Recycled Excavation Soils as Sustainable Supplementary Cementitious Materials: Kaolinite Content and Performance Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cement Mortar and Paste Preparation
2.3. Methods
3. Results
3.1. Mineralogical Analysis of Sieved Excavation Soils
3.2. Mechanical Performance of Cement Mortars
3.3. Microstructural Analysis of Cement Mortars
3.3.1. MIP Analysis
3.3.2. BSE Analysis
3.3.3. Hydration Products in Cement Paste
3.3.4. X-ray Diffraction
3.3.5. Fourier Transform Infrared Spectroscopy
3.3.6. Scanning Electron Microscope
3.3.7. Solid-State Nuclear Magnetic Resonance
4. Discussion
5. Conclusions
- (1)
- The kaolinite content in excavation soils varies significantly depending on their source, which has crucial implications for their practical use as SCMs after calcination.
- (2)
- A linear correlation was found between kaolinite content in excavation soils and the compressive strength of cement mortars. It is estimated that mortars prepared with calcined excavation soils containing a kaolinite content exceeding a specific value (herein 53.39%) can achieve 28-day compressive strength equivalent to or surpassing that of plain cement mortar. However, the actual value might vary when more soil samples are involved since this might influence the fitting.
- (3)
- Higher kaolinite content in excavation soil correlates with a more refined pore structure, characterized by reduced total porosity and the enhanced distribution of tiny pores, which is crucial for improving cementitious materials’ durability and mechanical strength.
- (4)
- The inclusion of calcined excavation soil within cement paste also promotes the pozzolanic reaction, leading to an increased aluminum-to-silicon ratio in the C-A-S-H gel, an extended average chain length of the C-A-S-H gels, and the accelerated hydration of OPC within the cementitious materials.
- (5)
- Kaolinite content is the most critical criterion for assessing the potential of excavation soils as SCMs. XRF, a frequently used method to characterize the composition of soils, provides the content of Al element (or aluminum oxide), which is considered an important indicator of soil potential pozzolanic activity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shenzhen Municipal Ecology Environment Bureau. The 2022 Shenzhen City Ecological Environment Report; Shenzhen Municipal Ecology Environment Bureau: Shenzhen, China, 2023. [Google Scholar]
- Poesen, J. Soil erosion in the Anthropocene: Research needs. Earth Surf. Process. Landf. 2018, 43, 64–84. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.-z.; Zhang, X.-c.; Zheng, F.-l. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Khalifa, A.Z.; Cizer, Ö.; Pontikes, Y.; Heath, A.; Patureau, P.; Bernal, S.A.; Marsh, A.T. Advances in alkali-activation of clay minerals. Cem. Concr. Res. 2020, 132, 106050. [Google Scholar] [CrossRef]
- Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 2000, 17, 207–221. [Google Scholar] [CrossRef]
- Liew, Y.M.; Kamarudin, H.; Al Bakri, A.M.; Luqman, M.; Nizar, I.K.; Ruzaidi, C.M.; Heah, C.Y. Processing and characterization of calcined kaolin cement powder. Constr. Build. Mater. 2012, 30, 794–802. [Google Scholar] [CrossRef]
- Snellings, R.; Mertens, G.; Elsen, J. Supplementary cementitious materials. Rev. Mineral. Geochem. 2012, 74, 211–278. [Google Scholar] [CrossRef]
- Juenger, M.C.; Siddique, R. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem. Concr. Res. 2015, 78, 71–80. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Algın, Z.; Mermerdaş, K. Optimization of concrete mixture with hybrid blends of metakaolin and fly ash using response surface method. Compos. Part B Eng. 2014, 60, 707–715. [Google Scholar] [CrossRef]
- Liu, K.; Wang, S.; Quan, X.; Duan, W.; Nan, Z.; Wei, T.; Xu, F.; Li, B. Study on the mechanical properties and microstructure of fiber reinforced metakaolin-based recycled aggregate concrete. Constr. Build. Mater. 2021, 294, 123554. [Google Scholar] [CrossRef]
- Dixit, A.; Du, H.; Dai Pang, S. Marine clay in ultra-high performance concrete for filler substitution. Constr. Build. Mater. 2020, 263, 120250. [Google Scholar] [CrossRef]
- Dixit, A.; Du, H.; Dang, J.; Dai Pang, S. Quaternary blended limestone-calcined clay cement concrete incorporating fly ash. Cem. Concr. Compos. 2021, 123, 104174. [Google Scholar] [CrossRef]
- Sargent, P.; Sandanayake, M.; Law, D.W.; Hughes, D.J.; Shifa, F.; Borthwick, B.; Scott, P. Strength, mineralogical, microstructural and CO2 emission assessment of waste mortars comprising excavated soil, scallop shells and blast furnace slag. Constr. Build. Mater. 2024, 411, 134425. [Google Scholar] [CrossRef]
- Fernandez Lopez, R. Calcined Clayey Soils as a Potential Replacement for Cement in Developing Countries; EPFL: Lausanne, Switzerland, 2009. [Google Scholar]
- Samet, B.; Mnif, T.; Chaabouni, M. Use of a kaolinitic clay as a pozzolanic material for cements: Formulation of blended cement. Cem. Concr. Compos. 2007, 29, 741–749. [Google Scholar] [CrossRef]
- Singh, M.; Garg, M. Reactive pozzolana from Indian clays—Their use in cement mortars. Cem. Concr. Res. 2006, 36, 1903–1907. [Google Scholar] [CrossRef]
- Alujas, A.; Almenares, R.S.; Betancourt, S.; Leyva, C. Pozzolanic Reactivity of Low Grade Kaolinitic Clays: Influence of Mineralogical Composition. In Calcined Clays for Sustainable Concrete, Proceedings of the International Conference on Calcined Clays for Sustainable Concrete, Lausanne, Switzerland, 23–25 June 2015; Springer: Dordrecht, The Netherlands, 2015; pp. 339–345. [Google Scholar]
- Qian, X.; Ruan, Y.; Jamil, T.; Hu, C.; Wang, F.; Hu, S.; Liu, Y. Sustainable cementitious material with ultra-high content partially calcined limestone-calcined clay. Constr. Build. Mater. 2023, 373, 130891. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, R.; Tyrer, M.; Wong, H.; Cheeseman, C. Sustainable infrastructure development through use of calcined excavated waste clay as a supplementary cementitious material. J. Clean. Prod. 2017, 168, 1180–1192. [Google Scholar] [CrossRef]
- Jaskulski, R.; Jóźwiak-Niedźwiedzka, D.; Yakymechko, Y. Calcined clay as supplementary cementitious material. Materials 2020, 13, 4734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Jaworska, B.; Zhu, H.; Dahlquist, K.; Li, V.C. Engineered Cementitious Composites (ECC) with limestone calcined clay cement (LC3). Cem. Concr. Compos. 2020, 114, 103766. [Google Scholar] [CrossRef]
- Zhou, D. Developing Supplementary Cementitious Materials from Waste London Clay. Ph.D. Thesis, Imperial College London, London, UK, 2016. [Google Scholar]
- Potter, P.E.; Maynard, J.B.; Depetris, P.J. Mud and Mudstones: Introduction and Overview; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Martin, D.; Stacey, P. Guidelines for Open Pit Slope Design in Weak Rocks; CSIRO Publishing: Clayton, Australia, 2018. [Google Scholar]
- Wilson, R.; Mercier, P.H.; Patarachao, B.; Navarra, A. Partial least squares regression of oil sands processing variables within discrete event simulation digital twin. Minerals 2021, 11, 689. [Google Scholar] [CrossRef]
- Cardinaud, G.; Rozière, E.; Martinage, O.; Loukili, A.; Barnes-Davin, L.; Paris, M.; Deneele, D. Calcined clay–Limestone cements: Hydration processes with high and low-grade kaolinite clays. Constr. Build. Mater. 2021, 277, 122271. [Google Scholar] [CrossRef]
- Bernal, I.M.; Shirani, S.; Cuesta, A.; Santacruz, I.; Aranda, M.A. Phase and microstructure evolutions in LC3 binders by multi-technique approach including synchrotron microtomography. Constr. Build. Mater. 2021, 300, 124054. [Google Scholar] [CrossRef]
- ISO 679:2009; Cement—Test Methods—Determination of Strength. International Organization for Standardization: Geneva, Switzerland, 2009.
- Yahaya, S.; Jikan, S.S.; Badarulzaman, N.A.; Adamu, A.D. Chemical composition and particle size analysis of kaolin. Traektoriâ Nauk. = Path Sci. 2017, 3, 1001–1004. [Google Scholar] [CrossRef]
- Edama, N.A.; Sulaiman, A.; Ku Hamid, K.H.; Mohd Rodhi, M.N.; Mohibah, M.; Abd Rahim, S.N. The effect of hydrochloric acid on the surface area, morphology and physico-chemical properties of sayong kaolinite clay. Key Eng. Mater. 2014, 594, 49–56. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Gallagher, A.J.; King, T.V.; Calvin, W.M. The US Geological Survey, Digital Spectral Library: Version 1 (0.2 to 3.0 um); Geological Survey (US): Reston, VA, USA, 1993. [Google Scholar]
- Napiah, M.; Kamaruddin, I.; Syed Osman, S.B. The Effect of Particle Size on the Strength of Kaolinite Soil Stabilized by Electrokinetic Method; University Publication Centre (UPENA): Shah Alam, Malaysia, 2008. [Google Scholar]
- Yaragal, S.C.; Gowda, S.B.; Rajasekaran, C. Characterization and performance of processed lateritic fine aggregates in cement mortars and concretes. Constr. Build. Mater. 2019, 200, 10–25. [Google Scholar] [CrossRef]
- Belver, C.; Bañares Muñoz, M.A.; Vicente, M.A. Chemical activation of a kaolinite under acid and alkaline conditions. Chem. Mater. 2002, 14, 2033–2043. [Google Scholar] [CrossRef]
- Chakraborty, A.K. Phase Transformation of Kaolinite Clay; Springer: New Delhi, India, 2014. [Google Scholar]
- Ambroise, J.; Maximilien, S.; Pera, J. Properties of metakaolin blended cements. Adv. Cem. Based Mater. 1994, 1, 161–168. [Google Scholar] [CrossRef]
- Brindley, G.; Nakahira, M. The kaolinite-mullite reaction series: II, metakaolin. J. Am. Ceram. Soc. 1959, 42, 314–318. [Google Scholar] [CrossRef]
- ASTM C109/C109M; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2016.
- Beaudoin, J.J.; Raki, L.; Alizadeh, R. A 29Si MAS NMR study of modified C–S–H nanostructures. Cem. Concr. Compos. 2009, 31, 585–590. [Google Scholar] [CrossRef]
- Murgier, S.; Zanni, H.; Gouvenot, D. Blast furnace slag cement: A 29Si and 27Al NMR study. Comptes Rendus Chim. 2004, 7, 389–394. [Google Scholar] [CrossRef]
- Andersen, M.D.; Jakobsen, H.J.; Skibsted, J. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res. 2006, 36, 3–17. [Google Scholar] [CrossRef]
- Paul, G.; Boccaleri, E.; Buzzi, L.; Canonico, F.; Gastaldi, D. Friedel’s salt formation in sulfoaluminate cements: A combined XRD and 27Al MAS NMR study. Cem. Concr. Res. 2015, 67, 93–102. [Google Scholar] [CrossRef]
- Kapeluszna, E.; Kotwica, Ł.; Różycka, A.; Gołek, Ł. Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: Microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis. Constr. Build. Mater. 2017, 155, 643–653. [Google Scholar] [CrossRef]
- Jamsheer, A.F.; Kupwade-Patil, K.; Büyüköztürk, O.; Bumajdad, A. Analysis of engineered cement paste using silica nanoparticles and metakaolin using 29Si NMR, water adsorption and synchrotron X-ray Diffraction. Constr. Build. Mater. 2018, 180, 698–709. [Google Scholar] [CrossRef]
- Rietveld, H.M. The Rietveld method. Phys. Scr. 2014, 89, 098002. [Google Scholar] [CrossRef]
- Cheng, A.; Chao, S.J.; Lin, W.T. Effect of calcination temperature on pozzolanic reaction of calcined shale mortar. Appl. Mech. Mater. 2012, 174, 843–846. [Google Scholar] [CrossRef]
- Cheng, A.; Lin, W.T.; Chao, S.J.; Hsu, H.M.; Huang, C.C. Effect of the combination of calcined shale and pozzolanic materials on compressive strength of concrete. Adv. Mater. Res. 2013, 723, 298–302. [Google Scholar] [CrossRef]
- Adeniyi, F.I.; Ogundiran, M.B.; Hemalatha, T.; Hanumantrai, B.B. Characterization of raw and thermally treated Nigerian kaolinite-containing clays using instrumental techniques. SN Appl. Sci. 2020, 2, 821. [Google Scholar] [CrossRef]
- Shvarzman, A.; Kovler, K.; Grader, G.S.; Shter, G.E. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cem. Concr. Res. 2003, 33, 405–416. [Google Scholar] [CrossRef]
- Konan, K.; Peyratout, C.; Smith, A.; Bonnet, J.-P.; Rossignol, S.; Oyetola, S. Comparison of surface properties between kaolin and metakaolin in concentrated lime solutions. J. Colloid Interf. Sci. 2009, 339, 103–109. [Google Scholar] [CrossRef]
- Hamzaoui, R.; Muslim, F.; Guessasma, S.; Bennabi, A.; Guillin, J. Structural and thermal behavior of proclay kaolinite using high energy ball milling process. Powder Technol. 2015, 271, 228–237. [Google Scholar] [CrossRef]
- Wong, L.S.; Hashim, R.; Ali, F. Improved strength and reduced permeability of stabilized peat: Focus on application of kaolin as a pozzolanic additive. Constr. Build. Mater. 2013, 40, 783–792. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Mermerdaş, K. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Mater. Struct. 2008, 41, 937–949. [Google Scholar] [CrossRef]
- Chen, X.; Wu, S.; Zhou, J. Influence of porosity on compressive and tensile strength of cement mortar. Constr. Build. Mater. 2013, 40, 869–874. [Google Scholar] [CrossRef]
- Lu, J.; Liu, J.; Yang, H.; Wan, X.; Gao, J.; Zhang, J.; Li, P. Experimental investigation on the mechanical properties and pore structure deterioration of fiber-reinforced concrete in different freeze-thaw media. Constr. Build. Mater. 2022, 350, 128887. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Pham, T.M. Influence of Portland cement on performance of fine rice husk ash geopolymer concrete: Strength and permeability properties. Constr. Build. Mater. 2021, 300, 124321. [Google Scholar]
- Maruyama, I.; Rymeš, J.; Aili, A.; Sawada, S.; Kontani, O.; Ueda, S.; Shimamoto, R. Long-term use of modern Portland cement concrete: The impact of Al-tobermorite formation. Mater. Des. 2021, 198, 109297. [Google Scholar] [CrossRef]
- Nilforoushan, M.R.; Talebian, N. The hydration products of a refractory calcium aluminate cement at intermediate temperatures. Iran. J. Chem. Chem. Eng. 2007, 26, 19–24. [Google Scholar]
- Cyr, M.; Trinh, M.; Husson, B.; Casaux-Ginestet, G. Effect of cement type on metakaolin efficiency. Cem. Concr. Res. 2014, 64, 63–72. [Google Scholar] [CrossRef]
- Janotka, I.; Puertas, F.; Palacios, M.; Kuliffayová, M.; Varga, C. Metakaolin sand–blended-cement pastes: Rheology, hydration process and mechanical properties. Constr. Build. Mater. 2010, 24, 791–802. [Google Scholar] [CrossRef]
- Potapova, E.; Dmitrieva, E. The effect of metakaolin on the processes of hydration and hardening of cement. Mater. Today Proc. 2019, 19, 2193–2196. [Google Scholar] [CrossRef]
- da Silva Andrade, D.; da Silva Rêgo, J.H.; Morais, P.C.; de Mendonça Lopes, A.N.; Rojas, M.F. Investigation of CSH in ternary cement pastes containing nanosilica and highly-reactive supplementary cementitious materials (SCMs): Microstructure and strength. Constr. Build. Mater. 2019, 198, 445–455. [Google Scholar] [CrossRef]
- Snellings, R.; Mertens, G.; Cizer, Ö.; Elsen, J. Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction. Cem. Concr. Res. 2010, 40, 1704–1713. [Google Scholar] [CrossRef]
- Mihaylov, M.; Andonova, S.; Chakarova, K.; Vimont, A.; Ivanova, E.; Drenchev, N.; Hadjiivanov, K. An advanced approach for measuring acidity of hydroxyls in confined space: A FTIR study of low-temperature CO and 15 N 2 adsorption on MOF samples from the MIL-53 (Al) series. Phys. Chem. Chem. Phys. 2015, 17, 24304–24314. [Google Scholar] [CrossRef]
- Oh, S.Y.; Yoo, D.I.; Shin, Y.; Seo, G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 2005, 340, 417–428. [Google Scholar] [CrossRef]
- Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. Structure of calcium silicate hydrate (C-S-H): Near-, Mid-, and Far-infrared spectroscopy. J. Am. Ceram. Soc. 1999, 82, 742–748. [Google Scholar] [CrossRef]
- Rattinger, G.B. Multifrequency Electron Paramagnetic Resonance Spectroscopy of Group VIIB Carbonyl Radicals; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 1984. [Google Scholar]
- Schmidt, T.; Lothenbach, B.; Romer, M.; Neuenschwander, J.; Scrivener, K. Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cem. Concr. Res. 2009, 39, 1111–1121. [Google Scholar] [CrossRef]
- Kocak, Y.; Nas, S. The effect of using fly ash on the strength and hydration characteristics of blended cements. Constr. Build. Mater. 2014, 73, 25–32. [Google Scholar] [CrossRef]
- Termkhajornkit, P.; Nawa, T. The fluidity of fly ash–cement paste containing naphthalene sulfonate superplasticizer. Cem. Concr. Res. 2004, 34, 1017–1024. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, M.; Shen, W.; Zhu, G.; Ge, X. Mechanical properties and microstructure of metakaolin-based geopolymer compound-modified by polyacrylic emulsion and polypropylene fibers. Constr. Build. Mater. 2018, 190, 680–690. [Google Scholar] [CrossRef]
- Gineys, N.; Aouad, G.; Damidot, D. Managing trace elements in Portland cement–Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts. Cem. Concr. Compos. 2010, 32, 563–570. [Google Scholar] [CrossRef]
- Shen, P.; Lu, L.; Chen, W.; Wang, F.; Hu, S. Efficiency of metakaolin in steam cured high strength concrete. Constr. Build. Mater. 2017, 152, 357–366. [Google Scholar] [CrossRef]
- Cuesta, A.; Santacruz, I.; Angeles, G.; Dapiaggi, M.; Zea-Garcia, J.D.; Aranda, M.A. Local structure and Ca/Si ratio in CSH gels from hydration of blends of tricalcium silicate and silica fume. Cem. Concr. Res. 2021, 143, 106405. [Google Scholar] [CrossRef]
- Ozcelikci, E.; Kul, A.; Gunal, M.F.; Ozel, B.F.; Yildirim, G.; Ashour, A.; Sahmaran, M. A comprehensive study on the compressive strength, durability-related parameters and microstructure of geopolymer mortars based on mixed construction and demolition waste. J. Clean. Prod. 2023, 396, 136522. [Google Scholar] [CrossRef]
- Andersen, M.D.; Jakobsen, H.J.; Skibsted, J. Incorporation of aluminum in the calcium silicate hydrate (C−S−H) of hydrated Portland cements: A high-field 27Al and 29Si MAS NMR investigation. Inorg. Chem. 2003, 42, 2280–2287. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Feng, C.; Zhao, Q.; Liang, X. Study on the Structure of C-S-H Gels of Slag–Cement Hardened Paste by 29Si, 27Al MAS NMR. Appl. Magn. Reson. 2019, 50, 1345–1357. [Google Scholar] [CrossRef]
- Muller, A.C.A. Characterization of Porosity & CSH in Cement Pastes by ¹H NMR; EPFL: Lausanne, Switzerland, 2014. [Google Scholar]
- Pardal, X.; Brunet, F.; Charpentier, T.; Pochard, I.; Nonat, A. 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate. Inorg. Chem. 2012, 51, 1827–1836. [Google Scholar] [CrossRef] [PubMed]
- Pérez, G.; Guerrero, A.; Gaitero, J.J.; Goñi, S. Structural characterization of CSH gel through an improved deconvolution analysis of NMR spectra. J. Mater. Sci. 2014, 49, 142–152. [Google Scholar] [CrossRef]
- Sabir, B.; Wild, S.; Bai, J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Ibrahim, S.S.; Hagrass, A.A.; Boulos, T.R.; Youssef, S.I.; El-Hossiny, F.I.; Moharam, M.R. Metakaolin as an active pozzolan for cement that improves its properties and reduces its pollution hazard. J. Miner. Mater. Charact. Eng. 2017, 6, 86–104. [Google Scholar] [CrossRef]
Chemical Composition | Mass Percent (%) |
---|---|
CaO | 64.68 |
SiO2 | 21.77 |
Al2O3 | 4.62 |
Fe2O3 | 3.62 |
MgO | 2.80 |
SO3 | 0.46 |
Na2O equivalent | 0.502 |
f-CaO | 0.92 |
Specific gravity | 3.15 |
Specific surface area (m2/kg) | 343 |
Chemical Composition (wt%) | SiO2 | Al2O3 | Fe2O3 | K2O | CaO | TiO2 | MgO | SO3 | Na2O | L.O.I |
---|---|---|---|---|---|---|---|---|---|---|
Soil 1 | 44.54 | 36.15 | 4.89 | 1.09 | 0.50 | 0.46 | 0.17 | 0.09 | 0.04 | 11.94 |
Soil 2 | 66.14 | 21.12 | 3.45 | 2.18 | 0.16 | 0.43 | 0.55 | 0.07 | 0.06 | 5.69 |
Soil 3 | 45.27 | 32.90 | 8.58 | 3.03 | 0.15 | 1.14 | 0.47 | 0.11 | 0.06 | 8.04 |
Soil 4 | 44.62 | 38.98 | 3.77 | 0.82 | 0.02 | 0.29 | 0.06 | 0.09 | - | 11.23 |
CMK | 53.43 | 43.22 | 1.12 | 0.20 | 0.08 | 1.12 | 0.02 | - | 0.05 | - |
Mass Ratio (wt%) | Soil 1 | Soil 2 | Soil 3 | Soil 4 |
---|---|---|---|---|
Lost between 400 °C and 750 °C | 9.31 | 3.27 | 6.03 | 9.83 |
Kaolinite content | 67.68 | 23.75 | 43.83 | 71.41 |
MK in calcined soils | 65.56 | 23.00 | 42.45 | 69.17 |
Sample | Curing Age/Days | The Cumulative Integrated Intensity/% | Ψ | Al/Si | α/% | |||
---|---|---|---|---|---|---|---|---|
I (Q0) | I (Q1) | I (Q2) | I (Q2(1Al)) | |||||
Control | 3 | 52.15 | 21.87 | 26.78 | 1.89 | 4.71 | 0.02 | 47.85 |
7 | 49.22 | 23.49 | 20.42 | 8.90 | 4.88 | 0.08 | 50.78 | |
28 | 27.01 | 33.78 | 20.15 | 22.56 | 5.20 | 0.15 | 72.99 | |
P1 | 28 | 21.46 | 26.14 | 22.53 | 26.86 | 6.81 | 0.18 | 78.54 |
P2 | 27.42 | 30.71 | 20.54 | 24.19 | 5.70 | 0.16 | 72.58 | |
P3 | 23.84 | 27.59 | 22.31 | 25.87 | 6.43 | 0.17 | 76.16 | |
P4 | 20.55 | 25.68 | 23.49 | 26.94 | 6.98 | 0.18 | 79.45 | |
PC | 18.53 | 22.64 | 10.93 | 41.75 | 8.50 | 0.28 | 81.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, L.; Yang, J.; Yao, W.; Xing, F.; Sun, H.; Li, Y. Recycled Excavation Soils as Sustainable Supplementary Cementitious Materials: Kaolinite Content and Performance Implications. Materials 2024, 17, 2289. https://doi.org/10.3390/ma17102289
Ling L, Yang J, Yao W, Xing F, Sun H, Li Y. Recycled Excavation Soils as Sustainable Supplementary Cementitious Materials: Kaolinite Content and Performance Implications. Materials. 2024; 17(10):2289. https://doi.org/10.3390/ma17102289
Chicago/Turabian StyleLing, Li, Jindong Yang, Wanqiong Yao, Feng Xing, Hongfang Sun, and Yali Li. 2024. "Recycled Excavation Soils as Sustainable Supplementary Cementitious Materials: Kaolinite Content and Performance Implications" Materials 17, no. 10: 2289. https://doi.org/10.3390/ma17102289
APA StyleLing, L., Yang, J., Yao, W., Xing, F., Sun, H., & Li, Y. (2024). Recycled Excavation Soils as Sustainable Supplementary Cementitious Materials: Kaolinite Content and Performance Implications. Materials, 17(10), 2289. https://doi.org/10.3390/ma17102289