High-Performance Electrochromic Devices Based on Size-Controlled 2D WO3 Nanosheets Prepared Using the Intercalation Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intercalation and Exfoliation of WO3 Nanosheets
2.2. Fabrication of Electrochromic Devices (ECDs)
2.3. Characterization of WO3 Nanosheets
2.4. ECD Performance Test
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gugole, M.; Olsson, O.; Rossi, S.; Jonsson, M.P.; Dahlin, A. Electrochromic inorganic nanostructures with high chromaticity and superior brightness. Nano Lett. 2021, 21, 4343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, H.; Hopmann, E.; Elezzabi, A.Y. Nanostructured inorganic electrochromic materials for light applications. Nanophotonics 2020, 10, 825. [Google Scholar] [CrossRef]
- Li, X.; Perera, K.; He, J.; Gumyusenge, A.; Mei, J. Solution-processable electrochromic materials and devices: Roadblocks and strategies towards large-scale applications. J. Mater. Chem. C 2019, 7, 12761. [Google Scholar] [CrossRef]
- Ghosh, T.; Kandapal, S.; Rani, C.; Chaudhary, A.; Kumar, R. Recipe for fabricating optimized solid-state electrochromic devices and its know-how: Challenges and future. Adv. Opt. Mater. 2023, 11, 2203126. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Sun, Q.; Cui, J.; Yu, X.; Li, S.; Zhang, L.; Jiang, S.; Ma, W.; Ma, R. Review on recent progress in WO3-based electrochromic films: Preparation methods and performance enhancement strategies. Nanoscale 2023, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Cossari, P.; Pugliese, M.; Simari, C.; Mezzi, A.; Maiorano, V.; Nicotera, I.; Gigli, G. Simplified all-solid-state WO3 based electrochromic devices on single substrate: Toward large area, low voltage, high contrast, and fast switching dynamics. Adv. Mater. Interfaces 2020, 7, 1901663. [Google Scholar] [CrossRef]
- Loouloudakis, D.; Mouratis, K.; Gil-Rostra, J.; Koudoumas, E.; Alvarez, R.; Palmero, A.; Gonzalez-Elipe, A.R. Electrochromic response and porous structure of WO3 cathode layers. Electrochim. Acta 2021, 376, 138049. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Jang, S.-H.; Shchegolkov, A.V.; Rodionov, Y.V.; Sukhova, A.O.; Lipkin, M.S. A brief overview of electrochromic materials and related devices: A nanostructured materials perspective. Nanomaterials 2021, 11, 2376. [Google Scholar] [CrossRef]
- Evans, R.C.; Austin, R.; Miller, R.C.; Preston, A.; Nilsson, Z.N.; Ma, K.; Samber, J.B. Surface-facet-dependent electrochromic properties of WO3 nanorod thin films: Implications for smart windows. ACS Appl. Nano Mater. 2021, 4, 3750. [Google Scholar] [CrossRef]
- Novak, T.G.; Kim, J.; DeSario, P.A.; Jeon, S. Synthesis and applications of WO3 nanosheets: The importance of phase, stoichiometry, and aspect ratio. Nanoscale Adv. 2021, 3, 5166. [Google Scholar] [CrossRef]
- Azam, A.; Kim, J.; Park, J.; Novak, T.G.; Tiwari, A.P.; Song, S.H.; Kim, B.; Jeon, S. Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices. Nano Lett. 2018, 18, 5646. [Google Scholar] [CrossRef] [PubMed]
- Ghazal, S.; Mirzaee, M.; Darroudi, M. Green synthesis of tungsten oxide (WO3) nanosheets and investigation of their photocatalytic and cytotoxicity effects. Micro Nano Lett. 2022, 17, 286. [Google Scholar] [CrossRef]
- Ahmed, B.; Kumar, S.; Ojha, A.K.; Donfack, P.; Materny, A. Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material. Spectroc. Acta Pt. A Molec. Biomol. Spectr. 2017, 175, 250. [Google Scholar] [CrossRef] [PubMed]
- Kolhe, P.; Mutadak, P.; Maiti, N.; Sonawane, K.M. Synthesis of WO3 nanoflakes by hydrothermal route and its gas sensing application. Sens. Actuators A Phys. 2020, 304, 111877. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, Y.; Chen, R.; Tao, L.; Xie, C.; Liu, D.; Yan, D.; Wang, S. Enriched nucleation sites for Pt deposition on ultrathin WO3 nanosheets with unique interactions for methanol oxidation. J. Mater. Chem. A 2018, 6, 23028. [Google Scholar] [CrossRef]
- Kalantar-zadeh, K.; Vijayaraghavan, A.; Ham, M.-H.; Zheng, H.; Breedon, M.; Strano, M.S. Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide. Chem. Mat. 2010, 22, 5660. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.J. Preparation of 2D WO3 nanomaterials with enhanced catalytic activities: Current status and perspective. ChemBioEng Rev. 2015, 2, 335. [Google Scholar] [CrossRef]
- Guan, G.; Xia, J.; Liu, S.; Cheng, Y.; Bai, S.; Tee, S.Y.; Zhang, Y.W.; Han, M.Y. Electrostatic-Driven Exfoliation and Hybridization of 2D Nanomaterials. Adv. Mat. 2017, 29, 1700326. [Google Scholar] [CrossRef]
- Szkoda, M.; Zarach, Z.; Trzciński, K.; Trykowski, G.; Nowak, A.P. An easy and ecological method of obtaining hydrated and non-crystalline WO3−x for application in supercapacitors. Materials 2020, 13, 1925. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, J.; Zhou, Y.; Xie, J.; Zhang, X.; Guan, M.; Pan, B.; Xie, Y. High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3·2H2O ultrathin nanosheets. Sci. Rep. 2013, 3, 1936. [Google Scholar] [CrossRef]
- Zhang, Q.; Mei, L.; Cao, X.; Tang, Y.; Zeng, Z. Intercalation and exfoliation chemistries of transition metal dichalcogenides. J. Mater. Chem. A 2020, 8, 15417. [Google Scholar] [CrossRef]
- Tantis, I.; Talande, S.; Tzitzios, V.; Basina, G.; Shrivastav, V.; Bakandritsos, A.; Zboril, R. Non-van der Waals 2D Materials for Electrochemical Energy Storage. Adv. Func. Mater. 2023, 33, 2209360. [Google Scholar] [CrossRef]
- Sahoo, P.; Gupta, B.; Chandra Sahoo, R.; Vankayala, K.; Ramakrishna Matte, H. Solution Processing of Topochemically Converted Layered WO3 for Multifunctional Applications. Chem. Eur. J. 2021, 27, 11326. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, W.; Kim, D.; Kang, J.; Lee, J.; Jang, H.Y.; Song, S.H.; Cho, B.; Lee, D. Novel exfoliation of high-quality 2H-MoS2 nanoflakes for solution-processed photodetector. Nanomaterials 2020, 10, 1045. [Google Scholar] [CrossRef] [PubMed]
- Tae-Nam, K.; Sung-Gwan, P.; Jieun, L.; Yang, E.; Moon-Hyun, H.; Goh, K.; Kyu-Jung, C. Size-dependent water transport in laminar graphene oxide membranes: An interplay between interlayer spacing versus tortuosity of transport pathway. Carbon 2023, 216, 118560. [Google Scholar]
- Peng, J.; Wu, J.; Li, X.; Zhou, Y.; Yu, Z.; Guo, Y.; Wu, J.; Lin, Y.; Li, Z.; Wu, X. Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 2017, 139, 9019. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kwon, S.; Cho, D.; Kang, B.; Kwon, H.; Kim, Y.; Park, S.O.; Jong, G.Y.; Shin, E.; Kim, W.-G.; et al. Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nat. Commun. 2015, 6, 8294. [Google Scholar] [CrossRef]
- Park, K.H.; Lee, D.; Kim, J.; Song, J.; Lee, Y.M.; Kim, H.-T.; Park, J.-K. Defect-Free, Size-Tunable Graphene for High-Performance Lithium Ion Battery. Nano Lett. 2014, 14, 4306. [Google Scholar] [CrossRef]
- Kim, H.; Choi, D.; Kim, K.; Chu, W.; Chun, D.-M.; Lee, C.S. Effect of particle size and amorphous phase on the electrochromic properties of kinetically deposited WO3 films. Sol. Energy Mater. Sol. Cells 2018, 177, 44. [Google Scholar] [CrossRef]
- Chen, D.; Ye, J. Hierarchical WO3 hollow shells: Dendrite, sphere, dumbbell, and their photocatalytic properties. Adv. Func. Mater. 2008, 18, 1922. [Google Scholar] [CrossRef]
- Rastgoo-Deylami, M.; Javanbakht, M.; Omidvar, H.; Hooshyari, K.; Salarizadeh, P.; Askari, M.B. Nickel-doped monoclinic WO3 as high performance anode material for rechargeable lithium ion battery. J. Electroanal. Chem. 2021, 894, 115383. [Google Scholar] [CrossRef]
- Lee, S.-H.; Seong, M.J.; Cheong, H.M.; Ozkan, E.; Tracy, E.C.; Deb, S.K. Effect of crystallinity on electrochromic mechanism of LixWO3 thin films. Solid. State Ionics 2003, 156, 447. [Google Scholar] [CrossRef]
- Rakibuddin, M.; Kim, H. Synthesis and characterization of facile industrially scalable and cost effective WO3 micro–nanostructures for electrochromic devices and photocatalyst. Ceram. Int. 2018, 44, 16615. [Google Scholar] [CrossRef]
- Patil, S.B.; Sadale, S.B. Size-dependent electrochemical kinetics of nano-granular WO3 thin films. Sol. Energy Mater. Sol. Cells 2022, 245, 111849. [Google Scholar] [CrossRef]
- Bi, Z.; Li, X.; He, X.; Chen, Y.; Xu, X.; Gao, X. Integrated electrochromism and energy storage applications based on tungsten trioxide monohydrate nanosheets by novel one-step low temperature synthesis. Sol. Energy Mater. Sol. Cells 2018, 183, 59. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Shi, G.; Wang, H.; Zhang, Q.; Li, Y. Construction of hydrated tungsten trioxide nanosheet films for efficient electrochromic performance. RSC Adv. 2015, 5, 196. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-A.; Ko, B.; Park, K.-H.; Ahn, J.-G.; Park, T.; Lee, D.-J.; Song, S.-H. High-Performance Electrochromic Devices Based on Size-Controlled 2D WO3 Nanosheets Prepared Using the Intercalation Method. Materials 2024, 17, 41. https://doi.org/10.3390/ma17010041
Li C-A, Ko B, Park K-H, Ahn J-G, Park T, Lee D-J, Song S-H. High-Performance Electrochromic Devices Based on Size-Controlled 2D WO3 Nanosheets Prepared Using the Intercalation Method. Materials. 2024; 17(1):41. https://doi.org/10.3390/ma17010041
Chicago/Turabian StyleLi, Cheng-Ai, Boemjin Ko, Kwang-Hyun Park, Jae-Gyu Ahn, Taeyoung Park, Dong-Ju Lee, and Sung-Ho Song. 2024. "High-Performance Electrochromic Devices Based on Size-Controlled 2D WO3 Nanosheets Prepared Using the Intercalation Method" Materials 17, no. 1: 41. https://doi.org/10.3390/ma17010041
APA StyleLi, C. -A., Ko, B., Park, K. -H., Ahn, J. -G., Park, T., Lee, D. -J., & Song, S. -H. (2024). High-Performance Electrochromic Devices Based on Size-Controlled 2D WO3 Nanosheets Prepared Using the Intercalation Method. Materials, 17(1), 41. https://doi.org/10.3390/ma17010041