Thermodynamic Assessment of the P2O5-Na2O and P2O5-MgO Systems
Abstract
:1. Introduction
2. Review of Literature Data
2.1. P2O5-Na2O System
2.2. P2O5-MgO System
3. Thermodynamic Modeling
3.1. Pure Unary Component
3.2. Liquid Phase
3.3. Intermediate Compounds
4. Results and Discussion
4.1. P2O5-Na2O System
4.2. P2O5-MgO System
5. Conclusions
- A set of self-consistent thermodynamic parameters is derived for the P2O5-Na2O and P2O5-MgO binary systems based on a critical evaluation of the available phase diagram and thermodynamic property data. The calculated phase diagrams and thermodynamic properties employing the obtained thermodynamic parameters well reproduce the data reported in the literature.
- In comparison with the previous assessments using the modified quasi-chemical model for the liquid phase, the present study using the ionic two-sublattice model to express the liquid phase for the first time can describe the experimental data of the P2O5-Na2O and P2O5-MgO binary systems in a better and more reasonable way, particularly the invariant reactions involving the liquid phase. The difference in the phase composition and temperature of invariant reactions from the experimentally determined values reported in the literature is less than 0.9 mol.% and 5K, respectively.
- Four eutectic reactions (L = γ − NaPO3 + O’-P2O5, L = β − Na3PO4 + β − Na2O, L = MgP2O6+ MgP4O11 and L = MgP4O11 + O’ − P2O5) are predicted in the P2O5-Na2O and P2O5-MgO binary systems. The predicted temperatures of these eutectic reactions are 560 K, 1220 K, 1149 K and 773 K, with the corresponding phase compositions X(P2O5) being 82.4 mol%, 18.6 mol%, 62 mol% and 91 mol%, respectively. These predictions await further experimental validation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suito, H.; Inoue, R. Effects of Na2O and BaO additions on phosphorus distribution between CaO-MgO-FetO-SiO2-slags and liquid iron. Trans. Iron Steel Inst. Jpn. 1984, 24, 47–53. [Google Scholar] [CrossRef]
- Chen, T.; Yuan, Y.; Wang, J.; Wu, J.; Wang, B.; Chen, X.; Moelans, N.; Wang, J.; Pan, F. Features and classification of solid solution behavior of ternary Mg alloys. J. Magnes. Alloys 2024. [Google Scholar] [CrossRef]
- Chen, T.; Gao, Q.; Yuan, Y.; Li, T.; Xi, Q.; Liu, T.; Tang, A.; Watson, A.; Pan, F. Coupling physics in machine learning to investigate the solution behavior of binary Mg alloys. J. Magnes. Alloys 2021, 10, 2817–2832. [Google Scholar] [CrossRef]
- Yi, W.; Liu, G.; Gao, J.; Zhang, L. Boosting for concept design of casting aluminum alloys driven by combining computational thermodynamics and machine learning techniques. J. Mater. Inf. 2021, 1, 11. [Google Scholar] [CrossRef]
- Zhang, S.; Yi, W.; Zhong, J.; Gao, J.; Lu, Z.; Zhang, L. Computer alloy design of Ti modified Al-Si-Mg-Sr casting alloys for achieving simultaneous enhancement in strength and ductility. Materials 2022, 16, 306. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Jiang, K.; Deng, Z.; Wang, K.; Zhang, H.; Liu, L.; Zhang, L. Integration of CALPHAD calculations and nanoindentation test for the design of low-modulus near-β titanium. J. Cent. South Univ. 2023, 30, 3940–3949. [Google Scholar] [CrossRef]
- Xie, W.; Wei, S.H.; Hudon, P.; Jung, I.; Qiao, Z.; Cao, Z. Critical evaluation and thermodynamic assessment of the R2O-P2O5 (R = Li, Na and K) systems. Calphad 2020, 68, 101718. [Google Scholar] [CrossRef]
- Ding, G.; Xie, W.; Jung, I.; Qiao, Z.; Du, G.; Cao, Z. Thermodynamic assessment of the MgO-P2O5 and CaO-P2O5 Systems. Acta Phys.-Chim. Sin. 2015, 31, 1853–1863. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, F.; Deng, T.; Liu, Y.; Yang, L.; Guo, C.; Tan, J.; Ma, T.; Chen, W.; Du, Y. Phase equilibria in the FeO-Fe2O3-SiO2 system: Experimental measurement and thermodynamic modeling. Calphad 2022, 79, 102459. [Google Scholar] [CrossRef]
- Yang, L.; Zeng, Y.; Guo, C.; Liu, Y.; Li, B.; Deng, T.; Chen, W.; Du, Y. Experimental investigation and thermodynamic assessment of the Na2O-Al2O3-CaO system. Ceram. Int. 2024, 50, 13422. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Gao, F.; Tan, J.; Yang, L.; Deng, T.; Chen, W.; Ouyang, Y.; Du, Y. Thermodynamic description of the FeO-Fe2O3-MgO system and its extrapolation to the X-MgO-FeO-Fe2O3 (X= CaO and SiO2) systems. J. Am. Ceram. Soc. 2024, 107, 4358–4372. [Google Scholar] [CrossRef]
- Wiench, D.M.; Jansen, M. Untersuchungen an Tetranatrium-cyclo-tetraphosphat(V) und seinen Hydraten. Monatsh. Chem. 1983, 114, 699–709. [Google Scholar] [CrossRef]
- Ondik, H.M. The structure of anhydrous sodium trimetaphosphate Na3P3O9, and the monohydrate, Na3P3O9. H2O. Acta Crystallogr. 1965, 18, 226–232. [Google Scholar] [CrossRef]
- Jost, K.H. Die Struktur des Kurrol’schen Na-Salzes (NaPO3)x, Typ B. Acta Crystallogr. 1963, 16, 640–642. [Google Scholar] [CrossRef]
- Corbridge, D.E.C. Crystallographic data on some Kurrol salts. Acta Crystallogr. 1955, 8, 520. [Google Scholar] [CrossRef]
- Dymon, J.J.; King, A.J. Structure studies of the two forms of sodium tripolyphosphate. Acta Crystallogr. 1951, 4, 378–379. [Google Scholar] [CrossRef]
- Corbridge, D.E.C. The crystal structure of sodium triphosphate, Na5P3O10, phase I. Acta Crystallogr. 1960, 13, 263–269. [Google Scholar] [CrossRef]
- Leung, K.Y.; Calvo, C. The Structure of Na4P2O7 at 22 °C. Can. J. Chem. 1972, 50, 2519–2526. [Google Scholar] [CrossRef]
- Lissel, E.; Jansen, M.; Jansen, E.; Will, G. Bestimmung der Kristallstruktur von T-Na3PO4 mit Rontgen- und Neutronenpulvertechniken. Z. Für Krist. 1990, 192, 233–243. [Google Scholar] [CrossRef]
- Newsan, J.M.; Cheetham, A.K.; Tofield, B.C. Structural studies of the high-temperature modifications of sodium and silver orthophosphates, II-Na3PO4 and II-Ag3PO4, and of the low-temperature form I-Ag3PO4. Solid State Ion. 1980, 1, 377–393. [Google Scholar] [CrossRef]
- Kizilyalli, M.; Welch, A.J.E. Preparation and X-ray powder diffraction data for anhydrous sodium orthophosphates. J. Inorg. Nucl. Chem. 1976, 38, 1237–1240. [Google Scholar] [CrossRef]
- Berthet, G.; Joubert, J.C.; Bertaut, E.F. Vacancies ordering in new metastable orthophosphates [Co3□]P2O8 and [Mg3□]P2O8 with olivin-related structure. Z. Für Krist. 1972, 136, 98–105. [Google Scholar] [CrossRef]
- Nord, A.G.; Kierkegaard, P. The crystal structure of Mg3(PO4)2. Acta Chem. Scand. 1968, 22, 1466–1474. [Google Scholar] [CrossRef]
- Baykal, A.; Kizilyalli, M.; Kniep, R. Synthesis and Characterisation of Anhydrous Magnesium Phosphate Mg3(PO4)2. Turk. J. Chem. 1997, 21, 394–400. [Google Scholar]
- Nord, A.G.; Stefanidis, T. The cation distribution between five-and six-coordinated sites in some (Mg, Me)3(PO4)2 solid solutions. Mater. Res. Bull. 1980, 15, 1183–1191. [Google Scholar] [CrossRef]
- Jaulmes, S.; Elfakir, A.; Quarton, M.; Brunet, F.; Chopin, C. Structure cristalline de la phase haute température et haute pression de Mg3(PO4)2. J. Solid State Chem. 1997, 129, 341–345. [Google Scholar] [CrossRef]
- Lukaszewicz, K. Crystal structure of alpha-Mg2P2O7 and the mechanism of phase transition beta->alpha-Mg2P2O7. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1967, 15, 53–57. [Google Scholar]
- Datars, W.R. ESR Study of Mn2+ in α- and β-Mg2P2O7. J. Chem. Phys. 1967, 46, 796–803. [Google Scholar]
- Beucher, M.; Grenier, J.C. Donnees cristallographiques sur les tetrametaphosphates du type MII2P4O12 (MII=Ni, Mg, Zn, Cu, Co, Mn). Mater. Res. Bull. 1968, 3, 643–647. [Google Scholar] [CrossRef]
- Nord, A.G.; Lindberg, K.B. The Crystal Structure of Magnesium Tetrametaphosphate, Mg2P4O12. Acta Chem. Scand. 1975, 29, 1–6. [Google Scholar] [CrossRef]
- Stachel, D.; Paulus, H.; Guenter, C.; Fuess, H. Crystal structure of magnesium ultraphosphate, MgP4O11. Z. Für Krist. 1992, 199, 275–276. [Google Scholar] [CrossRef]
- Meyer, K.; Hobert, H.; Barz, A.; Stachel, D. Infrared spectra and structure of various crystalline ultraphosphates and their glasses. Vib. Spectrosc. 1994, 6, 323–332. [Google Scholar] [CrossRef]
- Yakubovich, O.V.; Dimitrova, O.V.; Vidrevich, A.I. Magnesium ultraphosphate MgP4O11: Growth and crystal structure. Crystallogr. Rep. 1993, 38, 176–180. [Google Scholar]
- Partridge, E.P.; Hicks, V.; Smith, G.W. A Thermal, Microscopic and X-Ray Study of the System NaPO3-Na4P2O71. J. Am. Chem. Soc. 1941, 63, 454–466. [Google Scholar] [CrossRef]
- Morey, G.W.; Ingerson, E. The binary system NaPO3-Na4P2O7. Am. J. Sci. 1944, 242, 1–6. [Google Scholar] [CrossRef]
- Turkdogan, E.T. Phase Equilibrium Investigation of the Na2O-P2O5-SiO2 Ternary System. J. Iron Steel Inst. Lond. 1952, 172, 1–15. [Google Scholar]
- Markina, I.B.; Voskresenskaya, N.K. Fusibility of a mutual system of sodium and potassium meta- and orthophosphates. Russ. J. Inorg. Chem. 1969, 14, 1188–1192. [Google Scholar]
- Osterheld, R.K.; Bahr, E.W. Liquidus diagram for the sodium orthophosphate-sodium pyrophosphate system. J. Inorg. Nucl. Chem. 1970, 32, 2539–2541. [Google Scholar] [CrossRef]
- Berak, J.; Znamierowska, T. Phase equilibria in the system CaO-Na2O-P2O5. Part II. The partial system Ca(PO3)2-Na2O-P2O5. Rocz. Chem. 1972, 46, 1697–1708. [Google Scholar]
- Mixter, W.G. ART. XII-The Heat of Formation of Trisodium Ortho phosphate, Trisodium Orthoarsenate, the Oxides of Antimony, Bismuth Trioxide; and fourth paper on the Heat of Combination of Acidic Oxides with Sodium Oxide. Am. J. Sci. 1909, 28, 103–111. [Google Scholar] [CrossRef]
- Irving, R.J.; McKerrell, H. Standard heats of formation of NaH2PO4, Na2HPO4 and Na3PO4. Trans. Faraday Soc. 1967, 63, 2913–2916. [Google Scholar] [CrossRef]
- Irving, R.J.; McKerrell, H. Standard heats of formation of two sodium pyrophosphates, sodium trimetaphosphate, and sodium tetrametaphosphate. Trans. Faraday Soc. 1968, 64, 879–882. [Google Scholar] [CrossRef]
- Irving, R.J.; McKerrell, H. Standard heats of formation of the sodium triphosphates Na5P3O10(cI), Na5P3O10(cII) and Na5P3O10.6H2O(c). Trans. Faraday Soc. 1968, 64, 875–878. [Google Scholar] [CrossRef]
- Krivtsov, N.V.; Titova, K.V.; Rosolovskii, V.Y. The Enthalpy of Dissolution and Standard Enthalpy of Formation of Sodium Pyrophosphate Peroxosolvate Na4P2O7∙3H2O2. Russ. J. Inorg. Chem. 1995, 40, 603–605. [Google Scholar]
- Zhuang, W.; Liang, J.; Qiao, Z.; Shen, J.; Shi, Y.; Rao, G. Estimation of the standard enthalpy of formation of double oxide. J. Alloys Compd. 1998, 267, 6–10. [Google Scholar] [CrossRef]
- Khaled, H.G.B.; Khattech, I.; Jemal, M. Standard enthalpy of formation of disodium hydrogen phosphate hexahydrate and sodium diphosphate. J. Chem. Thermodyn. 2011, 43, 521–526. [Google Scholar] [CrossRef]
- Andon, R.J.L.; Counsell, J.F.; Martin, J.F.; Mash, C.J. Thermodynamic properties of phosphorus compounds. II. Low-temperature heat capacity and entropy of sodium mono-, di-, and tri-phosphates. J. Appl. Chem. 1967, 17, 65–70. [Google Scholar] [CrossRef]
- Ashcroft, S.J.; Keen, E.; Mortimer, C.T. Thermochemistry of formation of sodium polyphosphates from sodium orthophosphates. Trans. Faraday Soc. 1969, 65, 2851–2855. [Google Scholar] [CrossRef]
- Lazarev, V.B.; Sokolova, I.D.; Sharpataya, G.A. DSC study op polymorphism of Na4P2O7. Thermochim. Acta 1985, 92, 301–304. [Google Scholar] [CrossRef]
- Grantscharova, E.; Avramov, I.; Gutzow, I. Calorimetric study of vitreous and crystalline sodium metaphosphate NaPO3. Thermochim. Acta 1986, 102, 249–256. [Google Scholar] [CrossRef]
- Berak, J. The system magnesium oxide-phosphorus pentoxide. Rocz. Chem. 1958, 32, 17–22. [Google Scholar]
- Bobrownicki, W.; Slawski, K. Pseudobinary section Ca3(PO4)2-Mg3(PO4)2 in the ternary system CaO-MgO-P2O5. Rocz. Chem. 1959, 33, 251–254. [Google Scholar]
- Czupinska, G. The system YPO4-Mg3(PO4)2-Mg2P2O7. J. Therm. Anal. 1992, 38, 2343–2347. [Google Scholar] [CrossRef]
- Oetting, F.L.; McDonald, R.A. The thermodynamic properties of magnesium orthophosphate and magnesium pyrophosphate. J. Phys. Chem. 1963, 67, 2737–2743. [Google Scholar] [CrossRef]
- Bookey, J.B. The free energy of formation of magnesium phosphate. J. Iron Steel Inst. Lond. 1952, 172, 66–68. [Google Scholar]
- Roy, R.; Middleswarth, E.T.; Hummel, F.A. Mineralogy and thermal behavior of phosphates; I. Magnesium pyrophosphate. Am. Mineral. 1948, 33, 458–471. [Google Scholar]
- Calvo, C. The crystal structure of α-Mg2P2O7. Acta Crystallogr. 1967, 23, 289–295. [Google Scholar] [CrossRef]
- Rakotomahanina-Rolaisoa, E.; Henry, Y.; Durif, A. Phase equilibrium diagram for TlPO3-Co(PO3)2, TlPO3-Mg(PO3)2, and TlPO3-Ca(PO3)2. Bull. Soc. Fr. Mineral. Cristallogr. 1970, 93, 43–51. [Google Scholar]
- Berthelot, M. Thermochimie: Donnees et Lois Numériques; Gauthier-Villars: Paris, France, 1897. [Google Scholar]
- Stevens, C.G.; Turkdogan, E.T. The heats of formation of trimanganous phosphate and trimagnesium phosphate. Trans. Faraday Soc. 1954, 50, 370–373. [Google Scholar] [CrossRef]
- Lopatin, S.I.; Semenov, G.A.; Kutuzova, Y.L.A. A mass-spectrometric investigation of the thermal dissociation of condensed magnesium phosphates. Inorg. Mater. 1986, 22, 1320–1323. [Google Scholar]
- Lopatin, S.I.; Semenov, G.A. A Mass-spectrometric investigation of thermal dissociation of alkaline earth metal monophosphates. Neorg. Mater. 1989, 25, 645–650. [Google Scholar]
- Abdelkader, S.B.; Cherifa, A.B.; Khattech, I.; Jemal, M. Synthèse, caractérisation et thermochimie du phosphate trimagnésien et du phosphate tricalcique. Thermochim. Acta 1999, 334, 123–129. [Google Scholar] [CrossRef]
- Iwase, M.; Akizuki, H.; Fujiwara, H.; Ichise, E.; Yamada, N. A thermodynamic study of MgO-P2O5 slags by means of solid-oxide galvanic cell at 1673K. Steel Res. 1987, 58, 215–219. [Google Scholar] [CrossRef]
- Jung, I.H.; Hudon, P. Thermodynamic Assessment of P2O5. J. Am. Ceram. Soc. 2012, 95, 3665–3672. [Google Scholar] [CrossRef]
- Wu, P.; Eriksson, G.; Pelton, A.D. Optimization of the thermodynamic properties and phase diagrams of the Na2O-SiO2 and K2O-SiO2 systems. J. Am. Ceram. Soc. 1993, 76, 2059–2064. [Google Scholar] [CrossRef]
- Mao, H.; Selleby, M.; Sundman, B. A re-evaluation of the liquid phases in the CaO-Al2O3 and MgO-Al2O3 systems. Calphad 2004, 28, 307–312. [Google Scholar] [CrossRef]
System | Compound | Crystal System | Space Group | Reference |
---|---|---|---|---|
P2O5-Na2O | γ-NaPO3 | Orthorhombic | P21P21P21 | [12] |
Orthorhombic | Pnma | [13] | ||
β-NaPO3 | Triclinic | P21/n | [14] | |
α-NaPO3 | Monoclinic | P21/c | [15] | |
β-Na5P3O10 | Monoclinic | C2/c | [16] | |
α-Na5P3O10 | Monoclinic | C2/c | [17] | |
α-Na4P2O7 | Orthorhombic | P21P21P21 | [18] | |
β-Na3PO4 | Tetragonal | P21c | [19] | |
α-Na3PO4 | Cubic | Fmm | [20] | |
Orthorhombic | Pnma | [21] | ||
P2O5-MgO | Mg3P2O8 | Monoclinic | P21/b | [22] |
Monoclinic | P21/n | [23] | ||
Monoclinic | P21/n | [24] | ||
Monoclinic | P21/n | [25] | ||
Triclinic | P | [26] | ||
β-Mg2P2O7 | Monoclinic | P21/c | [27] | |
α-Mg2P2O7 | Monoclinic | C2/m | [28] | |
MgP2O6 | Monoclinic | C2/c | [29] | |
Monoclinic | C2/c | [30] | ||
MgP4O11 | Monoclinic | P21/c | [31] | |
Monoclinic | P21/c | [32] | ||
Orthorhombic | Pmc21 | [33] |
System | Phase | Formula | Thermodynamic Parameter/J·mol−1 |
---|---|---|---|
P2O5-Na2O | Liquid | (Na+1)p(O−2, PO3−1, PO4−3, PO5/2)q | |
Na3PO4_β | (Na+1)3(P+5)1(O−2)4 | ||
Na3PO4_α | (Na+1)3(P+5)1(O−2)4 | ||
Na4P2O7_ζ | (Na+1)4(P+5)2(O−2)7 | ||
Na4P2O7_ε | (Na+1)4(P+5)2(O−2)7 | ||
Na4P2O7_δ | (Na+1)4(P+5)2(O−2)7 | ||
Na4P2O7_γ | (Na+1)4(P+5)2(O−2)7 | ||
Na4P2O7_β | (Na+1)4(P+5)2(O−2)7 | ||
Na4P2O7_α | (Na+1)4(P+5)2(O−2)7 | ||
Na5P3O10_β | (Na+1)5(P+5)3(O−2)10 | ||
Na5P3O10_α | (Na+1)5(P+5)3(O−2)10 | ||
NaPO3_γ | (Na+1)1(P+5)1(O−2)3 | ||
NaPO3_β | (Na+1)1(P+5)1(O−2)3 | ||
NaPO3_α | (Na+1)1(P+5)1(O−2)3 | ||
P2O5-MgO | Liquid | (Mg+2)p(O−2, PO3−1, PO4−3, PO5/2)q | |
Mg3P2O8 | (Mg+2)3(P+5)2(O−2)8 | ||
Mg2P2O7_β | (Mg+2)2(P+5)2(O−2)7 | ||
Mg2P2O7_α | (Mg+2)2(P+5)2(O−2)7 | ||
MgP2O6 | (Mg+2)1(P+5)2(O−2)6 | ||
MgP4O11 | (Mg+2)1(P+5)4(O−2)11 | ||
Function | Temperature range/K | ||
(298.15–1000) | −1639225.067 − 230.7480381T + 21.643407TlnT − 0.1681142T2 + 1.8771510−5T3 + 1758186.5T−1 + 22900.402lnT | ||
(1000–6000) | −1579441.75 + 1382.959261T − 225TlnT | ||
(298.15–1000) | −1665880.067 − 199.4980381T + 21.643407TlnT − 0.1681142T2 + 1.8771510−5T3 + 1758186.5T−1 + 22900.402lnT | ||
(1000–6000) | −1606096.75 + 1414.209261T − 225TlnT | ||
(298.15–1000) | −1666269.067 − 198.3480381T + 21.643407TlnT − 0.1681142T2 + 1.8771510−5T3 + 1758186.5T−1 + 22900.402lnT | ||
(1000–6000) | −1606485.75 + 1415.359261T − 225TlnT | ||
(298.15–1000) | −1631835.067 − 221.1390381T + 21.643407TlnT − 0.1681142T2 + 1.8771510−5T3 + 1758186.5T−1 + 22900.402lnT | ||
(1000–6000) | −1572051.75 + 1392.568261T − 225TlnT | ||
(298.15–1405) | −380898.2803 + 340.194781T − 66.216001TlnT − 0.021932551T2 + 2.3479210−6T3 + 406685.01T−1 | ||
(1405–1500) | −387789.21 + 580.2481164T − 104.6TlnT | ||
(298.15–1405) | −428595.8803 + 374.143281T − 66.216001TlnT − 0.021932551T2 + 2.3479210−6T3 + 406685.01T−1 | ||
(1405–1500) | −435486.81 + 614.1966164T − 104.6TlnT | ||
(298.15–1405) | −440520.2803 + 383.736481T − 66.216001TlnT − 0.021932551T2 + 2.3479210−6T3 + 406685.01T−1 | ||
(1405–1500) | −447411.21 + 623.7898164T − 104.6TlnT | ||
(298.15–1405) | −442277.5603 + 385.454281T − 66.216001TlnT − 0.021932551T2 + 2.3479210−6T3 + 406685.01T−1 | ||
(1405–1500) | −449168.49 + 625.5076164T − 104.6TlnT | ||
(298.15–6000) | + + 0.5 − 520688.946 − 4.353T | ||
(298.15–967) | −3282062.70195 + 815.816308T − 145.08494TlnT − 0.215875T2 + 3.7714810−5T3 + 542554.7741T−1 | ||
(967–1273) | −3322276.2378 + 2062.32142T − 349.82659TlnT | ||
(298.15–6000) | +2.5 + 1.5 − 1144087.404 − 20.487T | ||
(298.15–703) | −1243133.8886 + 264.3713457T − 46.08288TlnT − 0.09082T2 + 1.8044710−5T3 + 188542.1015T−1 | ||
(703–973) | −1256643.34549 + 704.6628499T − 119.50568TlnT | ||
(298.15–1700) | −549098.33 + 275.724634T − 47.4817TlnT − 0.00232681T2 +4.504310−8T3 + 516900T−1 | ||
(1700–2450) | −585159.646 + 506.06825T − 78.3772TlnT + 0.0097344T2 −8.6033810−7T3 + 8591550T−1 | ||
(2450–3100) | +9110429.75−42013.7634T + 5298.548TlnT − 1.30122485T2 + 5.826260110−5T3 − 3.24037416109T−1 | ||
(3100–5100) | −632664.468 + 589.239555T − 84TlnT | ||
(298.15–1700) | −619428.502 + 298.253571T − 47.4817TlnT − 0.00232681T2 +4.504310−8T3 + 516900T−1 | ||
(1700–3100) | −655489.818 + 528.597187T − 78.3772TlnT + 0.0097344T2 −8.6033810−7T3 + 8591550T−1 | ||
(3100–5000) | −171490.159–1409.43369T + 163.674142TlnT − 0.044009535T2 + 1.37489610−6T3−1.72665403108T−1 | ||
(5000–5100) | −722412.718 + 617.657452T−84TlnT | ||
(298.15–1800) | −3863914.664 + 1191.277265T − 195.04422TlnT−0.098665T2 + 9.2252710−6T3 + 1562390.321T−1 | ||
(298.15–1800) | −3217696.802 + 1003.594497T − 165.99611TlnT − 0.07885T2 + 7.9638810−6T3 + 1371185.587T−1 | ||
(298.15–6000) | + + − 240840 + 2.95T | ||
(298.15–6000) | + + – 269030 − 4.29T |
Reaction | Type | Liquid Composition/Mole Fraction Na2O | Temperature/K | Reference |
---|---|---|---|---|
L = γ − NaPO3 + O’ − P2O5 | Eutectic | 0.276 | 560 | This work |
L = β − NaPO3 + α − Na5P3O10 | Eutectic | 0.559 | 824 | [34] |
0.556 | 825 | [35] | ||
0.57 | 819 | [36] | ||
0.543 | 763 | [37] | ||
0.56 | 819 | [39] | ||
0.56 | 833 | [7] | ||
0.563 | 820 | This work | ||
L + α − Na4P2O7 = α − Na5P3O10 | Peritectic | 0.587 | 893 | [34] |
0.588 | 895 | [35] | ||
0.585 | 893 | [37] | ||
0.589 | 893 | [39] | ||
0.575 | 898 | [7] | ||
0.576 | 895 | This work | ||
L = α − Na4P2O7 + β − Na3PO4 | Eutectic | 0.684 | 1218 | [37] |
0.694 | 1225 | [38] | ||
0.6975 | 1217 | [39] | ||
0.691 | 1209 | [7] | ||
0.6999 | 1212 | This work | ||
L = β − Na3PO4 + β − Na2O | Eutectic | 0.814 | 1220 | This work |
Reaction | Type | Liquid Composition/Mole Fraction P2O5 | Temperature/K | Reference |
---|---|---|---|---|
L = MgO + Mg3P2O8 | Eutectic | 0.23 | 1598 | [51] |
- | 1603 | [55] | ||
0.23 | 1596 | [8] | ||
0.23 | 1602 | This work | ||
L = Mg3P2O8 + α − Mg2P2O7 | Eutectic | 0.276 | 1555 | [51] |
0.277 | 1563 | [8] | ||
0.276 | 1558 | This work | ||
L = α − Mg2P2O7 + MgP2O6 | Eutectic | 0.468 | 1423 | [51] |
0.469 | 1410 | [8] | ||
0.469 | 1421 | This work | ||
L = MgP2O6 + MgP4O11 | Eutectic | 0.62 | 1149 | This work |
L = MgP4O11 + O’ − P2O5 | Eutectic | 0.91 | 773 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, L.; Li, C.; Yang, J.; Xiao, G.; Deng, Z.; Liu, L.; Zhang, L.; Jiang, Y. Thermodynamic Assessment of the P2O5-Na2O and P2O5-MgO Systems. Materials 2024, 17, 2221. https://doi.org/10.3390/ma17102221
Ye L, Li C, Yang J, Xiao G, Deng Z, Liu L, Zhang L, Jiang Y. Thermodynamic Assessment of the P2O5-Na2O and P2O5-MgO Systems. Materials. 2024; 17(10):2221. https://doi.org/10.3390/ma17102221
Chicago/Turabian StyleYe, Lideng, Chenbo Li, Jifeng Yang, Guangcheng Xiao, Zixuan Deng, Libin Liu, Ligang Zhang, and Yun Jiang. 2024. "Thermodynamic Assessment of the P2O5-Na2O and P2O5-MgO Systems" Materials 17, no. 10: 2221. https://doi.org/10.3390/ma17102221
APA StyleYe, L., Li, C., Yang, J., Xiao, G., Deng, Z., Liu, L., Zhang, L., & Jiang, Y. (2024). Thermodynamic Assessment of the P2O5-Na2O and P2O5-MgO Systems. Materials, 17(10), 2221. https://doi.org/10.3390/ma17102221