Thermogravimetric Analysis of Moisture in Natural and Thermally Treated Clay Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Characterization
2.2. Thermal Treatment and MTGA Measurements
2.3. Adsorption Experiments on AFB1 Mycotoxin
2.4. Adsorption Experiments of β-Carotene
2.5. Physico-Chemical Properties–Adsorption Correlation
- a.
- Calculate the ranks for each property, i.e., ordering the property values corresponding to the five studied clays from the smallest to the greatest and assigning an increasing integer value.
- b.
- Calculate the difference between the ranks of each individual property (d).
- c.
- Calculate the Spearman’s score (ρ) between each individual physico-chemical property (x) and the adsorption of AFB1 mycotoxin or β-carotene (y) by Equation (4).
3. Results
3.1. Properties of Natural Clay Minerals
3.2. The Thermal Treatment Effect on the Behavior of the Adsorbed Water
3.3. Properties–Activity Correlation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bergaya, F.; Theng, B.K.G.; Lagaly, G. Handbook of Clay Science; Newnes: Oxford, UK, 2006; Volume 1, ISBN 0080441831. [Google Scholar]
- Di Gregorio, M.C.; De Neeff, D.V.; Jager, A.V.; Corassin, C.H.; Carão, Á.C.D.P.; De Albuquerque, R.; De Azevedo, A.C.; Oliveira, C.A.F. Mineral Adsorbents for Prevention of Mycotoxins in Animal Feeds. Toxin Rev. 2014, 33, 125–135. [Google Scholar] [CrossRef]
- Lambert, J.F. Organic Pollutant Adsorption on Clay Minerals. In Surface and Interface Chemistry of Clay Minerals; Elsevier: Amsterdam, The Netherlands, 2018; Volume 9, pp. 195–253. ISBN 978-0-08-102432-4. [Google Scholar]
- Lo Dico, G.; Semilia, F.; Milioto, S.; Parisi, F.; Cavallaro, G.; Inguì, G.; Makaremi, M.; Pasbakhsh, P.; Lazzara, G. Microemulsion Encapsulated into Halloysite Nanotubes and Their Applications for Cleaning of a Marble Surface. Appl. Sci. 2018, 8, 1455. [Google Scholar] [CrossRef]
- Rožić, L.; Petrović, S.; Novaković, T. β-Carotene Removal from Soybean Oil with Smectite Clay Using Central Composite Design. Russ. J. Phys. Chem. A 2009, 83, 1621–1624. [Google Scholar] [CrossRef]
- Sarma, G.K.; SenGupta, S.; Bhattacharyya, K.G. Methylene Blue Adsorption on Natural and Modified Clays. Sep. Sci. Technol. 2011, 46, 1602–1614. [Google Scholar] [CrossRef]
- Lo Dico, G.; Wicklein, B.; Lisuzzo, L.; Lazzara, G.; Aranda, P.; Ruiz-Hitzky, E. Multicomponent Bionanocomposites Based on Clay Nanoarchitectures for Electrochemical Devices. Beilstein J. Nanotechnol. 2019, 10, 1303–1315. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Wicklein, B.; Lo Dico, G.; Lazzara, G.; Del Real, G.; Aranda, P.; Ruiz-Hitzky, E. Functional Biohybrid Materials Based on Halloysite, Sepiolite and Cellulose Nanofibers for Health Applications. Dalton Trans. 2020, 49, 3830–3840. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Lazzara, G.; Milioto, S. Nanocomposites Based on Halloysite Nanotubes and Sulphated Galactan from Red Seaweed Gloiopeltis: Properties and Delivery Capacity of Sodium Diclofenac. Int. J. Biol. Macromol. 2023, 234, 123645. [Google Scholar] [CrossRef] [PubMed]
- Lisuzzo, L.; Cavallaro, G.; Milioto, S.; Lazzara, G. Coating of Silk Sutures by Halloysite/Wax Pickering Emulsions for Controlled Delivery of Eosin. Appl. Clay Sci. 2024, 247, 107217. [Google Scholar] [CrossRef]
- Boccalon, E.; Viscusi, G.; Lamberti, E.; Fancello, F.; Zara, S.; Sassi, P.; Marinozzi, M.; Nocchetti, M.; Gorrasi, G. Composite Films Containing Red Onion Skin Extract as Intelligent pH Indicators for Food Packaging. Appl. Surf. Sci. 2022, 593, 153319. [Google Scholar] [CrossRef]
- Bertolino, V.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F. Halloysite Nanotubes Sandwiched between Chitosan Layers: Novel Bionanocomposites with Multilayer Structures. New J. Chem. 2018, 42, 8384–8390. [Google Scholar] [CrossRef]
- Calvino, M.M.; Lisuzzo, L.; Cavallaro, G.; Lazzara, G.; Milioto, S. Halloysite Based Geopolymers Filled with Wax Microparticles as Sustainable Building Materials with Enhanced Thermo-Mechanical Performances. J. Environ. Chem. Eng. 2022, 10, 108594. [Google Scholar] [CrossRef]
- Jaradat, Y.; Matalkah, F. Olive Biomass Ash-Based Geopolymer Composite: Development and Characterisation. Adv. Appl. Ceram. 2021, 120, 1–9. [Google Scholar] [CrossRef]
- Cavallaro, G.; Milioto, S.; Konnova, S.; Fakhrullina, G.; Akhatova, F.; Lazzara, G.; Fakhrullin, R.; Lvov, Y. Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating. ACS Appl. Mater. Interfaces 2020, 12, 24348–24362. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Caruso, M.R.; Milioto, S.; Fakhrullin, R.; Lazzara, G. Keratin/Alginate Hybrid Hydrogels Filled with Halloysite Clay Nanotubes for Protective Treatment of Human Hair. Int. J. Biol. Macromol. 2022, 222, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Panchal, A.; Fakhrullina, G.; Fakhrullin, R.; Lvov, Y. Self-Assembly of Clay Nanotubes on Hair Surface for Medical and Cosmetic Formulations. Nanoscale 2018, 10, 18205–18216. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.; Panchal, A.; Rahman, N.; Pereira-Silva, M.; Pereira, I.; Veiga, F.; Lvov, Y. Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations. Nanomaterials 2019, 9, 903. [Google Scholar] [CrossRef]
- Caruso, M.R.; Cavallaro, G.; Lazzara, G.; Milioto, S. Pectin/Microwax Composites for Surface Coating and Protection. Mater. Lett. 2023, 333, 133567. [Google Scholar] [CrossRef]
- Teich-McGoldrick, S.L.; Greathouse, J.A.; Jové-Colón, C.F.; Cygan, R.T. Swelling Properties of Montmorillonite and Beidellite Clay Minerals from Molecular Simulation: Comparison of Temperature, Interlayer Cation, and Charge Location Effects. J. Phys. Chem. C 2015, 119, 20880–20891. [Google Scholar] [CrossRef]
- Coudert, F.X.; Boutin, A.; Fuchs, A.H. Open Questions on Water Confined in Nanoporous Materials. Commun. Chem. 2021, 4, 9–11. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, X.; Boek, E.S. Confined Water in Tunnel Nanopores of Sepiolite: Insights from Molecular Simulations. Am. Mineral. 2016, 101, 713–718. [Google Scholar] [CrossRef]
- Kecili, R.; Hussain, C.M. Mechanism of Adsorption on Nanomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-812792-6. [Google Scholar]
- Sadegh, H.; Ali, G.A.M.; Gupta, V.K.; Makhlouf, A.S.H.; Shahryari-ghoshekandi, R.; Nadagouda, M.N.; Sillanpää, M.; Megiel, E. The Role of Nanomaterials as Effective Adsorbents and Their Applications in Wastewater Treatment. J. Nanostruct. Chem. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, T.; Zhu, R.; Ge, F.; Yuan, P.; He, H. Expansion Characteristics of Organo Montmorillonites during the Intercalation, Aging, Drying and Rehydration Processes: Effect of Surfactant/CEC Ratio. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 401–407. [Google Scholar] [CrossRef]
- Ramírez, A.; Sifuentes, C.; Manciu, F.S.; Komarneni, S.; Pannell, K.H.; Chianelli, R.R. The Effect of Si/Al Ratio and Moisture on an Organic/Inorganic Hybrid Material: Thioindigo/Montmorillonite. Appl. Clay Sci. 2011, 51, 61–67. [Google Scholar] [CrossRef]
- Çakany, Ç.; Cabbar, H.C. Adsorption of p-xylene in Dry and Moist Clay. J. Int. Environ. Appl. Sci. 2008, 3, 29–36. [Google Scholar]
- Hunter-Sellars, E.; Tee, J.J.; Parkin, I.P.; Williams, D.R. Adsorption of Volatile Organic Compounds by Industrial Porous Materials: Impact of Relative Humidity. Microporous Mesoporous Mater. 2020, 298, 110090. [Google Scholar] [CrossRef]
- Balci, S. Effect of Heating and Acid Pre-Treatment on Pore Size Distribution of Sepiolite. Clay Miner. 1999, 34, 647–655. [Google Scholar] [CrossRef]
- Clauer, N.; Fallick, A.E.; Galán, E.; Pozo, M.; Taylor, C. Varied Crystallization Conditions for Neogene Sepiolite and Associated Mg-Clays from Madrid Basin (Spain) Traced by Oxygen and Hydrogen Isotope Geochemistry. Geochim. Cosmochim. Acta 2012, 94, 181–198. [Google Scholar] [CrossRef]
- Sarıkaya, Y.; Önal, M.; Pekdemir, A.D. Kinetic and Thermodynamic Approaches on Thermal Degradation of Sepiolite Crystal Using XRD-Analysis. J. Therm. Anal. Calorim. 2020, 140, 2667–2672. [Google Scholar] [CrossRef]
- Sarı Yılmaz, M.; Kalpaklı, Y.; Pişkin, S. Thermal Behavior and Dehydroxylation Kinetics of Naturally Occurring Sepiolite and Bentonite. J. Therm. Anal. Calorim. 2013, 114, 1191–1199. [Google Scholar] [CrossRef]
- Emmerich, K. Thermal Analysis in the Characterization and Processing of Industrial Minerals. In Advances in the Characterization of Industrial Minerals; Christidis, G.E., Ed.; The Mineralogical Society of Great Britain and Ireland: Twickenham, UK, 2010. [Google Scholar]
- Abdullayev, E.; Lvov, Y. Halloysite Clay Nanotubes for Controlled Release of Protective Agents. J. Nanosci. Nanotechnol. 2011, 11, 10007–10026. [Google Scholar] [CrossRef]
- Lisuzzo, L.; Cavallaro, G.; Pasbakhsh, P.; Milioto, S.; Lazzara, G. Why Does Vacuum Drive to the Loading of Halloysite Nanotubes? The Key Role of Water Confinement. J. Colloid Interface Sci. 2019, 547, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Blaine, R.L.; Hahn, B.K. Obtaining Kinetic Parameters from Modulated Thermogrvimetry. J. Therm. Anal. Calorimetryand Calorim. 1998, 54, 695–704. [Google Scholar] [CrossRef]
- Mamleev, V.; Bourbigot, S. Modulated Thermogravimetry in Analysis of Decomposition Kinetics. Chem. Eng. Sci. 2005, 60, 747–766. [Google Scholar] [CrossRef]
- Poinsignon, C.; Yvon, J.; Mercier, R. Dehydration Energy of the Exchangeable Cations in Montmorillonite—A DTA Study. Isr. J. Chem. 1982, 22, 253–255. [Google Scholar] [CrossRef]
- Girgis, B.S.; El-Barawy, K.A.; Felix, N.S. Dehydration Kinetics of Some Smectites: A Thermogravimetric Study. Thermochim. Acta 1987, 111, 9–19. [Google Scholar] [CrossRef]
- Bray, H.J.; Redfern, S.A.T. Kinetics of Dehydration of Ca-Montmorillonite. Phys. Chem. Miner. 1999, 26, 591–600. [Google Scholar] [CrossRef]
- Zabat, M.; Van Damme, H. Evaluation of the Energy Barrier for Dehydration of Homoionic (Li, Na, Cs, Mg, Ca, Ba, Alx(OH)Z+y and La)-Montmorillonite by a Differentiation Method. Clay Miner. 2000, 35, 357–363. [Google Scholar] [CrossRef]
- Kuligiewicz, A.; Derkowski, A. Tightly Bound Water in Smectites. Am. Mineral. 2017, 102, 1073–1090. [Google Scholar] [CrossRef]
- D’Ascanio, V.; Greco, D.; Menicagli, E.; Santovito, E.; Catucci, L.; Logrieco, A.F.; Avantaggiato, G. The Role of Geological Origin of Smectites and of Their Physico-Chemical Properties on Aflatoxin Adsorption. Appl. Clay Sci. 2019, 181, 105209. [Google Scholar] [CrossRef]
- Suárez, M.; García-Romero, E. Variability of the Surface Properties of Sepiolite. Appl. Clay Sci. 2012, 67–68, 72–82. [Google Scholar] [CrossRef]
- Zadaka, D.; Radian, A.; Mishael, Y.G. Applying Zeta Potential Measurements to Characterize the Adsorption on Montmorillonite of Organic Cations as Monomers, Micelles, or Polymers. J. Colloid Interface Sci. 2010, 352, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Ewis, D.; Ba-Abbad, M.M.; Benamor, A.; El-Naas, M.H. Adsorption of Organic Water Pollutants by Clays and Clay Minerals Composites: A Comprehensive Review. Appl. Clay Sci. 2022, 229, 106686. [Google Scholar] [CrossRef]
- Deng, Y.; Velázquez, A.L.B.; Billes, F.; Dixon, J.B. Bonding Mechanisms between Aflatoxin B1 and Smectite. Appl. Clay Sci. 2010, 50, 92–98. [Google Scholar] [CrossRef]
- Leroy, P.; Tournassat, C.; Bernard, O.; Devau, N.; Azaroual, M. The Electrophoretic Mobility of Montmorillonite. Zeta Potential and Surface Conductivity Effects. J. Colloid Interface Sci. 2015, 451, 21–39. [Google Scholar] [CrossRef]
- Sabah, E.; Mart, U.; Çinar, M.; Çelik, M.S. Zeta Potentials of Sepiolite Suspensions in Concentrated Monovalent Electrolytes. Sep. Sci. Technol. 2007, 42, 2275–2288. [Google Scholar] [CrossRef]
- Tombácz, E.; Szekeres, M. Colloidal Behavior of Aqueous Montmorillonite Suspensions: The Specific Role of pH in the Presence of Indifferent Electrolytes. Appl. Clay Sci. 2004, 27, 75–94. [Google Scholar] [CrossRef]
- Tekin, N.; Dinçer, A.; Demirbaş, Ö.; Alkan, M. Adsorption of Cationic Polyacrylamide onto Sepiolite. J. Hazard. Mater. 2006, 134, 211–219. [Google Scholar] [CrossRef]
- Schultz, L.G. Quantitative Interpretation of Mineralogical Composition from X-Ray and Chemical Data for the Pierre Shale: Analytical Methods in Geochemical Investigations of the Pierre Shale; Geological Survey Professional Paper 391-C; U.S. Department of the Interior: Washington, DC, USA, 1964; pp. C1–C31.
- De Lange, M.F.; Vlugt, T.J.H.; Gascon, J.; Kapteijn, F. Adsorptive Characterization of Porous Solids: Error Analysis Guides the Way. Microporous Mesoporous Mater. 2014, 200, 199–215. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- ISO9277:2010; Determination of the Specific Surface Area of Solids by Gas Adsorption—BET Method. ISO: Geneva, Switzerland, 2010.
- Mamleev, V.; Bourbigot, S. Calculation of Activation Energies Using the Sinusoidally Modulated Temperature. J. Therm. Anal. Calorim. 2002, 70, 565–579. [Google Scholar] [CrossRef]
- Lo Dico, G.; Muñoz, B.; Carcelén, V.; Haranczyk, M. Data-Driven Experimental Design of Rheological Clay–Polymer Composites. Ind. Eng. Chem. Res. 2022, 61, 11455–11463. [Google Scholar] [CrossRef]
- Zango, Z.U.; Garba, A.; Garba, Z.N.; Zango, M.U.; Usman, F.; Lim, J. Montmorillonite for Adsorption and Catalytic Elimination of Pollutants from Wastewater: A State-of-the-Arts Review. Sustainablity 2022, 14, 16441. [Google Scholar] [CrossRef]
- Martin de Vidales, J.L.; Pozo, M.; Alia, J.M.; Garcia-Navarro, F.; Rull, F. Kerolite-Stevensite Mixed-Layers from the Madrid Basin, Central Spain. Clay Miner. 1991, 26, 329–342. [Google Scholar] [CrossRef]
- Suárez, M.; García-Rivas, J.; Morales, J.; Lorenzo, A.; García-Vicente, A.; García-Romero, E. Review and New Data on the Surface Properties of Palygorskite: A Comparative Study. Appl. Clay Sci. 2022, 216, 106311. [Google Scholar] [CrossRef]
- Kaufhold, S.; Dohrmann, R.; Klinkenberg, M.; Siegesmund, S.; Ufer, K. N2-BET Specific Surface Area of Bentonites. J. Colloid Interface Sci. 2010, 349, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Budrugeac, P. Critical Study Concerning the Use of Sinusoidal Modulated Thermogravimetric Data for Evaluation of Activation Energy of Heterogeneous Processes. Thermochim. Acta 2020, 690, 178670. [Google Scholar] [CrossRef]
- Rinnert, E.; Carteret, C.; Humbert, B.; Fragneto-Cusani, G.; Ramsay, J.D.F.; Delville, A.; Robert, J.L.; Bihannic, I.; Pelletier, M.; Michot, L.J. Hydration of a Synthetic Clay with Tetrahedral Charges: A Multidisciplinary Experimental and Numerical Study. J. Phys. Chem. B 2005, 109, 23745–23759. [Google Scholar] [CrossRef]
- Cases, J.M.; Bérend, I.; Besson, G.; Francois, M.; Uriot, J.P.; Thomas, F.; Poirier, J.E. Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonite. 1. The Sodium-Exchanged Form. Langmuir 1992, 8, 2730–2739. [Google Scholar] [CrossRef]
- Derkowski, A.; Drits, V.A.; McCarty, D.K. Rehydration of Dehydrated-Dehydroxylated Smectite in a Low Water Vapor Environment. Am. Mineral. 2012, 97, 110–127. [Google Scholar] [CrossRef]
- Bérend, I.; Cases, J.M.; François, M.; Uriot, J.P.; Michot, L.; Masion, A.; Thomas, F. Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonites: 2. The Li+, Na+, K+, Rb+, and Cs+-Exchanged Forms. Clays Clay Miner. 1995, 43, 324–336. [Google Scholar] [CrossRef]
- Zhang, X.; He, C.; Wang, L.; Li, Z.; Deng, M.; Liu, J.; Li, H.; Feng, Q. Non-Isothermal Kinetic Analysis of Thermal Decomposition of the Ca-Bentonite from Santai, China. Mineral. Petrol. 2015, 109, 319–327. [Google Scholar] [CrossRef]
- Kuang, W.; Facey, G.A.; Detellier, C. Dehydration and Rehydration of Palygorskite and the Influence of Water on the Nanopores. Clays Clay Miner. 2004, 52, 635–642. [Google Scholar] [CrossRef]
- Bahranowski, K.; Klimek, A.; Gaweł, A.; Serwicka, E.M. Rehydration Driven Na-Activation of Bentonite—Evolution of the Clay Structure and Composition. Materials 2021, 14, 7622. [Google Scholar] [CrossRef] [PubMed]
- Stackhouse, S.; Coveney, P.V.; Benoit, D.M. Density-Functional-Theory-Based Study of the Dehydroxylation Behavior of Aluminous Dioctahedral 2:1 Layer-Type Clay Minerals. J. Phys. Chem. B 2004, 108, 9685–9694. [Google Scholar] [CrossRef]
- Ogorodova, L.P.; Kiseleva, I.A.; Vigasina, M.F.; Kabalov, Y.K.; Grishchenko, R.O.; Mel’Chakova, L.V. Natural Sepiolite: Enthalpies of Dehydration, Dehydroxylation, and Formation Derived from Thermochemical Studies. Am. Mineral. 2014, 99, 2369–2373. [Google Scholar] [CrossRef]
- Li, Y.; Tian, G.; Gong, L.; Chen, B.; Kong, L.; Liang, J. Evaluation of Natural Sepiolite Clay as Adsorbents for Aflatoxin B1: A Comparative Study. J. Environ. Chem. Eng. 2020, 8, 104052. [Google Scholar] [CrossRef]
- Jaynes, W.F.; Zartman, R.E.; Hudnall, W.H. Aflatoxin B1 Adsorption by Clays from Water and Corn Meal. Appl. Clay Sci. 2007, 36, 197–205. [Google Scholar] [CrossRef]
- Xavier, K.C.M.; Santos, M.S.F.; Osajima, J.A.; Luz, A.B.; Fonseca, M.G.; Silva Filho, E.C. Thermally Activated Palygorskites as Agents to Clarify Soybean Oil. Appl. Clay Sci. 2016, 119, 338–347. [Google Scholar] [CrossRef]
- Gan, F.; Hang, X.; Huang, Q.; Deng, Y. Assessing and Modifying China Bentonites for Aflatoxin Adsorption. Appl. Clay Sci. 2019, 168, 348–354. [Google Scholar] [CrossRef]
- Lo Dico, G.; Croubels, S.; Carcelén, V.; Haranczyk, M. Machine Learning-Aided Design of Composite Mycotoxin Detoxifier Material for Animal Feed. Sci. Rep. 2022, 12, 4838. [Google Scholar] [CrossRef]
- Pappas, A.C.; Tsiplakou, E.; Georgiadou, M.; Anagnostopoulos, C.; Markoglou, A.N.; Liapis, K.; Zervas, G. Bentonite Binders in the Presence of Mycotoxins: Results of in Vitro Preliminary Tests and an in Vivo Broiler Trial. Appl. Clay Sci. 2014, 99, 48–53. [Google Scholar] [CrossRef]
- Mitchell, N.J.; Xue, K.S.; Lin, S.; Marroquin-Cardona, A.; Brown, K.A.; Elmore, S.E.; Tang, L.; Romoser, A.; Gelderblom, W.C.A.; Wang, J.S.; et al. Calcium Montmorillonite Clay Reduces AFB1 and FB1 Biomarkers in Rats Exposed to Single and Co-Exposures of Aflatoxin and Fumonisin. J. Appl. Toxicol. 2014, 34, 795–804. [Google Scholar] [CrossRef]
Property | Palygorskite | Sepiolite | Stevensite | Na-Montmorillonite | Ca-Montmorillonite |
---|---|---|---|---|---|
Phyllosilicate a | 81 | 96 | 92 | 88 | 90 |
Quartz a | 3 | 0 | 1 | 1 | 1 |
SiO2 a | 68.4 | 60.2 | 58.5 | 61.9 | 56.7 |
Al2O3 a | 8.2 | 2.0 | 5.4 | 19.3 | 17.3 |
MgO a | 8.6 | 25.7 | 22.2 | 3.2 | 3.8 |
CaO a | 1.5 | 1.0 | 1.5 | 1.4 | 4.7 |
Fe2O3 a | 3.7 | 0.5 | 1.5 | 4.3 | 5.2 |
Na2O a | 0.1 | 0.3 | 0.4 | 3.2 | 1.1 |
K2O a | 0.4 | 0.6 | 1.1 | 0.3 | 0.7 |
TiO2 a | 0.3 | 0.1 | 0.2 | 0.2 | 0.5 |
Mn2O3 a | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 |
Loss by calcination a | 8.7 | 10.1 | 9.0 | 6,1 | 9.3 |
SA (m2 g−1) | 150 | 310 | 248 | 45 | 63 |
ESA (m2 g−1) | 110 | 152 | 150 | 28 | 42 |
Pore vol (cm3 g−1) | 0.42 | 0.68 | 0.24 | 0.2 | 0.12 |
Micro (%) | 6 | 12 | 20 | 5 | 4.7 |
Main pore size (Å) | 97 | 87 | 37 | 102 | 113 |
CEC (cmol(+)/kg) | 24 | 12 | 12 | 93 | 88 |
Na+ (cmol(+)/kg) | 1 | 1 | 1 | 81 | 3 |
Ca2+ (cmol(+)/kg) | 9 | 7 | 7 | 17 | 67 |
Mg2+ (cmol(+)/kg) | 8 | 4 | 4 | 13 | 10 |
K+ (cmol(+)/kg) | 1 | 1 | 1 | 1 | 1 |
Θ (degree) | 18.4 | 15.6 | 38.1 | 41.8 | 8.3 |
ζ (mV) | −15 | −13 | −12 | −26 | −18 |
Sample | T (°C) | I Loss (%) | T (°C) | II Loss (%) | Ea (kJ mol−1) | ΔE (kJ mol−1) |
---|---|---|---|---|---|---|
Na_Montmorillonite | 45.26 | 8.9 | 108.3 | 1.7 | 100 | −13 |
Na_Montmorillonite (Rec) | 45.16 | 12.7 | - | 0.3 | 87 | |
Ca-Montmorillonite | 39.1 | 12.3 | 108 | 1.9 | 82 | 8 |
Ca-Montmorillonite (Rec) | 39.1 | 12 | 106.6 | 2 | 90 | |
Palygorskite | 38.8 | 7.2 | 180.2 | 2.2 | 164 | 72 |
Palygorskite (Rec) | 37.7 | 7 | 178.2 | 2.2 | 236 | |
Stevensite | 37.8 | 11.7 | 223.6 | 0.7 | 85 | −3 |
Stevensite (Rec) | 37.4 | 12.3 | 221 | 0.9 | 82 | |
Sepiolite | 46.7 | 10.9 | 236.9 | 2.8 | 187 | −53 |
Sepiolite (Rec) | 45 | 12.2 | 227.4 | 2.8 | 133 |
Clay Minerals | β-Carotene Ads (%) a | AFB1 Ads (%) a |
---|---|---|
Na-Montmorillonite (Rec) | 31.5 | 97 |
Ca-Montmorillonite (Rec) | 31.5 | 67 |
Palygorskite (Rec) | 22 | 12 |
Stevensite (Rec) | 35 | 91 |
Sepiolite (Rec) | 32 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Dico, G.; Lisuzzo, L.; Carcelén, V.; Cavallaro, G.; Haranczyk, M. Thermogravimetric Analysis of Moisture in Natural and Thermally Treated Clay Materials. Materials 2024, 17, 2231. https://doi.org/10.3390/ma17102231
Lo Dico G, Lisuzzo L, Carcelén V, Cavallaro G, Haranczyk M. Thermogravimetric Analysis of Moisture in Natural and Thermally Treated Clay Materials. Materials. 2024; 17(10):2231. https://doi.org/10.3390/ma17102231
Chicago/Turabian StyleLo Dico, Giulia, Lorenzo Lisuzzo, Verónica Carcelén, Giuseppe Cavallaro, and Maciej Haranczyk. 2024. "Thermogravimetric Analysis of Moisture in Natural and Thermally Treated Clay Materials" Materials 17, no. 10: 2231. https://doi.org/10.3390/ma17102231
APA StyleLo Dico, G., Lisuzzo, L., Carcelén, V., Cavallaro, G., & Haranczyk, M. (2024). Thermogravimetric Analysis of Moisture in Natural and Thermally Treated Clay Materials. Materials, 17(10), 2231. https://doi.org/10.3390/ma17102231