A Polymer-Based Metallurgical Route to Produce Aluminum Metal-Matrix Composite with High Strength and Ductility
Abstract
:1. Introduction
- -
- the powder metallurgy route (mechanical alloying and densification),
- -
- internal oxidation,
- -
- the molten metal route via stir-casting methods or impregnation.
2. Materials and Methods
3. Results and Discussion
3.1. The Al-PDC Composite
3.2. High-Temperature Tensile Tests and Thermal Stability
3.2.1. High-Temperature Tensile Test
3.2.2. Thermal Stability up to 500 °C
4. Conclusions
- A new Al-PDC composite was prepared via friction stir-processing. The composite exhibited a 2.5-fold increase in yield strength and 3.5-fold increase in ultimate strength.
- The ceramic particles incorporated were amorphous and incoherent. The increase in strength was due to the particles acting as strong barriers to dislocation motion. The dislocation bowing mechanism dominated, which manifested in strain hardening and an increase in the Bauschinger effect.
- The composite retained mechanical properties up to 200 °C. Above that, the properties started to decline. The presence of particles on the fracture surface of the sample tested at 500 °C indicated that the particle–matrix bonding become weak, and the failure took place at the particle–matrix interface.
- The composite exhibited grain stability when exposed to 500 °C for one hour. This effect is due to particle pinning of the grain boundaries via the Zener mechanism.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutowski, T.G.; Sahni, S.; Allwood, J.M.; Ashby, M.F.; Worrell, E. The energy required to produce materials: Constraints on energy-intensity improvements, parameters of demand. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120003. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials and the Environment: Eco-Informed Material Choice; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Raabe, D.; Tasan, C.C.; Olivetti, E.A. Strategies for improving the sustainability of structural metals. Nature 2019, 575, 64–74. [Google Scholar] [CrossRef]
- Gupta, A.; Basu, B. Sustainable Primary Aluminium Production: Technology Status and Future Opportunities. Trans. Ind. Inst. Met. 2019, 72, 2135–2150. [Google Scholar] [CrossRef]
- Daehn, K.; Basuhi, R.; Gregory, J.; Berlinger, M.; Somjit, V.; Olivetti, E.A. Innovations to decarbonize materials industries. Nat. Rev. Mater. 2022, 7, 275–294. [Google Scholar] [CrossRef]
- Raabe, D.; Ponge, D.; Uggowitzer, P.J.; Roscher, M.; Paolantonio, M.; Liu, C.; Antrekowitsch, H.; Kozeschnik, E.; Seidmann, D.; Gault, B.; et al. Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Prog. Mater. Sci. 2022, 128, 100947. [Google Scholar] [CrossRef]
- Das, S.K.; Green, J.A.S.; Kaufman, J.G.; Emadi, D.; Mahfoud, M. Aluminum recycling—An integrated, industrywide approach. JOM 2010, 62, 23–26. [Google Scholar] [CrossRef]
- Lloyd, D.J. Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 1994, 39, 1–23. [Google Scholar] [CrossRef]
- Tjong, S.C.; Ma, Z.Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. Rep. 2000, 29, 49–113. [Google Scholar] [CrossRef]
- Mortensen, A.; Llorca, J. Metal Matrix Composites. Annu. Rev. Mater. Res. 2010, 40, 243–270. [Google Scholar] [CrossRef]
- Colombo, P.; Mera, G.; Riedel, R.; Soraru, G.D. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 2010, 93, 1805–1837. [Google Scholar] [CrossRef]
- Vakifahmetoglu, C.; Zeydanli, D.; Colombo, P. Porous polymer derived ceramics. Mater. Sci. Eng. R Rep. 2016, 106, 1–30. [Google Scholar] [CrossRef]
- Fu, S.; Zhu, M.; Zhu, Y. Organosilicon polymer-derived ceramics: An overview. J. Adv. Ceram. 2019, 8, 457–478. [Google Scholar] [CrossRef]
- Sujith, R.; Jothi, S.; Zimmermann, A.; Aldinger, F.; Kumar, R. Mechanical behaviour of polymer derived ceramics—A review. Int. Mater. Rev. 2021, 66, 426–449. [Google Scholar] [CrossRef]
- Xia, A.; Yin, J.; Chen, X.; Liu, X.; Huang, Z. Polymer-Derived Si-Based Ceramics: Recent Developments and Perspectives. Crystals 2020, 10, 824. [Google Scholar] [CrossRef]
- Ren, Z.; Mujib, S.B.; Singh, G. High-Temperature Properties and Applications of Si-Based Polymer-Derived Ceramics: A Review. Materials 2021, 14, 614. [Google Scholar] [CrossRef]
- Heidarzadeh, A.; Mironov, S.; Kaibyshev, R.; Çam, G.; Simar, A.; Gerlich, A.; Khodabakhshi, F.; Mostafaei, A.; Field, D.P.; Robson, J.D.; et al. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Prog. Mater. Sci. 2021, 117, 100752. [Google Scholar] [CrossRef]
- Ajaykumar, P.; Raj, R.; Kailas, S.V. A novel in-situ polymer derived nano ceramic MMC by friction stir processing. Mater. Des. 2015, 85, 626–634. [Google Scholar] [CrossRef]
- Ajaykumar, P.; Yadav, D.; Perugu, C.S.; Kailas, S.V. Influence of particulate reinforcement on microstructure evolution and tensile properties of in-situ polymer derived MMC by friction stir processing. Mater. Des. 2017, 113, 99–108. [Google Scholar] [CrossRef]
- Pariyar, A.; Perugu, C.S.; Toth, L.S.; Kailas, S.V. Microstructure and mechanical behavior of polymer-derived in-situ ceramic reinforced lightweight aluminum matrix composite. J. Alloys Compd. 2021, 880, 160430. [Google Scholar] [CrossRef]
- Madhu, H.C. Processing, Structure and Properties of Friction Stir Process Derived In-situ Nano Composites and Foams. Ph.D. Dissertation, Indian Institute of Science, Karnataka, India, 2018. Available online: https://etd.iisc.ac.in/handle/2005/4367 (accessed on 23 November 2023).
- Madhu, H.C.; Kailas, S.V. Fabrication of localised aluminium foam by a novel polymeric blowing agent. Mater. Charact. 2018, 142, 340–351. [Google Scholar] [CrossRef]
- ASTM E8/E8M-22; Standard Test Methods for Tension Testing of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2022.
- ASTM E606/E606M-21; Standard Test Method for Strain-Controlled Fatigue Testing. ASTM: West Conshohocken, PA, USA, 2021.
- Zhang, Z.; Zhang, H.W. A fully coupled thermo-mechanical model of friction stir welding. Int. J. Adv. Manuf. Technol. 2008, 37, 279–293. [Google Scholar] [CrossRef]
- Humphreys, J.; Rohrer, G.S.; Rollett, A. Chapter 9—Recrystallization of Two-Phase Alloys. In Recrystallization and Related Annealing Phenomena, 3rd ed.; Humphreys, J., Rohrer, G.S., Rollett, A., Eds.; Elsevier: Oxford, UK, 2017; pp. 321–359. [Google Scholar] [CrossRef]
- Poole, W.J.; Embury, J.D.; Lloyd, D.J. Work Hardening in Aluminium Alloys, Fundamentals of Aluminium Metallurgy: Production, Processing and Applications; Woodhead Publishing: Sawston, UK, 2011; pp. 307–344. [Google Scholar] [CrossRef]
- Hughes, D.A.; Hansen, N. The microstructural origin of work hardening stages. Acta Mater. 2018, 148, 374–383. [Google Scholar] [CrossRef]
- Mamun, A.A.; Moat, R.J.; Kelleher, J.; Bouchard, P.J. Origin of the Bauschinger effect in a polycrystalline material. Mater. Sci. Eng. A 2017, 707, 576–584. [Google Scholar] [CrossRef]
- Kapp, M.W.; Kirchlechner, C.; Pippan, R.; Dehm, G. Importance of dislocation pile-ups on the mechanical properties and the Bauschinger effect in microcantilevers. J. Mater. Res. 2015, 30, 791–797. [Google Scholar] [CrossRef]
- Gao, S.; Yoshino, K.; Terada, D.; Kaneko, Y.; Tsuji, N. Significant Bauschinger effect and back stress strengthening in an ultrafine grained pure aluminum fabricated by severe plastic deformation process. Scr. Mater. 2022, 211, 114503. [Google Scholar] [CrossRef]
- Bouaziz, O.; Kim, H.S.; Lee, J.; Estrin, Y. Bauschinger Effect or Kinematic Hardening: Bridging Microstructure and Continuum Mechanics. Met. Mater. Int. 2023, 29, 280–292. [Google Scholar] [CrossRef]
- Härtel, M.; Illgen, C.; Panzner, T.; Bruder, E.; Schmaltz, S.; Van Petegem, S.; Willner, K.; Durst, K.; van Swygenhoven, H.; Wagner, M.F.-X. Mechanical, microstructural and in-situ neutron diffraction investigations of equi-biaxial Bauschinger effects in an interstitial-free DC06 steel. Int. J. Plast. 2022, 159, 103478. [Google Scholar] [CrossRef]
- Zouhal, N.; Molinari, A.; Tóth, L.S. Elastic-plastic effects during cyclic loading as predicted by the Taylor-Lin model of polycrystal elasto-viscoplasticity. Int. J. Plast. 1996, 12, 343–360. [Google Scholar] [CrossRef]
- Tóth, L.S.; Molinari, A.; Zouhal, N. Cyclic plasticity phenomena as predicted by polycrystal plasticity. Mech. Mater. 2000, 32, 99–113. [Google Scholar] [CrossRef]
- Levitin, V. Physical Mechanism and Structural Model of Strain at High Temperatures. In High Temperature Strain of Metals and Alloys; Willey: Hoboken, NJ, USA, 2005; pp. 43–65. ISBN 9783527607952. [Google Scholar] [CrossRef]
- Butt, M.Z.; Ullah, S.; Khan, M.R.; Ahmad, S.; Ilyas, S.Z. Effect of thermal exposure on the strength and stress relaxation response of AA-7075-T6 material. Mater. Chem. Phys. 2021, 270, 124791. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutta, B.; Huilgol, P.; Perugu, C.S.; Kumar, G.; Reddy, S.T.; Toth, L.S.; Bouaziz, O.; Kailas, S.V. A Polymer-Based Metallurgical Route to Produce Aluminum Metal-Matrix Composite with High Strength and Ductility. Materials 2024, 17, 84. https://doi.org/10.3390/ma17010084
Gutta B, Huilgol P, Perugu CS, Kumar G, Reddy ST, Toth LS, Bouaziz O, Kailas SV. A Polymer-Based Metallurgical Route to Produce Aluminum Metal-Matrix Composite with High Strength and Ductility. Materials. 2024; 17(1):84. https://doi.org/10.3390/ma17010084
Chicago/Turabian StyleGutta, Bindu, Prashant Huilgol, Chandra S. Perugu, Govind Kumar, S. Tejanath Reddy, Laszlo S. Toth, Olivier Bouaziz, and Satish V. Kailas. 2024. "A Polymer-Based Metallurgical Route to Produce Aluminum Metal-Matrix Composite with High Strength and Ductility" Materials 17, no. 1: 84. https://doi.org/10.3390/ma17010084
APA StyleGutta, B., Huilgol, P., Perugu, C. S., Kumar, G., Reddy, S. T., Toth, L. S., Bouaziz, O., & Kailas, S. V. (2024). A Polymer-Based Metallurgical Route to Produce Aluminum Metal-Matrix Composite with High Strength and Ductility. Materials, 17(1), 84. https://doi.org/10.3390/ma17010084