The Optimization of the One-Pot Synthesis of Au@SiO2 Core–Shell Nanostructures: Modification with Dansyl Group and Their Fluorescent Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Nanoparticles and Nanocomposites
2.2.1. Synthesis of Au NPs
2.2.2. Synthesis of SiO2 NPs
2.2.3. Synthesis of Au@SiO2 Core–Shell Nanostructures
2.3. Surface Modification and Fluorescent Properties
2.3.1. Surface Modification with Aminopropyl Groups (–(CH2)3–NH2)
2.3.2. Synthesis of a Modified Nanocomposite with Fmoc–Gly–OH
2.3.3. Attachment of DNS–Cl to Modified Au@SiO2 Nanostructures
2.4. Methods
3. Results
3.1. Synthesis of Nanoparticles and Nanocomposites
3.2. Characterization of Obtained Samples
3.3. The Influence of the Environment on the Morphology of the Obtained Nanocomposites
3.3.1. Influence of TEOS on Nanocomposite Morphologies
3.3.2. Influence of CTAB on Nanocomposite Morphologies
3.3.3. Influence of Hydrazine on Nanocomposite Morphologies
3.4. Determination of Fmoc Group Loading on Core–Shell Nanostructure
3.5. Fluorescence Properties
4. Conclusions
- With increasing concentration of tetraethoxysilane, i.e., the silica precursor, the thickness of the shell increases;
- Increasing the share of CTAB in the synthesis, the degree of agglomeration of Au@SiO2 decreases;
- With decreasing concentration of hydrazine, which acts as a reducer in the synthesis, shape and size are more uniform.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eustis, S.; El-Sayed, M.A. Why Gold Nanoparticles Are More Precious than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes. Chem. Soc. Rev. 2006, 35, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, B.; Chen, L. SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chem. Rev. 2013, 113, 1391–1428. [Google Scholar] [CrossRef] [PubMed]
- Synak, A.; Grobelna, B.; Raut, S.; Bojarski, P.; Gryczyński, I.; Karczewski, J.; Shtoyko, T. Metal Enhanced Fluorescence of Flavin Mononucleotide Using New Plasmonic Platform. Opt. Mater. 2016, 59, 136–140. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front. Bioeng. Biotechnol. 2020, 8, 990. [Google Scholar] [CrossRef] [PubMed]
- Anik, M.I.; Mahmud, N.; Al Masud, A.; Hasan, M. Gold Nanoparticles (GNPs) in Biomedical and Clinical Applications: A Review. Nano Sel. 2022, 3, 792–828. [Google Scholar] [CrossRef]
- Kim, J.; Hong, C.-O.; Koo, Y.; Choi, H.-D.; Lee, K.-W. Anti-Glycation Effect of Gold Nanoparticles on Collagen. Biol. Pharm. Bull. 2012, 35, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Taufikurohmah, T.; Sanjaya, I.G.M.; Baktir, A.; Syahrani, A. Activity Test of Nanogold for Reduction of Free Radicals, a Pre-Assessment Utilization Nanogold in Pharmaceutical as Medicines and Cosmetics. J. Mater. Sci. Eng. B 2012, 2, 611–617. [Google Scholar]
- Alanazi, F.K.; Radwan, A.A.; Alsarra, I.A. Biopharmaceutical Applications of Nanogold. Saudi Pharm. J. 2010, 18, 179–193. [Google Scholar] [CrossRef]
- Li, X.; Hu, Z.; Ma, J.; Wang, X.; Zhang, Y.; Wang, W.; Yuan, Z. The Systematic Evaluation of Size-Dependent Toxicity and Multi-Time Biodistribution of Gold Nanoparticles. Colloids Surf. B Biointerfaces 2018, 167, 260–266. [Google Scholar] [CrossRef]
- Bahadur, N.M.; Watanabe, S.; Furusawa, T.; Sato, M.; Kurayama, F.; Siddiquey, I.A.; Kobayashi, Y.; Suzuki, N. Rapid One-Step Synthesis, Characterization and Functionalization of Silica Coated Gold Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2011, 392, 137–144. [Google Scholar] [CrossRef]
- Tengjisi; Liu, Y.; Zou, D.; Yang, G.; Zhao, C.-X. Bioinspired Core-Shell Silica Nanoparticles Monitoring Extra- and Intra-Cellular Drug Release. J. Colloid Interface Sci. 2022, 624, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Kalambate, P.K.; Dhanjai; Huang, Z.; Li, Y.; Shen, Y.; Xie, M.; Huang, Y.; Srivastava, A.K. Core@shell Nanomaterials Based Sensing Devices: A Review. TrAC Trends Anal. Chem. 2019, 115, 147–161. [Google Scholar] [CrossRef]
- Chaudhary, A.; Baijnath; Bharadwaj, P.; Kumar, P.; Bhaskarwar, A. Sensing Materials: Bimetallics and Metal Mixtures (Core-Shell Microspheres). In Encyclopedia of Sensors and Biosensors; Elsevier: Amsterdam, The Netherlands, 2023; pp. 204–211. ISBN 978-0-12-822549-3. [Google Scholar]
- Dembski, S.; Schneider, C.; Christ, B.; Retter, M. Core-Shell Nanoparticles and Their Use for in Vitro and in Vivo Diagnostics. In Core-Shell Nanostructures for Drug Delivery and Theranostics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 119–141. ISBN 978-0-08-102198-9. [Google Scholar]
- Szczepańska, E.; Synak, A.; Bojarski, P.; Niedziałkowski, P.; Wcisło, A.; Ossowski, T.; Grobelna, B. Dansyl-Labelled Ag@SiO2 Core-Shell Nanostructures—Synthesis, Characterization, and Metal-Enhanced Fluorescence. Materials 2020, 13, 5168. [Google Scholar] [CrossRef] [PubMed]
- Synak, A.; Adamska, E.; Grobelna, B.; Gondek, J.; Mońka, M.; Gryczynski, I.; Bojarski, P. Photophysical Properties and Detection of Valrubicin on Plasmonic Platforms. Dye. Pigment. 2018, 163, 623–627. [Google Scholar] [CrossRef]
- Kang, J.S.; Piszczek, G.; Lakowicz, J.R. Enhanced Emission Induced by FRET from a Long-Lifetime, Low Quantum Yield Donor to a Long-Wavelength, High Quantum Yield Acceptor. J. Fluoresc. 2002, 12, 97–103. [Google Scholar] [CrossRef]
- Instrumentation for Fluorescence Spectroscopy. In Principles of Fluorescence Spectroscopy; Lakowicz, J.R. (Ed.) Springer: Boston, MA, USA, 2006; pp. 27–61. ISBN 978-0-387-46312-4. [Google Scholar]
- Geddes, C.D.; Cao, H.; Gryczynski, I.; Gryczynski, Z.; Fang, J.; Lakowicz, J.R. Metal-Enhanced Fluorescence (MEF) Due to Silver Colloids on a Planar Surface: Potential Applications of Indocyanine Green to in Vivo Imaging. J. Phys. Chem. A 2003, 107, 3443–3449. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.D.; Gwenin, V.V.; Gwenin, C.D. Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications. Nanoscale Res. Lett. 2019, 14, 188. [Google Scholar] [CrossRef] [PubMed]
- Mallick, S.; Singh, K.R.; Nayak, V.; Singh, J.; Singh, R.P. Potentialities of Core@shell Nanomaterials for Biosensor Technologies. Mater. Lett. 2022, 306, 130912. [Google Scholar] [CrossRef]
- Daruich De Souza, C.; Ribeiro Nogueira, B.; Rostelato, M.E.C.M. Review of the Methodologies Used in the Synthesis Gold Nanoparticles by Chemical Reduction. J. Alloys Compd. 2019, 798, 714–740. [Google Scholar] [CrossRef]
- Ghimire, P.P.; Jaroniec, M. Renaissance of Stöber Method for Synthesis of Colloidal Particles: New Developments and Opportunities. J. Colloid Interface Sci. 2021, 584, 838–865. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, S.; Shao, Y.; Liu, J.; Xu, Z.; Zhu, D. Amino-Functionalized Fe(3)O(4)@SiO(2) Core-Shell Magnetic Nanomaterial as a Novel Adsorbent for Aqueous Heavy Metals Removal. J Colloid Interface Sci 2010, 349, 293–299. [Google Scholar] [CrossRef]
- Szczepańska, E.; Grobelna, B.; Ryl, J.; Kulpa, A.; Ossowski, T.; Niedziałkowski, P. Efficient Method for the Concentration Determination of Fmoc Groups Incorporated in the Core-Shell Materials by Fmoc–Glycine. Molecules 2020, 25, 3983. [Google Scholar] [CrossRef] [PubMed]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface Plasmon Resonance in Gold Nanoparticles: A Review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef] [PubMed]
- Adamska, E.; Niska, K.; Wcisło, A.; Grobelna, B. Characterization and Cytotoxicity Comparison of Silver- and Silica-Based Nanostructures. Materials 2021, 14, 4987. [Google Scholar] [CrossRef]
- Montaño-Priede, J.L.; Coelho, J.P.; Guerrero-Martínez, A.; Peña-Rodríguez, O.; Pal, U. Fabrication of Monodispersed Au@SiO2 Nanoparticles with Highly Stable Silica Layers by Ultrasound-Assisted Stöber Method. J. Phys. Chem. C 2017, 121, 9543–9551. [Google Scholar] [CrossRef]
- Ramalla, I.; Gupta, R.; Bansal, K. Effect on Superhydrophobic Surfaces on Electrical Porcelain Insulator, Improved Technique at Polluted Areas for Longer Life and Reliability. Int. J. Eng. Technol. 2015, 4, 509. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.; Zhang, Y.; Liu, J.; Li, H.; Zhou, L.; Wu, S.; Gao, X. Preparation of Core–Shell Structured Au@O2 Nanocomposite Catalyst with Au Core Size below 2 Nm without High-Temperature Calcination Procedure. J. Mater. Sci. 2018, 53, 8086–8097. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and Zeta Potential—What They Are and What They Are Not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Prathna, T.C.; Chandrasekaran, N.; Raichur, A.M.; Mukherjee, A. Kinetic Evolution Studies of Silver Nanoparticles in a Bio-Based Green Synthesis Process. Colloids Surf. A Physicochem. Eng. Asp. 2011, 377, 212–216. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Z.; Yang, W. Cetyltrimethylammonium Bromide Assisted Preparation of Au@O2 Particles. Colloid Interface Sci. Commun. 2022, 50, 100662. [Google Scholar] [CrossRef]
- Li, J.-F.; Li, C.-Y.; Aroca, R.F. Plasmon-Enhanced Fluorescence Spectroscopy. Chem. Soc. Rev. 2017, 46, 3962–3979. [Google Scholar] [CrossRef]
Influence of the Concentration of a Reagent on the Morphology of the Obtained Nanostructures [mol/dm3] | ||||
---|---|---|---|---|
TEOS | CTAB | Hydrazine | ||
Number of Au@SiO2 sample | 1 | 4.38 × 10−3 | 7.47 × 10−4 | 3.03 × 10−1 |
2 | 2.8 × 10−3 | 7.47 × 10−4 | 3.03 × 10−1 | |
3 | 2.8 × 10−3 | 1.10 × 10−3 | 2.43 × 10−1 | |
4 | 2.8 × 10−3 | 1.10 × 10−3 | 1.82 × 10−1 | |
5 | 2.8 × 10−3 | 1.60 × 10−3 | 3.03 × 10−1 | |
6 | 2.33 × 10−3 | 1.10 × 10−3 | 4.24 × 10−1 |
Number of Au@SiO2 Sample | Mean Zeta Potential (SD) [mV] | Deviation [mV] |
---|---|---|
1 | 51.8 | 1.7 |
2 | 44.8 | 2.1 |
3 | 49.4 | 1.6 |
4 | 50.7 | 1.2 |
5 | 54.3 | 2.5 |
6 | 45.3 | 1.0 |
Number of Au@SiO2 Sample | Average Size (SD) [nm] | Standard Deviation [nm] | Area [%] |
---|---|---|---|
1 | 196.37 | 90.95 | 100.00 |
2 | 175.63 | 82.34 | 100.00 |
3 | 173.75 | 67.17 | 95.66 |
18.82 | 3.36 | 4.34 | |
4 | 117.66 | 51.38 | 90.58 |
15.70 | 3.52 | 9.42 | |
5 | 181.55 | 76.45 | 100.00 |
6 | 175.91 | 85.40 | 94.04 |
20.33 | 4.44 | 5.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, A.; Adamska, E.; Synak, A.; Grobelna, B. The Optimization of the One-Pot Synthesis of Au@SiO2 Core–Shell Nanostructures: Modification with Dansyl Group and Their Fluorescent Properties. Materials 2024, 17, 2213. https://doi.org/10.3390/ma17102213
Kowalska A, Adamska E, Synak A, Grobelna B. The Optimization of the One-Pot Synthesis of Au@SiO2 Core–Shell Nanostructures: Modification with Dansyl Group and Their Fluorescent Properties. Materials. 2024; 17(10):2213. https://doi.org/10.3390/ma17102213
Chicago/Turabian StyleKowalska, Agata, Elżbieta Adamska, Anna Synak, and Beata Grobelna. 2024. "The Optimization of the One-Pot Synthesis of Au@SiO2 Core–Shell Nanostructures: Modification with Dansyl Group and Their Fluorescent Properties" Materials 17, no. 10: 2213. https://doi.org/10.3390/ma17102213
APA StyleKowalska, A., Adamska, E., Synak, A., & Grobelna, B. (2024). The Optimization of the One-Pot Synthesis of Au@SiO2 Core–Shell Nanostructures: Modification with Dansyl Group and Their Fluorescent Properties. Materials, 17(10), 2213. https://doi.org/10.3390/ma17102213