Anti-Icing and de-Icing Techniques for Wind Turbines: Critical Review. Cold Reg. Sci. Technol. 2011, 65, 88–96. [Google Scholar] [CrossRef]
- Venna, S.V.; Lin, Y.J. Mechatronic Development of Self-Actuating in-Flight Deicing Structures. IEEE/ASME Trans. Mechatron. 2006, 11, 585–592. [Google Scholar] [CrossRef]
- Ryerson, C.C. Ice Protection of Offshore Platforms. Cold Reg. Sci. Technol. 2011, 65, 97–110. [Google Scholar] [CrossRef]
- Su, Q.; Chang, S.; Zhao, Y.; Zheng, H.; Dang, C. A Review of Loop Heat Pipes for Aircraft Anti-Icing Applications. Appl. Therm. Eng. 2018, 130, 528–540. [Google Scholar] [CrossRef]
- Yao, X.; Falzon, B.G.; Hawkins, S.C.; Tsantzalis, S. Aligned Carbon Nanotube Webs Embedded in a Composite Laminate: A Route towards a Highly Tunable Electro-Thermal System. Carbon 2018, 129, 486–494. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Liu, S.; Zhou, F. Material Strategies for Ice Accretion Prevention and Easy Removal. ACS Mater. Lett. 2022, 4, 246–262. [Google Scholar] [CrossRef]
- Menini, R.; Farzaneh, M. Advanced Icephobic Coatings. J. Adhes. Sci. Technol. 2011, 25, 971–992. [Google Scholar] [CrossRef]
- Azimi Yancheshme, A.; Momen, G.; Jafari Aminabadi, R. Mechanisms of Ice Formation and Propagation on Superhydrophobic Surfaces: A Review. Adv. Colloid Interface Sci. 2020, 279, 102155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, X.Y. Control of Ice Nucleation: Freezing and Antifreeze Strategies. Chem. Soc. Rev. 2018, 47, 7116–7139. [Google Scholar] [CrossRef] [PubMed]
- Roisman, I.V.; Tropea, C. Wetting and Icing of Surfaces. Curr. Opin. Colloid Interface Sci. 2021, 53, 101400. [Google Scholar] [CrossRef]
- Chaudhary, G.; Li, R. Freezing of Water Droplets on Solid Surfaces: An Experimental and Numerical Study. Exp. Therm. Fluid Sci. 2014, 57, 86–93. [Google Scholar] [CrossRef]
- Kong, W.; Liu, H. A Theory on the Icing Evolution of Supercooled Water near Solid Substrate. Int. J. Heat Mass Transf. 2015, 91, 1217–1236. [Google Scholar] [CrossRef]
- Li, Q.; Guo, Z. Fundamentals of Icing and Common Strategies for Designing Biomimetic Anti-Icing Surfaces. J. Mater. Chem. A 2018, 6, 13549–13581. [Google Scholar] [CrossRef]
- Matejicka, L.; Georgakis, C.T. A Review of Ice and Snow Risk Mitigation and Control Measures for Bridge Cables. Cold Reg. Sci. Technol. 2022, 193, 103429. [Google Scholar] [CrossRef]
- Mintu, S.; Molyneux, D. Ice Accretion for Ships and Offshore Structures. Part 1—State of the Art Review. Ocean Eng. 2022, 258, 111501. [Google Scholar] [CrossRef]
- Dehghani-Sanij, A.R.; Dehghani, S.R.; Naterer, G.F.; Muzychka, Y.S. Sea Spray Icing Phenomena on Marine Vessels and Offshore Structures: Review and Formulation. Ocean Eng. 2017, 132, 25–39. [Google Scholar] [CrossRef]
- He, Z.; Xiao, S.; Gao, H.; He, J.; Zhang, Z. Multiscale Crack Initiator Promoted Super-Low Ice Adhesion Surfaces. Soft Matter 2017, 13, 6562–6568. [Google Scholar] [CrossRef]
- Wilen, L.A.; Wettlaufer, J.S.; Elbaum, M.; Schick, M. Dispersion-Force Effects in Interfacial Premelting of Ice. Phys. Rev. B 1995, 52, 12426–12433. [Google Scholar] [CrossRef] [PubMed]
- Ryzhkin, I.A.; Petrenko, V.F. Physical Mechanisms Responsible for Ice Adhesion. J. Phys. Chem. B 1997, 101, 6267–6270. [Google Scholar] [CrossRef]
- Meuler, A.J.; Smith, J.D.; Varanasi, K.K.; Mabry, J.M.; Mckinley, G.H.; Cohen, R.E. Relationships between Water Wettability and Ice Adhesion. ACS Appl. Mater. Interfaces 2010, 2, 3100–3110. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, J.; He, M.; Li, K.; Cui, D.; Zhang, Q.; Zeng, X.; Zhang, Y.; Wang, J.; Song, Y. Superhydrophobic Surfaces Cannot Reduce Ice Adhesion. Appl. Phys. Lett. 2012, 101, 111603. [Google Scholar] [CrossRef]
- Varanasi, K.K.; Deng, T.; Smith, J.D.; Hsu, M.; Bhate, N. Frost Formation and Ice Adhesion on Superhydrophobic Surfaces. Appl. Phys. Lett. 2010, 97, 143–146. [Google Scholar] [CrossRef]
- Nosonovsky, M.; Hejazi, V. Why Superhydrophobic Surfaces Are Not Always Icephobic. ACS Nano 2012, 6, 8488–8491. [Google Scholar] [CrossRef] [PubMed]
- Memon, H.; Liu, J.; De Focatiis, D.S.A.; Choi, K.; Hou, X. Intrinsic Dependence of Ice Adhesion Strength on Surface Roughness. Surf. Coat. Technol. 2020, 385, 125382. [Google Scholar] [CrossRef]
- Nistal, A.; Ruiz-González, A.; Choy, K.L. Robust Icephobic Nanocomposite Coatings with Superior Abrasion Resistance. Appl. Mater. Today 2022, 27, 101480. [Google Scholar] [CrossRef]
- Work, A.; Lian, Y. A Critical Review of the Measurement of Ice Adhesion to Solid Substrates. Prog. Aerosp. Sci. 2018, 98, 1–26. [Google Scholar] [CrossRef]
- Rønneberg, S.; He, J.; Zhang, Z. The Need for Standards in Low Ice Adhesion Surface Research: A Critical Review. J. Adhes. Sci. Technol. 2020, 34, 319–347. [Google Scholar] [CrossRef]
- Rønneberg, S.; Zhuo, Y.; Laforte, C.; He, J.; Zhang, Z. Interlaboratory Study of Ice Adhesion Using Different Techniques. Coatings 2019, 9, 678. [Google Scholar] [CrossRef]
- Irajizad, P.; Al-bayati, A.; Eslami, B.; Shafquat, T.; Nazari, M.; Jafari, P.; Kashyap, V.; Masoudi, A.; Araya, D.; Ghasemi, H. Stress-Localized Durable Icephobic Surfaces. Mater. Horiz. 2019, 6, 758–766. [Google Scholar] [CrossRef]
- Brassard, J.D.; Laforte, J.L.; Blackburn, C.; Perron, J.; Sarkar, D.K. Silicone Based Superhydrophobic Coating Efficient to Reduce Ice Adhesion and Accumulation on Aluminum under Offshore Arctic Conditions. Ocean Eng. 2017, 144, 135–141. [Google Scholar] [CrossRef]
- Janjua, Z.A.; Turnbull, B.; Choy, K.L.; Pandis, C.; Liu, J.; Hou, X.; Choi, K.S. Performance and Durability Tests of Smart Icephobic Coatings to Reduce Ice Adhesion. Appl. Surf. Sci. 2017, 407, 555–564. [Google Scholar] [CrossRef]
- Alizadeh, A.; Bahadur, V.; Kulkarni, A.; Yamada, M.; Ruud, J.A. Hydrophobic Surfaces for Control and Enhancement of Water Phase Transitions. MRS Bull. 2013, 38, 407–411. [Google Scholar] [CrossRef]
- Golovin, K.; Kobaku, S.P.R.R.; Lee, D.H.; DiLoreto, E.T.; Mabry, J.M.; Tuteja, A. Designing Durable Icephobic Surfaces. Sci. Adv. 2016, 2, e1501496. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fuller, T.; Zhang, W.; Wynne, K.J.; Sylgard, P.N.; Wang, C.; Fuller, T.; Zhang, W.; Wynne, K.J. Thickness Dependence of Ice Removal Stress for a Polydimethylsiloxane Nanocomposite: Sylgard 184. Langmuir 2014, 30, 12819–12826. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, M.J.; Lee, B.; Chun, J.M.; Patil, V.; Kim, Y.S. Durable Ice-Lubricating Surfaces Based on Polydimethylsiloxane Embedded Silicone Oil Infused Silica Aerogel. Appl. Surf. Sci. 2020, 512, 145728. [Google Scholar] [CrossRef]
- Dhyani, A.; Choi, W.; Golovin, K.; Tuteja, A. Surface Design Strategies for Mitigating Ice and Snow Accretion. Matter 2022, 5, 1423–1454. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Park, S.; Lim, H. Effects of Morphology Parameters on Anti-Icing Performance in Superhydrophobic Surfaces. Appl. Surf. Sci. 2018, 435, 585–591. [Google Scholar] [CrossRef]
- Zou, M.; Beckford, S.; Wei, R.; Ellis, C.; Hatton, G.; Miller, M.A. Effects of Surface Roughness and Energy on Ice Adhesion Strength. Appl. Surf. Sci. 2011, 257, 3786–3792. [Google Scholar] [CrossRef]
- Golovin, K.; Dhyani, A.; Thouless, M.D.; Tuteja, A. Low-Interfacial Toughness Materials for Effective Large-Scale Deicing. Science 2019, 364, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Bharathidasan, T.; Kumar, S.V.; Bobji, M.S.; Chakradhar, R.P.S.; Basu, B.J. Effect of Wettability and Surface Roughness on Ice-Adhesion Strength of Hydrophilic, Hydrophobic and Superhydrophobic Surfaces. Appl. Surf. Sci. 2014, 314, 241–250. [Google Scholar] [CrossRef]
- Barthwal, S.; Lee, B.; Lim, S.-H.H. Fabrication of Robust and Durable Slippery Anti-Icing Coating on Textured Superhydrophobic Aluminum Surfaces with Infused Silicone Oil. Appl. Surf. Sci. 2019, 496, 143677. [Google Scholar] [CrossRef]
- Lv, J.; Zhu, C.; Qiu, H.; Zhang, J.; Gu, C.; Feng, J. Robust Icephobic Epoxy Coating Using Maleic Anhydride as a Crosslinking Agent. Prog. Org. Coatings 2020, 142, 105561. [Google Scholar] [CrossRef]
- Zhuo, Y.; Li, T.; Wang, F.; Håkonsen, V.; Xiao, S.; He, J.; Zhang, Z. An Ultra-Durable Icephobic Coating by a Molecular Pulley. Soft Matter 2019, 15, 3607–3611. [Google Scholar] [CrossRef] [PubMed]
- Boinovich, L.; Emelyanenko, A.M.; Korolev, V.V.; Pashinin, A.S. Effect of Wettability on Sessile Drop Freezing: When Superhydrophobicity Stimulates an Extreme Freezing Delay. Langmuir 2014, 30, 1659–1668. [Google Scholar] [CrossRef]
- Hao, P.; Lv, C.; Zhang, X. Freezing of Sessile Water Droplets on Surfaces with Various Roughness and Wettability. Appl. Phys. Lett. 2014, 104, 161609. [Google Scholar] [CrossRef]
- Heydari, G.; Thormann, E.; Järn, M.; Tyrode, E.; Claesson, P.M. Hydrophobic Surfaces: Topography Effects on Wetting by Supercooled Water and Freezing Delay. J. Phys. Chem. C 2013, 117, 21752–21762. [Google Scholar] [CrossRef]
- Yin, L.; Xia, Q.; Xue, J.; Yang, S.; Wang, Q.; Chen, Q. In Situ Investigation of Ice Formation on Surfaces with Representative Wettability. Appl. Surf. Sci. 2010, 256, 6764–6769. [Google Scholar] [CrossRef]
- Montes Ruiz-Cabello, F.J.; Bermúdez-Romero, S.; Ibáñez-Ibáñez, P.F.; Cabrerizo-Vílchez, M.A.; Rodríguez-Valverde, M.A. Freezing Delay of Sessile Drops: Probing the Impact of Contact Angle, Surface Roughness and Thermal Conductivity. Appl. Surf. Sci. 2021, 537, 147964. [Google Scholar] [CrossRef]
- Jung, S.; Tiwari, M.K.; Doan, N.V.; Poulikakos, D. Mechanism of Supercooled Droplet Freezing on Surfaces. Nat. Commun. 2012, 3, 615. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Dorrestijn, M.; Raps, D.; Das, A.; Megaridis, C.M.; Poulikakos, D. Are Superhydrophobic Surfaces Best for Icephobicity? Langmuir 2011, 27, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Teng, L.; Lai, Y.; Zhu, T.; Li, S.; Wu, X.; Cai, W.; Chen, Z.; Huang, J. Magnetic Responsive and Flexible Composite Superhydrophobic Photothermal Film for Passive Anti-Icing/Active Deicing. Chem. Eng. J. 2021, 427, 130922. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, D.; Zhang, D.; Ma, L.; Wang, J.; Huang, Y.; Chen, M.; Qian, H.; Li, X. A Durable and Photothermal Superhydrophobic Coating with Entwinned CNTs-SiO2 Hybrids for Anti-Icing Applications. Chem. Eng. J. 2021, 423, 130238. [Google Scholar] [CrossRef]
- Wang, N.; Xiong, D.; Deng, Y.; Shi, Y.; Wang, K. Mechanically Robust Superhydrophobic Steel Surface with Anti-Icing, UV-Durability, and Corrosion Resistance Properties. ACS Appl. Mater. Interfaces 2015, 7, 6260–6272. [Google Scholar] [CrossRef]
- Tong, W.; Xiong, D.; Wang, N.; Wu, Z.; Zhou, H. Mechanically Robust Superhydrophobic Coating for Aeronautical Composite against Ice Accretion and Ice Adhesion. Compos. Part B Eng. 2019, 176, 107267. [Google Scholar] [CrossRef]
- He, Z.; Vågenes, E.T.; Delabahan, C.; He, J.; Zhang, Z. Room Temperature Characteristics of Polymer-Based Low Ice Adhesion Surfaces. Sci. Rep. 2017, 7, 42181. [Google Scholar] [CrossRef]
- Antonini, C.; Innocenti, M.; Horn, T.; Marengo, M.; Amirfazli, A. Understanding the Effect of Superhydrophobic Coatings on Energy Reduction in Anti-Icing Systems. Cold Reg. Sci. Technol. 2011, 67, 58–67. [Google Scholar] [CrossRef]
- Su, B.; Tian, Y.; Jiang, L. Bioinspired Interfaces with Superwettability: From Materials to Chemistry. J. Am. Chem. Soc. 2016, 138, 1727–1748. [Google Scholar] [CrossRef]
- Khaskhoussi, A.; Risitano, G.; Calabrese, L.; D’andrea, D. Investigation of the Wettability Properties of Different Textured Lead/Lead-Free Bronze Coatings. Lubricants 2022, 10, 82. [Google Scholar] [CrossRef]
- Simpson, J.T.; Hunter, S.R.; Aytug, T. Superhydrophobic Materials and Coatings: A Review. Rep. Prog. Phys. 2015, 78, 086501. [Google Scholar] [CrossRef] [PubMed]
- Idriss, H.; Guselnikova, O.; Postnikov, P.; Kolská, Z.; Haušild, P.; Lyutakov, O.; Švorčík, V. Polymer Icephobic Surface by Graphite Coating and Chemical Grafting with Diazonium Salts. Surf. Interfaces 2021, 25, 101226. [Google Scholar] [CrossRef]
- Jin, M.; Shen, Y.; Luo, X.; Tao, J.; Xie, Y.; Chen, H.; Wu, Y. A Combination Structure of Microblock and Nanohair Fabricated by Chemical Etching for Excellent Water Repellency and Icephobicity. Appl. Surf. Sci. 2018, 455, 883–890. [Google Scholar] [CrossRef]
- Richard, D.; Clanet, C.; Quéré, D. Contact Time of a Bouncing Drop. Nature 2002, 417, 811. [Google Scholar] [CrossRef] [PubMed]
- Mishchenko, L.; Hatton, B.; Bahadur, V.; Taylor, J.A.; Krupenkin, T.; Aizenberg, J. Design of Ice-Free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets. ACS Nano 2010, 4, 7699–7707. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Tao, J.; Tao, H.; Chen, S.; Pan, L.; Wang, T. Approaching the Theoretical Contact Time of a Bouncing Droplet on the Rational Macrostructured Superhydrophobic Surfaces. Appl. Phys. Lett. 2015, 107, 111604. [Google Scholar] [CrossRef]
- Hao, C.; Liu, Y.; Chen, X.; Li, J.; Zhang, M.; Zhao, Y.; Wang, Z. Bioinspired Interfacial Materials with Enhanced Drop Mobility: From Fundamentals to Multifunctional Applications. Small 2016, 12, 1825–1839. [Google Scholar] [CrossRef]
- Shen, Y.; Tao, J.; Tao, H.; Chen, S.; Pan, L.; Wang, T. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces. ACS Appl. Mater. Interfaces 2015, 7, 20972–20978. [Google Scholar] [CrossRef]
- Bahadur, V.; Mishchenko, L.; Hatton, B.; Taylor, J.A.; Aizenberg, J.; Krupenkin, T. Predictive Model for Ice Formation on Superhydrophobic Surfaces. Langmuir 2011, 27, 14143–14150. [Google Scholar] [CrossRef]
- Maitra, T.; Antonini, C.; Tiwari, M.K.; Mularczyk, A.; Imeri, Z.; Schoch, P.; Poulikakos, D. Supercooled Water Drops Impacting Superhydrophobic Textures. Langmuir 2014, 30, 10855–10861. [Google Scholar] [CrossRef] [PubMed]
- Bird, J.C.; Dhiman, R.; Kwon, H.M.; Varanasi, K.K. Reducing the Contact Time of a Bouncing Drop. Nature 2013, 503, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Moevius, L.; Xu, X.; Qian, T.; Yeomans, J.M.; Wang, Z. Pancake Bouncing on Superhydrophobic Surfaces. Nat. Phys. 2014, 10, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Pan, W.; Chen, Y.; Ming, P.; Song, J.; Wang, X.; Hua, S. Drop Impact on Elastic Superhydrophobic Films: From Pancake Bouncing to Saucer Bouncing. Mater. Lett. 2021, 285, 129076. [Google Scholar] [CrossRef]
- Maitra, T.; Tiwari, M.K.; Antonini, C.; Schoch, P.; Jung, S.; Eberle, P.; Poulikakos, D. On the Nanoengineering of Superhydrophobic and Impalement Resistant Surface Textures below the Freezing Temperature. Nano Lett. 2014, 14, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, M.; Lv, T.; Wang, Q.; Chen, Q.; Ding, J. Influence of Different Chemical Modifications on the Icephobic Properties of Superhydrophobic Surfaces in a Condensate Environment. J. Mater. Chem. A 2015, 3, 4967–4975. [Google Scholar] [CrossRef]
- Zheng, L.; Li, Z.; Bourdo, S.; Khedir, K.R.; Asar, M.P.; Ryerson, C.C.; Biris, A.S. Exceptional Superhydrophobicity and Low Velocity Impact Icephobicity of Acetone-Functionalized Carbon Nanotube Films. Langmuir 2011, 27, 9936–9943. [Google Scholar] [CrossRef]
- Guo, W.; Shen, H.; Li, Y.; Feng, F.; Tagawa, K. Wind Tunnel Tests of the Rime Icing Characteristics of a Straight-Bladed Vertical Axis Wind Turbine. Renew. Energy 2021, 179, 116–132. [Google Scholar] [CrossRef]
- Sun, H.; Lin, G.; Jin, H.; Bu, X.; Cai, C.; Jia, Q.; Ma, K.; Wen, D. Experimental Investigation of Surface Wettability Induced Anti-Icing Characteristics in an Ice Wind Tunnel. Renew. Energy 2021, 179, 1179–1190. [Google Scholar] [CrossRef]
- Koivuluoto, H.; Stenroos, C.; Kylmälahti, M.; Apostol, M.; Kiilakoski, J.; Vuoristo, P. Anti-Icing Behavior of Thermally Sprayed Polymer Coatings. J. Therm. Spray Technol. 2017, 26, 150–160. [Google Scholar] [CrossRef]
- Ozeki, T.; Yamamoto, R.; Izumiyama, K.; Sakamoto, T. Ice Adhesion Tests on Pliable Polymer Sheets for Protection Against Sea-Water Spray Icing. J. Adhes. Sci. Technol. 2012, 26, 651–663. [Google Scholar] [CrossRef]
- Kulkarni, M.A.; Yengantiwar, A.; Deo, M.; Banpurkar, A.G. Robust Superhydrophobic and Icephobic Surface Based on Teflon AF Coated Multiscale Hierarchical ZnO/Cu2O Nanostructures. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2022, 285, 115969. [Google Scholar] [CrossRef]
- Gao, J.; Martin, A.; Yatvin, J.; White, E.; Locklin, J. Permanently Grafted Icephobic Nanocomposites with High Abrasion Resistance. J. Mater. Chem. A 2016, 4, 11719–11728. [Google Scholar] [CrossRef]
- Yang, S.; Xia, Q.; Zhu, L.; Xue, J.; Wang, Q.; Chen, Q.M. Research on the Icephobic Properties of Fluoropolymer-Based Materials. Appl. Surf. Sci. 2011, 257, 4956–4962. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, X.; Ho, J.W.C.; Chen, Z.; Ho, C.; Chen, Z.; Ho, J.W.C.; Chen, Z. Design and Durability Study of Environmental-Friendly Room-Temperature Processable Icephobic Coatings. Chem. Eng. J. 2019, 355, 901–909. [Google Scholar] [CrossRef]
- Jamil, M.I.; Zhan, X.; Chen, F.; Cheng, D.; Zhang, Q. Durable and Scalable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism. ACS Appl. Mater. Interfaces 2019, 11, 31532–31542. [Google Scholar] [CrossRef] [PubMed]
- Boinovich, L.B.; Emelyanenko, A.M.; Emelyanenko, K.A.; Modin, E.B. Modus Operandi of Protective and Anti-Icing Mechanisms Underlying the Design of Longstanding Outdoor Icephobic Coatings. ACS Nano 2019, 13, 4335–4346. [Google Scholar] [CrossRef] [PubMed]
- Boinovich, L.B.; Emelyanenko, A.M.; Ivanov, V.K.; Pashinin, A.S. Durable Icephobic Coating for Stainless Steel. ACS Appl. Mater. Interfaces 2013, 5, 2549–2554. [Google Scholar] [CrossRef]
- Alasvand Zarasvand, K.; Pope, C.; Mohseni, M.; Orchard, D.; Clark, C.; Golovin, K. Metallic Plate Buckling As a Low Adhesion Mechanism for Durable and Scalable Icephobic Surface Design. Adv. Mater. Interfaces 2022, 9, 2101402. [Google Scholar] [CrossRef]
- Rico, V.; Mora, J.; García, P.; Agüero, A.; Borrás, A.; González-Elipe, A.R.; López-Santos, C. Robust Anti-Icing Superhydrophobic Aluminum Alloy Surfaces by Grafting Fluorocarbon Molecular Chains. Appl. Mater. Today 2020, 21, 100815. [Google Scholar] [CrossRef]
- Beemer, D.L.; Wang, W.; Kota, A.K. Durable Gels with Ultra-Low Adhesion to Ice. J. Mater. Chem. A 2016, 4, 18253–18258. [Google Scholar] [CrossRef]
- Hou, Y.; Choy, K.L. Durable and Robust PVDF-HFP/SiO2/CNTs Nanocomposites for Anti-Icing Application: Water Repellency, Icing Delay, and Ice Adhesion. Prog. Org. Coat. 2022, 163, 106637. [Google Scholar] [CrossRef]
- Chen, C.; Tian, Z.; Luo, X.; Jiang, G.; Hu, X.; Wang, L.; Peng, R.; Zhang, H.; Zhong, M. Micro–Nano-Nanowire Triple Structure-Held PDMS Superhydrophobic Surfaces for Robust Ultra-Long-Term Icephobic Performance. ACS Appl. Mater. Interfaces 2022, 14, 23973–23982. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Zhang, H.; Zhong, M. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication. ACS Appl. Mater. Interfaces 2021, 13, 1743–1753. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhao, X.; Zhao, X.; Li, H.; Zhang, S.; Feng, W.; Zhang, Y. Low Ice Adhesion Surfaces Based on Flexible Fluorinated Polymers with a Polynorbornene Backbone. ACS Appl. Mater. Interfaces 2020, 12, 53494–53502. [Google Scholar] [CrossRef] [PubMed]
- Sarma, J.; Zhang, L.; Guo, Z.; Dai, X. Sustainable Icephobicity on Durable Quasi-Liquid Surface. Chem. Eng. J. 2022, 431, 133475. [Google Scholar] [CrossRef]
- Donadei, V.; Koivuluoto, H.; Sarlin, E.; Niemelä-Anttonen, H.; Varis, T.; Vuoristo, P. The Effect of Mechanical and Thermal Stresses on the Performance of Lubricated Icephobic Coatings during Cyclic Icing/Deicing Tests. Prog. Org. Coat. 2022, 163, 106614. [Google Scholar] [CrossRef]
- Lo, T.N.H.; Hong, S.W.; Hwang, H.S.; Park, I. Facile Synthesis of Fluorinated Polysilazanes and Their Durable Icephobicity on Rough Al Surfaces. Polymers 2022, 14, 330. [Google Scholar] [CrossRef]
- Ibáñez-Ibáñez, P.F.; Montes Ruiz-Cabello, F.J.; Cabrerizo-Vílchez, M.A.; Rodríguez-Valverde, M.A. Mechanical Durability of Low Ice Adhesion Polydimethylsiloxane Surfaces. ACS Omega 2022, 7, 20741–20749. [Google Scholar] [CrossRef]
- Chen, J.; Dou, R.; Cui, D.; Zhang, Q.; Zhang, Y.; Xu, F.; Zhou, X.; Wang, J.; Song, Y.; Jiang, L. Robust Prototypical Anti-Icing Coatings with a Self-Lubricating Liquid Water Layer between Ice and Substrate. ACS Appl. Mater. Interfaces 2013, 5, 4026–4030. [Google Scholar] [CrossRef]
- Li, T.; Zhuo, Y.; Håkonsen, V.; He, J.; Zhang, Z. Durable Low Ice Adhesion Foams Modulated by Submicrometer Pores. Ind. Eng. Chem. Res. 2019, 58, 17776–17783. [Google Scholar] [CrossRef]
- Gao, S.; Liu, B.; Peng, J.; Zhu, K.; Zhao, Y.; Li, X.; Yuan, X. Icephobic Durability of Branched PDMS Slippage Coatings Co-Cross-Linked by Functionalized POSS. ACS Appl. Mater. Interfaces 2019, 11, 4654–4666. [Google Scholar] [CrossRef] [PubMed]
- ASTM D4060; Standard Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser. ASTM International: West Conshohocken, PA, USA, 2019.
- Peng, C.; Chen, Z.; Tiwari, M.K. All-Organic Superhydrophobic Coatings with Mechanochemical Robustness and Liquid Impalement Resistance. Nat. Mater. 2018, 17, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Scrinzi, E.; Rossi, S.; Kamarchik, P.; Deflorian, F. Evaluation of Durability of Nano-Silica Containing Clear Coats for Automotive Applications. Prog. Org. Coat. 2011, 71, 384–390. [Google Scholar] [CrossRef]
- Rahimi, H.; Mozaffarinia, R.; Hojjati Najafabadi, A. Corrosion and Wear Resistance Characterization of Environmentally Friendly Sol-Gel Hybrid Nanocomposite Coating on AA5083. J. Mater. Sci. Technol. 2013, 29, 603–608. [Google Scholar] [CrossRef]
- Golovin, K.; Boban, M.; Mabry, J.M.; Tuteja, A. Designing Self-Healing Superhydrophobic Surfaces with Exceptional Mechanical Durability. ACS Appl. Mater. Interfaces 2017, 9, 11212–11223. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, G.; Jackson, J.; Ceylan, H.; Sundararajan, S. Effect of Plasticizer on the Wear Behavior and Ice Adhesion of Elastomeric Coatings. Wear 2019, 426–427, 212–218. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, D.; Yang, S. Spray-Coating of Superhydrophobic Aluminum Alloys with Enhanced Mechanical Robustness. J. Colloid Interface Sci. 2014, 423, 101–107. [Google Scholar] [CrossRef]
- Guo, H.; Liu, M.; Xie, C.; Zhu, Y.; Sui, X.; Wen, C.; Li, Q.; Zhao, W.; Yang, J.; Zhang, L. A Sunlight-Responsive and Robust Anti-Icing/Deicing Coating Based on the Amphiphilic Materials. Chem. Eng. J. 2020, 402, 126161. [Google Scholar] [CrossRef]
- Fu, K.; Lu, C.; Liu, Y.; Zhang, H.; Zhang, B.; Zhang, H.; Zhou, F.; Zhang, Q.; Zhu, B. Mechanically Robust, Self-Healing Superhydrophobic Anti-Icing Coatings Based on a Novel Fluorinated Polyurethane Synthesized by a Two-Step Thiol Click Reaction. Chem. Eng. J. 2021, 404, 127110. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, Y.; Tao, J.; Zhu, C.; Chen, H.; Wu, Z.; Xie, Y. Spraying Fabrication of Durable and Transparent Coatings for Anti-Icing Application: Dynamic Water Repellency, Icing Delay, and Ice Adhesion. ACS Appl. Mater. Interfaces 2019, 11, 3590–3598. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, K.; Vazirinasab, E.; Momen, G.; Jafari, R. Icephobicity and Durability Assessment of Superhydrophobic Surfaces: The Role of Surface Roughness and the Ice Adhesion Measurement Technique. J. Mater. Process. Technol. 2021, 288, 116883. [Google Scholar] [CrossRef]
- Wang, J.; Wu, M.; Liu, J.; Xu, F.; Hussain, T.; Scotchford, C.; Hou, X. Metallic Skeleton Promoted Two-Phase Durable Icephobic Layers. J. Colloid Interface Sci. 2021, 587, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Memon, H.; De Focatiis, D.S.A.; Choi, K.S.; Hou, X. Toward Exceptional Icephobicity with Chionophile-Inspired Durable Biomimetic Coatings. ACS Appl. Polym. Mater. 2021, 3, 4184–4194. [Google Scholar] [CrossRef]
- Yeong, Y.H.; Milionis, A.; Loth, E.; Sokhey, J. Self-Lubricating Icephobic Elastomer Coating (SLIC) for Ultralow Ice Adhesion with Enhanced Durability. Cold Reg. Sci. Technol. 2018, 148, 29–37. [Google Scholar] [CrossRef]
- Sandhu, A.; Walker, O.J.; Nistal, A.; Choy, K.L.; Clancy, A.J. Perfluoroalkane Wax Infused Gels for Effective, Regenerating, Anti-Icing Surfaces. Chem. Commun. 2019, 55, 3215–3218. [Google Scholar] [CrossRef] [PubMed]
- ISO 14577-1:2016; Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method. ISO: Geneva, Switzerland, 2016.
- Sojoudi, H.; McKinley, G.H.; Gleason, K.K. Linker-Free Grafting of Fluorinated Polymeric Cross-Linked Network Bilayers for Durable Reduction of Ice Adhesion. Mater. Horiz. 2015, 2, 91–99. [Google Scholar] [CrossRef]
- Mazzola, L. Aeronautical Livery Coating with Icephobic Property. Surf. Eng. 2016, 32, 733–744. [Google Scholar] [CrossRef]
- ASTM D3363-22; Standard Test Method for Film Hardness by Pencil Test. ASTM International: West Conshohocken, PA, USA, 2022.
- ISO 15184:2020; Paints and Varnishes—Determination of Film Hardness by Pencil Test. ISO: Geneva, Switzerland, 2020.
- Huang, Y.; Hu, M.; Yi, S.; Liu, X.; Li, H.; Huang, C.; Luo, Y.; Li, Y. Preparation and Characterization of Silica/Fluorinated Acrylate Copolymers Hybrid Films and the Investigation of Their Icephobicity. Thin Solid Films 2012, 520, 5644–5651. [Google Scholar] [CrossRef]
- ASTM D3359-23; Standard Test Methods for Rating Adhesion by Tape Test. ASTM International: West Conshohocken, PA, USA, 2023.
- ISO 2409:2013; Paints and Varnishes—Cross-Cut Test. ISO: Geneva, Switzerland, 2023.
- Menini, R.; Farzaneh, M. Elaboration of Al2O3/PTFE Icephobic Coatings for Protecting Aluminum Surfaces. Surf. Coat. Technol. 2009, 203, 1941–1946. [Google Scholar] [CrossRef]
- Momen, G.; Farzaneh, M. Facile Approach in the Development of Icephobic Hierarchically Textured Coatings as Corrosion Barrier. Appl. Surf. Sci. 2014, 299, 41–46. [Google Scholar] [CrossRef]
- Allahdini, A.; Jafari, R.; Momen, G. Transparent Non-Fluorinated Superhydrophobic Coating with Enhanced Anti-Icing Performance. Prog. Org. Coat. 2022, 165, 106758. [Google Scholar] [CrossRef]
- ASTM D4541-22; Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers. ASTM International: West Conshohocken, PA, USA, 2022.
- ISO 4624:2016; Paints and Varnishes Pull-Off Test for Adhesion. ISO: Geneva, Switzerland, 2016.
- ASTM D3359-09; Standard Test Methods for Measuring Adhesion by Tape Test. ASTM International: West Conshohocken, PA, USA, 2009.
- Chen, J.; Li, K.; Wu, S.; Liu, J.; Liu, K.; Fan, Q. Durable Anti-Icing Coatings Based on Self-Sustainable Lubricating Layer. ACS Omega 2017, 2, 2047–2054. [Google Scholar] [CrossRef] [PubMed]
- ASTM B117-19; Standard Practice for Operating Salt Spray (Fog) Apparatus. ASTM International: West Conshohocken, PA, USA, 2019.
- Pan, S.; Wang, N.; Xiong, D.; Deng, Y.; Shi, Y. Fabrication of Superhydrophobic Coating via Spraying Method and Its Applications in Anti-Icing and Anti-Corrosion. Appl. Surf. Sci. 2016, 389, 547–553. [Google Scholar] [CrossRef]
- ISO 11507:2007; Paints and Varnishes—Exposure of Coatings to Artificial Weathering—Exposure to Fluorescent UV Lamps and Water. ISO: Geneva, Switzerland, 2007.
- Liu, B.; Zhang, K.; Tao, C.; Zhao, Y.; Li, X.; Zhu, K.; Yuan, X. Strategies for Anti-Icing: Low Surface Energy or Liquid-Infused? RSC Adv. 2016, 6, 70251–70260. [Google Scholar] [CrossRef]
- Shamshiri, M.; Jafari, R.; Momen, G. Potential Use of Smart Coatings for Icephobic Applications: A Review. Surf. Coat. Technol. 2021, 424, 127656. [Google Scholar] [CrossRef]
- Yang, S.; Wu, C.; Zhao, G.; Sun, J.; Yao, X.; Ma, X.; Wang, Z. Condensation Frosting and Passive Anti-Frosting. Cell Rep. Phys. Sci. 2021, 2, 100474. [Google Scholar] [CrossRef]
- Li, W.; Zhan, Y.; Yu, S. Applications of Superhydrophobic Coatings in Anti-Icing: Theory, Mechanisms, Impact Factors, Challenges and Perspectives. Prog. Org. Coat. 2021, 152, 106117. [Google Scholar] [CrossRef]
- Jamil, M.I.; Ali, A.; Haq, F.; Zhang, Q.; Zhan, X.; Chen, F. Icephobic Strategies and Materials with Superwettability: Design Principles and Mechanism. Langmuir 2018, 34, 15425–15444. [Google Scholar] [CrossRef]
- Kreder, M.J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of Anti-Icing Surfaces: Smooth, Textured or Slippery? Nat. Rev. Mater. 2016, 1, 15003. [Google Scholar] [CrossRef]
- He, Z.; Zhuo, Y.; Zhang, Z.; He, J. Design of Icephobic Surfaces by Lowering Ice Adhesion Strength: A Mini Review. Coatings 2021, 11, 1343. [Google Scholar] [CrossRef]
- Onda, T.; Shibuichi, S.; Satoh, N.; Tsujii, K. Super-Water-Repellent Fractal Surfaces. Langmuir 1996, 12, 5–7. [Google Scholar] [CrossRef]
- Kulinich, S.A.; Farhadi, S.; Nose, K.; Du, X.W. Superhydrophobic Surfaces: Are They Really Ice-Repellent? Langmuir 2011, 27, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Maitra, T.; Jung, S.; Giger, M.E.; Kandrical, V.; Ruesch, T.; Poulikakos, D. Superhydrophobicity vs. Ice Adhesion: The Quandary of Robust Icephobic Surface Design. Adv. Mater. Interfaces 2015, 2, 1500330. [Google Scholar] [CrossRef]
- Verho, T.; Bower, C.; Andrew, P.; Franssila, S.; Ikkala, O.; Ras, R.H.A. Mechanically Durable Superhydrophobic Surfaces. Adv. Mater. 2011, 23, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, N.; Dolatabadi, A.; Pugh, M.; Moreau, C. Anti-Icing Performance and Durability of Suspension Plasma Sprayed TiO2 Coatings. Cold Reg. Sci. Technol. 2019, 159, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Zhao, X.; Tian, N.; Zhang, J. Totally Waterborne, Nonfluorinated, Mechanically Robust, and Self-Healing Superhydrophobic Coatings for Actual Anti-Icing. ACS Appl. Mater. Interfaces 2018, 10, 39391–39399. [Google Scholar] [CrossRef]
- Hong, S.; Wang, R.; Huang, X.; Liu, H. Facile One-Step Fabrication of PHC/PDMS Anti-Icing Coatings with Mechanical Properties and Good Durability. Prog. Org. Coat. 2019, 135, 263–269. [Google Scholar] [CrossRef]
- Ruan, M.; Wang, J.W.; Liu, Q.L.; Ma, F.M.; Yu, Z.L.; Feng, W.; Chen, Y. Superhydrophobic and Anti-Icing Properties of Sol–Gel Prepared Alumina Coatings. Russ. J. Non Ferr. Met. 2016, 57, 638–645. [Google Scholar] [CrossRef]
- Ellinas, K.; Tserepi, A.; Gogolides, E. Durable Superhydrophobic and Superamphiphobic Polymeric Surfaces and Their Applications: A Review. Adv. Colloid Interface Sci. 2017, 250, 132–157. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Adhikari, B. Bio-Inspired Sustainable and Durable Superhydrophobic Materials: From Nature to Market. J. Mater. Chem. A 2019, 7, 16643–16670. [Google Scholar] [CrossRef]
- Celia, E.; Darmanin, T.; Taffin de Givenchy, E.; Amigoni, S.; Guittard, F. Recent Advances in Designing Superhydrophobic Surfaces. J. Colloid Interface Sci. 2013, 402, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, M.; Liu, H.; Guan, Y. One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-Icing Function. ACS Appl. Mater. Interfaces 2019, 11, 25586–25594. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Yan, C.; Yu, H.; Wang, B. Anti-Icing Performance of Superhydrophobic Surface with Square-Ring Structure Prepared by Nanosecond Laser. Adv. Eng. Mater. 2021, 23, 2100190. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, B.; Lu, C.; Wu, H.H.; Wu, H.H.; Jiang, S.; Chai, G. A Novel Thermo-Mechanical Anti-Icing/de-Icing System Using Bi-Stable Laminate Composite Structures with Superhydrophobic Surface. Compos. Struct. 2017, 180, 933–943. [Google Scholar] [CrossRef]
- Lo, T.N.H.; Lee, J.; Hwang, H.S.; Park, I. Nanoscale Coatings Derived from Fluoroalkyl and PDMS Alkoxysilanes on Rough Aluminum Surfaces for Improved Durability and Anti-Icing Properties. ACS Appl. Nano Mater. 2021, 4, 7493–7501. [Google Scholar] [CrossRef]
- Liao, R.; Zuo, Z.; Guo, C.; Yuan, Y.; Zhuang, A. Fabrication of Superhydrophobic Surface on Aluminum by Continuous Chemical Etching and Its Anti-Icing Property. Appl. Surf. Sci. 2014, 317, 701–709. [Google Scholar] [CrossRef]
- Pan, L.; Wang, F.; Pang, X.; Zhang, L.; Hao, J. Superhydrophobicity and Anti-Icing of CF/PEEK Composite Surface with Hierarchy Structure. J. Mater. Sci. 2019, 4, 79389–79400. [Google Scholar] [CrossRef]
- Zheng, S.; Li, C.; Fu, Q.; Hu, W.; Xiang, T.; Wang, Q.; Du, M.; Liu, X.; Chen, Z. Development of Stable Superhydrophobic Coatings on Aluminum Surface for Corrosion-Resistant, Self-Cleaning, and Anti-Icing Applications. Mater. Des. 2016, 93, 261–270. [Google Scholar] [CrossRef]
- Zheng, S.; Li, C.; Fu, Q.; Xiang, T.; Hu, W.; Wang, J.; Ding, S.; Liu, P.; Chen, Z. Fabrication of a Micro-Nanostructured Superhydrophobic Aluminum Surface with Excellent Corrosion Resistance and Anti-Icing Performance. RSC Adv. 2016, 6, 79389–79400. [Google Scholar] [CrossRef]
- Cheng, Y.; Lu, S.; Xu, W.; Cao, K.; Li, J.; Zheng, Y. Controllable Fabrication of Superhydrophobic Alloys Surface on Copper Substrate for Self-Cleaning, Anti-Icing, Anti-Corrosion and Anti-Wear Performance. Surf. Coat. Technol. 2018, 333, 61–70. [Google Scholar] [CrossRef]
- Foroughi Mobarakeh, L.; Jafari, R.; Farzaneh, M. Robust Icephobic, and Anticorrosive Plasma Polymer Coating. Cold Reg. Sci. Technol. 2018, 151, 89–93. [Google Scholar] [CrossRef]
- Wang, L.; Gong, Q.; Zhan, S.; Jiang, L.; Zheng, Y. Robust Anti-Icing Performance of a Flexible Superhydrophobic Surface. Adv. Mater. 2016, 28, 7729–7735. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Yang, G.; Li, D.; Li, M.; Cao, Y.; Fu, Q.; Sun, Y. Ultralow Icing Adhesion of a Superhydrophobic Coating Based on the Synergistic Effect of Soft and Stiff Particles. Langmuir 2021, 37, 12016–12026. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, L.; Sun, J. Bioinspired Self-Healing Superhydrophobic Coatings. Angew. Chemie Int. Ed. 2010, 49, 6129–6133. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, S.; Wu, M.; Sun, J. All Spraying Processes for the Fabrication of Robust Self-Healing Superhydrophobic. Adv. Mater. 2014, 26, 3344–3348. [Google Scholar] [CrossRef] [PubMed]
- Jafari, R.; Momen, G.; Farzaneh, M. Durability Enhancement of Icephobic Fluoropolymer Film. J. Coat. Technol. Res. 2016, 13, 405–412. [Google Scholar] [CrossRef]
- Fu, Q.; Wu, X.; Kumar, D.; Ho, J.W.C.; Kanhere, P.D.; Srikanth, N.; Liu, E.; Wilson, P.; Chen, Z. Development of Sol-Gel Icephobic Coatings: Effect of Surface Roughness and Surface Energy. ACS Appl. Mater. Interfaces 2014, 6, 20685–20692. [Google Scholar] [CrossRef]
- Kendall, K. The Adhesion and Surface Energy of Elastic Solids. J. Phys. D Appl. Phys. 1971, 4, 1186–1195. [Google Scholar] [CrossRef]
- Chaudhury, M.K.; Kim, K.H. Shear-Induced Adhesive Failure of a Rigid Slab in Contact with a Thin Confined Film. Eur. Phys. J. E 2007, 23, 175–183. [Google Scholar] [CrossRef]
- Hessinger, J.; White, B.E.; Pohl, R.O. Elastic Properties of Amorphous and Crystalline Ice Films. Planet. Space Sci. 1996, 44, 937–944. [Google Scholar] [CrossRef]
- Zhuo, Y.; Xiao, S.; Amirfazli, A.; He, J.; Zhang, Z. Polysiloxane as Icephobic Materials—The Past, Present and the Future. Chem. Eng. J. 2021, 405, 127088. [Google Scholar] [CrossRef]
- Rabbani, S.; Bakhshandeh, E.; Jafari, R.; Momen, G. Superhydrophobic and Icephobic Polyurethane Coatings: Fundamentals, Progress, Challenges and Opportunities. Prog. Org. Coat. 2022, 165, 106715. [Google Scholar] [CrossRef]
- Golovin, K.; Tuteja, A. A Predictive Framework for the Design and Fabrication of Icephobic Polymers. Sci. Adv. 2017, 3, e1701617. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Tian, Z.; Zhu, D.; Zhang, H.; Zhao, H.; Jiang, G.; Hu, X.; Wang, L.; Peng, R.; Li, D.; et al. Metallic Hierarchical Structures Uniformly Covered with WC@PDMS Composite Coatings toward Comprehensively Durable Superhydrophobic Surfaces. Chem. Eng. Sci. 2023, 282, 119248. [Google Scholar] [CrossRef]
- Zhuo, Y.; Håkonsen, V.; Liu, S.; Li, T.; Wang, F.; Luo, S.; Xiao, S.; He, J.; Zhang, Z. Ultra-Robust Icephobic Coatings with High Toughness, Strong Substrate Adhesion and Self-Healing Capability. Sci. China Mater. 2023, 66, 2071–2078. [Google Scholar] [CrossRef]
- Wong, T.S.; Kang, S.H.; Tang, S.K.Y.Y.; Smythe, E.J.; Hatton, B.D.; Grinthal, A.; Aizenberg, J. Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity. Nature 2011, 477, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yao, X.; Wu, S.; Li, Q.; Lv, J.; Wang, J.; Jiang, L. Bioinspired Solid Organogel Materials with a Regenerable Sacrificial Alkane Surface Layer. Adv. Mater. 2017, 29, 1700865. [Google Scholar] [CrossRef]
- Dou, R.; Chen, J.; Zhang, Y.; Wang, X.; Cui, D.; Song, Y.; Jiang, L.; Wang, J. Anti-Icing Coating with an Aqueous Lubricating Layer. ACS Appl. Mater. Interfaces 2014, 6, 6998–7003. [Google Scholar] [CrossRef]
- Wilson, P.W.; Lu, W.; Xu, H.; Kim, P.; Kreder, M.J.; Alvarenga, J.; Aizenberg, J. Inhibition of Ice Nucleation by Slippery Liquid-Infused Porous Surfaces (SLIPS). Phys. Chem. Chem. Phys. 2013, 15, 581–585. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Chulkova, E.V.; Emelyanenko, K.A.; Domantovsky, A.G.; Emelyanenko, A.M. The Mechanisms of Anti-Icing Properties Degradation for Slippery Liquid-Infused Porous Surfaces under Shear Stresses. J. Colloid Interface Sci. 2022, 609, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Vogel, N.; Belisle, R.A.; Hatton, B.; Wong, T.S.; Aizenberg, J. Transparency and Damage Tolerance of Patternable Omniphobic Lubricated Surfaces Based on Inverse Colloidal Monolayers. Nat. Commun. 2013, 4, 2176. [Google Scholar] [CrossRef] [PubMed]
- Rao, Q.; Li, A.; Zhang, J.; Jiang, J.; Zhang, Q.; Zhan, X.; Chen, F. Multi-Functional Fluorinated Ionic Liquid Infused Slippery Surfaces with Dual-Responsive Wettability Switching and Self-Repairing. J. Mater. Chem. A 2019, 7, 2172–2183. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.; Wei, W.; Yin, Y.; Liu, M.; Guo, H.; Zheng, C.; Deng, P. Liquid-Infused Micro-Nanostructured MOF Coatings (LIMNSMCs) with High Anti-Icing Performance. ACS Appl. Mater. Interfaces 2019, 11, 47545–47552. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, H.; Gao, J.; Wei, W.; Liu, M.; Zheng, C.; Deng, P. Self-Lubricated Anti-Icing MOF Coating with Long-Term Durability. Prog. Org. Coat. 2021, 151, 106089. [Google Scholar] [CrossRef]
- Coady, M.J.; Wood, M.; Wallace, G.Q.; Nielsen, K.E.; Kietzig, A.M.; Lagugné-Labarthet, F.; Ragogna, P.J. Icephobic Behavior of UV-Cured Polymer Networks Incorporated into Slippery Lubricant-Infused Porous Surfaces: Improving SLIPS Durability. ACS Appl. Mater. Interfaces 2018, 10, 2890–2896. [Google Scholar] [CrossRef]
- Wang, N.; Xiong, D.; Pan, S.; Wang, K.; Shi, Y.; Deng, Y. Robust Superhydrophobic Coating and the Anti-Icing Properties of Its Lubricants-Infused-Composite Surface under Condensing Condition. New J. Chem. 2017, 41, 1846–1853. [Google Scholar] [CrossRef]
- Wu, M.; Wang, J.; Ling, S.; Wheatley, R.; Hou, X. Microporous Metallic Scaffolds Supported Liquid Infused Icephobic Construction. J. Colloid Interface Sci. 2023, 634, 369–378. [Google Scholar] [CrossRef]
- Zhuo, Y.; Håkonsen, V.; He, Z.; Xiao, S.; He, J.; Zhang, Z. Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function. ACS Appl. Mater. Interfaces 2018, 10, 11972–11978. [Google Scholar] [CrossRef]
- Zhuo, Y.; Xiao, S.; Håkonsen, V.; Li, T.; Wang, F.; He, J.; Zhang, Z. Ultrafast Self-Healing and Highly Transparent Coating with Mechanically Durable Icephobicity. Appl. Mater. Today 2020, 19, 100542. [Google Scholar] [CrossRef]
- Wang, F.; Ding, W.; He, J.; Zhang, Z. Phase Transition Enabled Durable Anti-Icing Surfaces and Its DIY Design. Chem. Eng. J. 2019, 360, 243–249. [Google Scholar] [CrossRef]
- He, Z.; Zhuo, Y.; Wang, F.; He, J.; Zhang, Z. Understanding the Role of Hollow Sub-Surface Structures in Reducing Ice Adhesion Strength. Soft Matter 2019, 15, 2905–2910. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Cong, Q.; Li, Y.; Jin, J.; Choy, K.L. Utilizing Swelling Force to Decrease the Ice Adhesion Strength. Cold Reg. Sci. Technol. 2018, 146, 122–126. [Google Scholar] [CrossRef]
- Azimi Yancheshme, A.; Allahdini, A.; Maghsoudi, K.; Jafari, R.; Momen, G. Potential Anti-Icing Applications of Encapsulated Phase Change Material–Embedded Coatings; a Review. J. Energy Storage 2020, 31, 101638. [Google Scholar] [CrossRef]
- Zhu, K.; Li, X.; Su, J.; Li, H.; Zhao, Y.; Yuan, X. Improvement of Anti-Icing Properties of Low Surface Energy Coatings by Introducing Phase-Change Microcapsules. Polym. Eng. Sci. 2018, 58, 973–979. [Google Scholar] [CrossRef]
- Chatterjee, R.; Beysens, D.; Anand, S. Anti-Icing Delaying Ice and Frost Formation Using Phase-Switching Liquids. Adv. Mater. 2019, 31, 1807812. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, S.; Jiang, L. Nature-Inspired Superwettability Systems. Nat. Rev. Mater. 2017, 2, 17036. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, J.; Cheng, Y.; Yang, H.; Chen, Z.; Lai, Y. Bioinspired Surfaces with Superwettability for Anti-Icing and Ice-Phobic Application: Concept, Mechanism, and Design. Small 2017, 13, 1701867. [Google Scholar] [CrossRef]
- Sun, X.; Damle, V.G.; Liu, S.; Rykaczewski, K. Bioinspired Stimuli-Responsive and Antifreeze-Secreting Anti-Icing Coatings. Adv. Mater. Interfaces 2015, 2, 1400479. [Google Scholar] [CrossRef]
- Liu, F.; Pan, Q. Facile Fabrication of Robust Ice-Phobic Polyurethane Sponges. Adv. Mater. Interfaces 2015, 2, 1500219. [Google Scholar] [CrossRef]
- Guo, P.; Zheng, Y.; Wen, M.; Song, C.; Lin, Y.; Jiang, L. Icephobic / Anti-Icing Properties of Micro/Nanostructured Surfaces. Adv. Mater. 2012, 24, 2642–2648. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, Z.; Gong, G.; Wang, J.; Wu, J.; Yang, S.; Jiang, L. Icephobicity of Penguins Spheniscus Humboldti and an Artificial Replica of Penguin Feather with Air-Infused Hierarchical Rough Structures. J. Phys. Chem. C 2016, 120, 15923–15929. [Google Scholar] [CrossRef]
- Wood, M.J.; Brock, G.; Kietzig, A.M. The Penguin Feather as Inspiration for Anti-Icing Surfaces. Cold Reg. Sci. Technol. 2023, 213, 103903. [Google Scholar] [CrossRef]
- Esser-Kahn, A.P.; Trang, V.; Francis, M.B. Incorporation of Antifreeze Proteins into Polymer Coatings Using Site-Selective Bioconjugation. J. Am. Chem. Soc. 2010, 132, 13264–13269. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, A.; Leow, T.C.; Rahman, M.B.A.; Oslan, S.N. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture. Biomolecules 2020, 10, 1649. [Google Scholar] [CrossRef] [PubMed]
- Gwak, Y.; Park, J.I.; Kim, M.; Kim, H.S.; Kwon, M.J.; Oh, S.J.; Kim, Y.P.; Jin, E. Creating Anti-Icing Surfaces via the Direct Immobilization of Antifreeze Proteins on Aluminum. Sci. Rep. 2015, 5, 12019. [Google Scholar] [CrossRef]
- Raji, A.R.O.; Varadhachary, T.; Nan, K.; Wang, T.; Lin, J.; Ji, Y.; Genorio, B.; Zhu, Y.; Kittrell, C.; Tour, J.M. Composites of Graphene Nanoribbon Stacks and Epoxy for Joule Heating and Deicing of Surfaces. ACS Appl. Mater. Interfaces 2016, 8, 3551–3556. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Zhang, Y.; Wang, D.; Liu, Z.; Liu, Y.; Pei, X.; Yu, B.; Zhou, F. Integration of Self-Lubrication and Near-Infrared Photothermogenesis for Excellent Anti-Icing/Deicing Performance. Adv. Funct. Mater. 2015, 25, 4237–4245. [Google Scholar] [CrossRef]
- Cheng, T.; He, R.; Zhang, Q.; Zhan, X.; Chen, F. Magnetic Particle-Based Super-Hydrophobic Coatings with Excellent Anti-Icing and Thermoresponsive Deicing Performance. J. Mater. Chem. A 2015, 3, 21637–21646. [Google Scholar] [CrossRef]
- Wu, B.; Cui, X.; Jiang, H.; Wu, N.; Peng, C.; Hu, Z.; Liang, X.; Yan, Y.; Huang, J.; Li, D. A Superhydrophobic Coating Harvesting Mechanical Robustness, Passive Anti-Icing and Active de-Icing Performances. J. Colloid Interface Sci. 2021, 590, 301–310. [Google Scholar] [CrossRef]
- Irajizad, P.; Hasnain, M.; Farokhnia, N.; Sajadi, S.M.; Ghasemi, H. Magnetic Slippery Extreme Icephobic Surfaces. Nat. Commun. 2016, 7, 13395. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Xie, H.; Jamil, M.I.; Li, T.; Zhang, Q. Electro-/Photo-Thermal Promoted Anti-Icing Materials: A New Strategy Combined with Passive Anti-Icing and Active De-Icing. Adv. Mater. Interfaces 2022, 9, 2200275. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, L.; Shu, X.; Yang, Y.; Feng, P.; Ran, Q. Recent Advancements in Photothermal Anti-Icing/Deicing Materials. Chem. Eng. J. 2023, 469, 143924. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Y.; Zhi, H.; Tang, J.; Shao, Y.; Yang, L.; Sun, T.; Liu, H.; Xue, G. Micro/Nano-Cactus Structured Aluminium with Superhydrophobicity and Plasmon-Enhanced Photothermal Trap for Icephobicity. Chem. Eng. J. 2022, 429, 132183. [Google Scholar] [CrossRef]
- Bai, Z.G.; Zhang, B. Fabrication of a Mechanically-Stable Anti-Icing Graphene Oxide- Diatomaceous Earth/Epoxy Coating. Mater. Res. Express 2019, 6, 085090. [Google Scholar] [CrossRef]
- Qin, C.; Mulroney, A.T.; Gupta, M.C. Anti-Icing Epoxy Resin Surface Modified by Spray Coating of PTFE Teflon Particles for Wind Turbine Blades. Mater. Today Commun. 2020, 22, 100770. [Google Scholar] [CrossRef]
Type of Solid Water | Density | Main Characteristics | Typical Adhesion * |
---|---|---|---|
Frost | Low | Ice with sparse dendritic crystal structures formed when water vapor solidifies directly (desublimation) on a cold solid surface. It often occurs during low winds. | Frost adhesion may be strong |
Snow | Low to medium | A mixture of small ice crystals formed directly from water vapor (desublimation) in the air. Snow is dry at air temperatures below −1 or −2 °C, but at temperatures closer to the freezing point, a thin layer of water covers the ice crystals, in the so-called wet snow. In the absence of impurities, it shows a white color. | Wet snow presents low adhesion when deposited on a solid surface but it becomes strong when frozen. Dry snow can accumulate in offshore platforms and vessels becoming a hazard to personnel and material. |
Rime | Low to medium | White ice with needles and flakes. It is formed when supercooled droplets (5–70 μm) impact on a surface below 0 °C and freeze very fast. Accretion depends on the amount of water droplets in the air, the droplet size, the air temperature, the wind speed, the duration of the event, etc. Soft rime: If the water content of the air is low and the size of the water droplets is small. Soft rime presents low density. Hard rime: If the water content of the air is high and the droplets are bigger. Hard rime presents higher density. | Soft rime presents a low density and little adhesion. Hard rime presents a higher density and it is more difficult to remove. |
Glaze | High | Clear, dense and hard ice. It is formed when big supercooled droplets (70 μm to even a few millimeters) impact on a surface below 0 °C. Those big droplets do not freeze immediately upon impact but run on the surface before completely freezing. | Strong |
Ice | High | A brittle frozen state of water. It can be transparent or more or less opaque depending on the presence of impurities or pockets of air. It can be formed by freezing rain (rain falls on a surface below 0 °C) or by the presence of water on a surface that cools down below 0 °C. | Very strong |
Type of Method | Standard | Main Characteristics |
---|---|---|
Icing/deicing cycles | N/A | The IAS is determined over the same icephobic surface for a high number of times, usually with the peak force method (Figure 1a). If the IAS value is stable with the number of icing/deicing cycles, the durability of the icephobic surface is acceptable. It is a very simple procedure that does not require any specific sample preparation. An icephobic surface that is degraded after several icing/deicing cycles is very weak. A sample that is not damaged has not demonstrated a superior level of resistance. |
Sandpaper abrasion test | N/A | The grit of the sandpaper, the applied pressure and the total distance are freely chosen, which allows us to design the test as desired but hinders direct comparisons between coatings of different research groups. |
Taber abrasion test | ASTM D4060-95 [124] | The sample is mounted on a rotary platform and abraded against commercially available abrading wheels. The platform rotating speed can be adjusted to 60 or 72 rpm and one full rotation is considered a cycle. In addition to the IAS or WCA, the wear index, weight loss or thickness reduction can be calculated every certain cycle. |
Sand impact test | N/A | The icephobic coating is placed a certain distance below a container, from where sand falls down and impacts the coating surface, typically at an angle of 45° or 90°. There are high pressure variations, like the use of sand blasters. Distance, angle and particle size are key parameters. |
Water impact test | N/A | The icephobic coating is placed a certain distance below a container, from where sand falls down and impacts the coating surface, typically at an angle of 45° or 90°. There are variations where high pressure water jets are used. Distance, angle and droplet size are key parameters. |
Tape adhesion (peeling test) | ASTM D3359-09 [152] | Conventional adhesive tape is placed and pressed against the icephobic surface and then peeled off. This cycle is repeated as many times as desired. This method is very simple, cheap, and do not require any specific sample preparation. The main drawback of this type of test relies on its softness. A surface that shows degradation after the tape adhesion test cannot be considered mechanically stable enough for most applications. |
Nano indentation | ISO 14577-1:2016 [139] | A diamond tip indenter is pressed against the surface and the hardness and elastic modulus can be obtained and compared with any other material, as it is very extended. This method is relatively simple, not expensive and does not require any specific sample preparation. From an icephobic engineering perspective, this method provides useful information about the mechanical properties of the coating but no information about the icephobic behavior after mechanical damage. |
Pencil scratch test | ISO 15184:2020 [143] | The icephobic coating is scratched with pencils of different hardness and the response of the coating allows us to evaluate the hardness of the coating. No information about the icephobic behavior after mechanical damage. |
Cross-cut test | ISO 2409:2013 [146] ASTM D3359-09 [152] | The icephobic coating is X-shaped cross-cut with blades through the coating until the substrate and an adhesive tape is placed and pressed over the damaged. The tape is pulled-off and the coating/substrate adhesion is evaluated from the spalled area. No information about the icephobic behavior after mechanical damage. |
Dolly pull-off test | ISO 4624:2016 [151] | A pull stub (dolly) is adhered to the coating using very strong glue. Once cured, the dolly is pulled in mode I and, if an adhesive failure occurs at the coating/substrate interface, its strength can be calculated. Otherwise, it can be affirmed that it is greater than the failure value. From an icephobic engineering perspective, this method provides useful information about the adhesion of the coating to the substrate but provides no information about the icephobic behavior after mechanical damage. |
Authors | Classification |
---|---|
Dhyani et al. [60] | (a) Deicing: surfaces that facilitate the detachment of accreted ice (ice shedding): low surface energy (1), lubricants (2), low modulus (3), mobile polymer chains (4), stress concentration (5) and low interfacial toughness (6). (b) Anti-icing: surfaces that delay the accretion of ice: macro-textured surfaces (1), superhydrophobic surfaces (2), nanoroughness effects (3), lubrication (4), phase change materials (5) and charged and amphiphilic surfaces (6). (c) Snow repellency: surfaces that resist snow accretion. |
Liu et al. [30] | (a) Passive anti-icing to prevent freezing beforehand: Superhydrophobic surfaces (1), antifreeze proteins and its mimics (2), ionic polymer surfaces (3) and nanostructured antifrost surfaces (4). |
(b) Active deicing to remove ice after formation: lubricant impregnated surfaces (1) and soft fracture mechanism elastomers (2). | |
(c) Multifunctional material with both anti-icing and deicing capability: passive anti-icing compounding with thermally ice melting (1) and passive anti-icing compounding with low ice adhesion strength (3). | |
Kreder et al. [162] | (a) Dry: smooth and textured surfaces. Dry and smooth icephobic surfaces can be observed in self-assembled monolayers (1) and bulk coatings (2), whereas a textured surface can be also classified as microtextured (3) or nanotextured (4). |
(b) Wet (and thus smooth) icephobic surfaces can be microstructured (1), nanotextured (2), infused polymer (3) and hydrated (4) microstructures. | |
Lui et al. [157] | (a) Low-surface-energy coatings: fluoride-containing polymer coatings (1), silicon-containing polymer coatings (2) and fluorosilicone copolymer coatings (3). (b) Liquid-infused slippery surfaces: oil lubricated coatings (1) and aqueous lubricated coatings (2). |
Yeong et al. [137] | (a) Low-surface-energy polymers/lubricant materials that constitute hydrophobic (1) and superhydrophobic surfaces (2). (b) Lubricated micro/nanotextured surfaces infused with hydrophobic (1) and hydrophilic lubricants (2). (c) Fluorinated silicone rubbers and copolymers. (d) Lubricant-infused elastomers. |
He at al. [163] | (a) Smooth surfaces. (b) Textured surfaces. (c) Slippery surfaces. (d) Sub-surface textured surfaces. |
Mechanism | Governing Equation | Engineering Parameters | Test Parameters |
---|---|---|---|
Low surface energy | Receding contact angle, | Surface tension, Length of ice, | |
Interfacial cavitation | Shear modulus, | Height of probe, Length of ice, | |
Work of adhesion, Coating thickness, | |||
Lubrication | Lubricant viscosity, η Lubricant thickness, z Surface-lubricant CoF *, | Removal velocity, u Length of ice, Ice-lubricant CoF *, | |
Low interfacial toughness | when (L > Lc) | Interfacial toughness, | Modulus of ice, |
Height of ice, |
Type of Smart Icephobic Coating | Stimuli | Response | Reference |
---|---|---|---|
Thermoresponsive (a) Electrosensitive (b) Photothermal (c) Magnetosensitive | |||
Electrical current | Heat (Joule heating) | [5,19,29,135,229] | |
UV/Vis/NIR light Magnetic field | Heat Heat, Displacement 1 | [75,76,131,197,230,231,232] [205,231,233] | |
Phase Change Materials | Heat | Heat storage, Displacement 1 | [6,217,218] |
Electromechanical (Piezoelectric) | Electric field | Mechanical pulses | [26] |
Self-lubricating | Loss of lubricant | Lubricant self-replenishing | [65,121,132,136,137,138,210] |
Self-healing | Mechanical, thermal, O2 plasma treatment or other type of damage | Recovery of the original structure 2 | [169,187,188,198,205,211,212,213] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nistal, A.; Sierra-Martín, B.; Fernández-Barbero, A. On the Durability of Icephobic Coatings: A Review. Materials 2024, 17, 235. https://doi.org/10.3390/ma17010235
Nistal A, Sierra-Martín B, Fernández-Barbero A. On the Durability of Icephobic Coatings: A Review. Materials. 2024; 17(1):235. https://doi.org/10.3390/ma17010235
Chicago/Turabian StyleNistal, Andrés, Benjamín Sierra-Martín, and Antonio Fernández-Barbero. 2024. "On the Durability of Icephobic Coatings: A Review" Materials 17, no. 1: 235. https://doi.org/10.3390/ma17010235
APA StyleNistal, A., Sierra-Martín, B., & Fernández-Barbero, A. (2024). On the Durability of Icephobic Coatings: A Review. Materials, 17(1), 235. https://doi.org/10.3390/ma17010235