Depth-Dependent Strain Model (1D) for Anisotropic Fibrils in Articular Cartilage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Depth-Wise Variation in Fiber Orientation
2.2. Depth-Wise Variation in FCD and µ
3. Results
3.1. Nonlinear Strain (e vs. τ Relationship)
3.2. Effect of Variations of FCD and µ on Strain
3.3. Depth-Dependent Strain
3.4. Force vs. Intra-Tissue Displacement Relation
3.5. Effective Modulus for Cartilage Zones (Stress vs. Strain)
3.6. Strains between Homogeneous and Inhomogeneous Tissues
4. Discussion
5. Assumptions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Hyttinen, M.M.; Holopainen, J.; van Weeren, P.R.; Firth, E.C.; Helminen, H.J.; Brama, P.A.J. Changes in collagen fibril network organization and proteoglycan distribution in equine articular cartilage during maturation and growth. J. Anat. 2009, 215, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Rieppo, J.; Hyttinen, M.M.; Halmesmaki, E.; Ruotsalainen, H.; Vasara, A.; Kiviranta, I.; Jurvelin, J.S.; Helminen, H.J. Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation. Osteoarthr. Cartil. 2009, 17, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Brama, P.A.; Tekoppele, J.M.; Bank, R.A.; Barneveld, A.; van Weeren, P.R. Functional adaptation of equine articular cartilage: The formation of regional biochemical characteristics up to age one year. Equine Vet. J. 2000, 32, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Masson, A.O.; Besler, B.; Edwards, W.B.; Krawetz, R.J. High spatial resolution analysis using automated indentation mapping differentiates biomechanical properties of normal vs. degenerated articular cartilage in mice. eLife 2022, 11, e74664. [Google Scholar] [CrossRef] [PubMed]
- Räsänen, L.P.; Tanska, P.; Mononen, M.E.; Lammentausta, E.; Zbýň, Š.; Venäläinen, M.S.; Szomolanyi, P.; van Donkelaar, C.C.; Jurvelin, J.S.; Trattnig, S.; et al. Spatial variation of fixed charge density in knee joint cartilage from sodium MRI—Implication on knee joint mechanics under static loading. J. Biomech. 2016, 49, 3387–3396. [Google Scholar] [CrossRef] [PubMed]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef]
- Maroudas, A.; Bannon, C. Measurement of swelling pressure in cartilage and comparison with the osmotic pressure of constituent proteoglycans. Biorheology 1981, 18, 619–632. [Google Scholar] [CrossRef]
- Basser, P.J.; Schneiderman, R.; Bank, R.A.; Wachtel, E.; Maroudas, A. Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch. Biochem. Biophys. 1998, 351, 207–219. [Google Scholar] [CrossRef]
- Han, E.; Chen, S.S.; Klisch, S.M.; Sah, R.L. Contribution of proteoglycan osmotic swelling pressure to the compressive properties of articular cartilage. Biophys. J. 2011, 101, 916–924. [Google Scholar] [CrossRef]
- Eyre, D. Articular cartilage and changes in arthritis: Collagen of articular cartilage. Arthritis Res. Ther. 2001, 4, 30–35. [Google Scholar] [CrossRef]
- Gottardi, R.; Hansen, U.; Raiteri, R.; Loparic, M.; Düggelin, M.; Mathys, D.; Friederich, N.F.; Bruckner, P.; Stolz, M. Supramolecular organization of collagen fibrils in healthy and osteoarthritic human knee and hip joint cartilage. PLoS ONE 2016, 11, e0163552. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.; Choi, H.J.; Lim, M.; Kang, H.; Park, H.; Han, H.; Min, B.-H.; Kim, S.; Park, I.; Lim, H. Quantitative analysis of water distribution in human articular cartilage using terahertz time-domain spectroscopy. Biomed. Opt. Express 2012, 3, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, R.K.; Julkunen, P.; Wilson, W.; Herzog, W. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes. J. Biomech. Eng. 2008, 130, 021003. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.S.; Falcovitz, Y.H.; Schneiderman, R.; Maroudas, A.; Sah, R.L. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: Relationship to fixed charge density. Osteoarthr. Cartil. 2001, 9, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Chahine, N.O.; Wang, C.C.-B.; Hung, C.T.; Ateshian, G.A. Anisotropic strain-dependent material properties of bovine articular cartilage in the transitional range from tension to compression. J. Biomech. 2004, 37, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Moo, E.K.; Tanska, P.; Federico, S.; Al-Saffar, Y.; Herzog, W.; Korhonen, R.K. Collagen fibres determine the crack morphology in articular cartilage. Acta Biomater. 2021, 126, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Julkunen, P.; Harjula, T.; Iivarinen, J.; Marjanen, J.; Seppänen, K.; Närhi, T.; Arokoski, J.; Lammi, M.J.; Brama, P.A.; Jurvelin, J.S.; et al. Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage. Osteoarthr. Cartil. 2009, 17, 1628–1638. [Google Scholar] [CrossRef]
- Julkunen, P.; Iivarinen, J.; Brama, P.A.; Arokoski, J.; Jurvelin, J.S.; Helminen, H.J. Maturation of collagen fibril network structure in tibial and femoral cartilage of rabbits. Osteoarthr. Cartil. 2010, 18, 406–415. [Google Scholar] [CrossRef]
- Guterl, C.C.; Hung, C.T.; Ateshian, G.A. Electrostatic and non-electrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage. J. Biomech. 2010, 43, 1343–1350. [Google Scholar] [CrossRef]
- Mow, V.C.; Kuei, S.C.; Lai, W.M.; Armstrong, C.G. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng. 1980, 102, 73–84. [Google Scholar] [CrossRef]
- Lai, W.M.; Hou, J.S.; Mow, V.C. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 1991, 113, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.; van Donkelaar, C.C.; van Rietbergen, B.; Huiskes, R. A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J. Biomech. 2005, 38, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, R.K.; Laasanen, M.S.; Töyräs, J.; Lappalainen, R.; Helminen, H.J.; Jurvelin, J.S. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 2003, 36, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Pierce, D.M.; Ricken, T.; Holzapfel, G.A. A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: Continuum basis, computational aspects and applications. Comput. Methods Biomech. Biomed. Eng. 2013, 16, 1344–1361. [Google Scholar] [CrossRef] [PubMed]
- Soulhat, J.; Buschmann, M.D.; Shirazi-Adl, A. A fibril-network-reinforced biphasic model of cartilage in unconfined compression. J. Biomech. Eng. 1999, 121, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Guo, X.E.; Sun, D.; Mow, V.; Ateshian, G.; Hung, C. The functional environment of chondrocytes with cartilage subjected to compressive loading: A theoretical and experimental approach. Biorheology 2002, 39, 11–25. [Google Scholar]
- Kahn, D.; Les, C.; Xia, Y. Effects of cryopreservation on the depth-dependent elastic modulus in articular cartilage and implications for osteochondral grafting. J. Biomech. Eng. 2015, 137, 054502. [Google Scholar] [CrossRef]
- Wang, C.C.-B.; Chahine, N.O.; Hung, C.T.; Ateshian, G.A. Optical determination of anisotropic material properties of bovine articular cartilage in compression. J. Biomech. 2003, 36, 339–353. [Google Scholar] [CrossRef]
- Schinagl, R.M.; Ting, M.K.; Price, J.H.; Sah, R.L. Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression. Ann. Biomed. Eng. 1996, 24, 500–512. [Google Scholar] [CrossRef]
- Antons, J.; Marascio, M.G.M.; Nohava, J.; Martin, R.; Applegate, L.A.; Bourban, P.E.; Pioletti, D.P. Zone-dependent mechanical properties of human articular cartilage obtained by indentation measurements. J. Mater. Sci. Mater. Med. 2018, 29, 57. [Google Scholar] [CrossRef]
- Horkay, F.; Basser, P.J. Osmotic properties of cartilage. In Biophysics and Biochemistry of Cartilage by NMR and MRI; Royal Society of Chemistry: London, UK, 2016. [Google Scholar] [CrossRef]
- Xia, Y.; Moody, J.B.; Burton-Wurster, N.; Lust, G. Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage. Osteoarthr. Cartil. 2001, 9, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Wheaton, A.J.; Borthakur, A.; Shapiro, E.M.; Regatte, R.R.; Akella, S.V.S.; Kneeland, J.B.; Reddy, R. Proteoglycan loss in human knee cartilage: Quantitation with sodium MR imaging—Feasibility study. Radiology 2004, 231, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Gray, M.L.; Hartke, J.; Burstein, D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn. Reason. Med. 1999, 41, 857–865. [Google Scholar] [CrossRef]
- Mittelstaedt, D.; Xia, Y. Depth-dependent glycosaminoglycan concentration in articular cartilage by quantitative contrast-enhanced micro–Computed tomography. Cartilage 2015, 6, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zheng, S.; Bidthanapally, A. Depth-dependent profiles of glycosaminoglycans in articular cartilage by μMRI and histochemistry. J. Magn. Reason. Imaging 2008, 28, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Lesperance, L.M.; Gray, M.L.; Burstein, D. Determination of fixed charge density in cartilage using nuclear magnetic resonance. J. Orthop. Res. 1992, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, E.M.; Borthakur, A.; Gougoutas, A.; Reddy, R. 23Na MRI accurately measures fixed charge density in articular cartilage. Magn. Reason. Med. 2002, 47, 284–291. [Google Scholar] [CrossRef]
- Wijesinghe, D.; Roth, B.J. Mechanical bidomain model of cardiac muscle with unequal anisotropy ratios. Phys. Rev. E 2019, 100, 062417. [Google Scholar] [CrossRef]
- Broom, N.D.; Silyn-Roberts, H. Collagen-collagen versus collagen-proteoglycan interactions in the determination of cartilage strength. Arthritis Rheum. 1990, 33, 1512–1517. [Google Scholar] [CrossRef]
- Lyyra, T.; Arokoski, J.; Oksala, N.; Vihko, A.; Hyttinen, M.; Jurvelin, J.; Kiviranta, I. Experimental validation of arthroscopic cartilage stiffness measurement using enzymatically degraded cartilage samples. Phys. Med. Biol. 1999, 44, 525–535. [Google Scholar] [CrossRef]
- Baddam, P.; Bayona-Rodriguez, F.; Campbell, S.M.; El-Hakim, H.; Graf, D. Properties of the nasal cartilage, from development to adulthood: A scoping review. Cartilage 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Jessop, Z.M.; Zhang, Y.; Simoes, I.; Al-Sabah, A.; Badiei, N.; Gazze, S.A.; Francis, L.; Whitaker, I.S. Morphological and biomechanical characterization of immature and mature nasoseptal cartilage. Sci. Rep. 2019, 9, 12464. [Google Scholar] [CrossRef] [PubMed]
- Alhadlaq, H.A.; Xia, Y.; Hansen, F.M.; Les, C.M.; Lust, G. Morphological changes in articular cartilage due to static compression: Polarized light microscopy study. Connect. Tissue Res. 2007, 48, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.; Huyghe, J.M.; van Donkelaar, C.C. Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech. Model. Mechanobiol. 2007, 6, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Kääb, M.J.; Ito, K.; Clark, J.M.; Nötzli, H.P. Deformation of articular cartilage collagen structure under static and cyclic loading. J. Orthop. Res. 1998, 16, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Moger, C.J.; Arkill, K.P.; Barrett, R.; Bleuet, P.; Ellis, R.E.; Green, E.M.; Winlove, C.P. Cartilage collagen matrix reorientation and displacement in response to surface loading. J. Biomech. Eng. 2009, 131, 031008. [Google Scholar] [CrossRef] [PubMed]
- Julkunen, P.; Wilson, W.; Isaksson, H.; Jurvelin, J.; Herzog, W.; Korhonen, R. A review of the combination of experimental measurements and fibril-reinforced modeling for investigation of articular cartilage and chondrocyte response to loading. Comput. Math. Methods Med. 2013, 2013, 326150. [Google Scholar] [CrossRef]
- Smith, D.W.; Gardiner, B.S.; Davidson, J.B.; Grodzinsky, A.J. Computational model for the analysis of cartilage and cartilage tissue constructs. J. Tissue Eng. Regen. Med. 2016, 10, 334–347. [Google Scholar] [CrossRef]
- Ateshian, G.A.; Chahine, N.O.; Basalo, I.M.; Hung, C.T. The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage. J. Biomech. 2004, 37, 391–400. [Google Scholar] [CrossRef]
- Schwartz, M.H.; Leo, P.H.; Lewis, J.L. A microstructural model for the elastic response of articular cartilage. J. Biomech. 1994, 27, 865–873. [Google Scholar] [CrossRef]
- Inamdar, S.R.; Barbieri, E.; Terrill, N.J.; Knight, M.M.; Gupta, H.S. Proteoglycan degradation mimics static compression by altering the natural gradients in fibrillar organisation in cartilage. Acta Biomater. 2019, 97, 437–450. [Google Scholar] [CrossRef] [PubMed]
- McLeod, M.A.; Wilusz, R.E.; Guilak, F. Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy. J. Biomech. 2013, 46, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Mantebea, H.; Batool, S.; Singh, A.; Hammami, M.; Badar, F.; Xia, Y. Structural differences between immature and mature articular cartilage of rabbits by microscopic MRI and polarized light microscopy. J. Anat. 2022, 240, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Depalle, B.; Qin, Z.; Shefelbine, S.J.; Buehler, M.J. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J. Mech. Behav. Biomed. Mater. 2015, 52, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bergholt, M.S.; St-Pierre, J.-P.; Offeddu, G.S.; Parmar, P.A.; Albro, M.B.; Puetzer, J.L.; Oyen, M.L.; Stevens, M.M. Raman spectroscopy reveals new insights into the zonal organization of native and tissue-engineered articular cartilage. ACS Cent. Sci. 2016, 2, 885–895. [Google Scholar] [CrossRef]
- Hunziker, E.B.; Michel, M.; Studer, D. Ultrastructure of adult human articular cartilage matrix after cryotechnical processing. Microsc. Res. Tech. 1997, 37, 271–284. [Google Scholar] [CrossRef]
- Stammers, M.; Ivanova, I.M.; Niewczas, I.S.; Segonds-Pichon, A.; Streeter, M.; Spiegel, D.A.; Clark, J. Age-related changes in the physical properties, cross-linking, and glycation of collagen from mouse tail tendon. J. Biol. Chem. 2020, 295, 10562–10571. [Google Scholar] [CrossRef]
- Gannon, A.; Nagel, T.; Bell, A.; Avery, N.; Kelly, D. Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network. Eur. Cells Mater. 2015, 29, 105–123. [Google Scholar] [CrossRef]
- Torzilli, P.A.; Deng, X.-H.; Ramcharan, M. Effect of compressive strain on cell viability in statically loaded articular cartilage. Biomech. Model. Mechanobiol. 2006, 5, 123–132. [Google Scholar] [CrossRef]
- Eppell, S.J.; Smith, B.N.; Kahn, H.; Ballarini, R. Nano measurements with micro-devices: Mechanical properties of hydrated collagen fibrils. J. R. Soc. Interface 2006, 3, 117–121. [Google Scholar] [CrossRef]
- Shen, Z.L.; Kahn, H.; Ballarini, R.; Eppell, S.J. Viscoelastic properties of isolated collagen fibrils. Biophys. J. 2011, 100, 3008–3015. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batool, S.; Roth, B.J.; Xia, Y. Depth-Dependent Strain Model (1D) for Anisotropic Fibrils in Articular Cartilage. Materials 2024, 17, 238. https://doi.org/10.3390/ma17010238
Batool S, Roth BJ, Xia Y. Depth-Dependent Strain Model (1D) for Anisotropic Fibrils in Articular Cartilage. Materials. 2024; 17(1):238. https://doi.org/10.3390/ma17010238
Chicago/Turabian StyleBatool, Syeda, Bradley J. Roth, and Yang Xia. 2024. "Depth-Dependent Strain Model (1D) for Anisotropic Fibrils in Articular Cartilage" Materials 17, no. 1: 238. https://doi.org/10.3390/ma17010238
APA StyleBatool, S., Roth, B. J., & Xia, Y. (2024). Depth-Dependent Strain Model (1D) for Anisotropic Fibrils in Articular Cartilage. Materials, 17(1), 238. https://doi.org/10.3390/ma17010238