Thermal Fatigue Failure of Micro-Solder Joints in Electronic Packaging Devices: A Review
Abstract
:1. Introduction
2. Thermal Fatigue Failure Mechanism of Solder Joints
3. Microstructure Evolution of Solder Joint Thermal Fatigue
4. Discussion
5. Simulation Analysis and Prediction of Fatigue Life of Solder Joints
6. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abtew, M.; Selvaduray, G. Lead-free solders in microelectronics. Mater. Sci. Eng. R 2000, 27, 95–141. [Google Scholar] [CrossRef]
- Pang, J.H.L.; Wong, S.C.K.; Wang, Z.P. Special Issue on lead-free and lead-bearing solders. Solder. Surf. Mt. Technol. 2002, 14, 11. [Google Scholar]
- Pang, J.H.L.; Chong, D.Y.R.; Low, T.H. Thermal cycling analysis of flip-chip solders joint reliability. IEEE Trans. Compon. Packag. Technol. 2001, 24, 705–712. [Google Scholar] [CrossRef]
- Zhu, Y.; Bao, H.; Yang, Z.; Jiang, H.; Ma, F. Grain boundaries-dominated migration failure of copper interconnect under multiphysics field: Insight from theoretical modeling and finite element analysis. Microelectron. Reliab. 2024, 154, 115346. [Google Scholar] [CrossRef]
- Arriola, E.R.; Ubando, A.T.; Gonzaga, J.A.; Lee, C.C. Wafer-level chip-scale package lead-free solder fatigue: A critical review. Eng. Fail. Anal. 2023, 144, 106986. [Google Scholar] [CrossRef]
- Chen, J.; He, Z.; Li, J. Research on thermal impact properties of single solder joint by RTC. In Proceedings of the 2020 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China, 12–15 August 2020; IEEE: New York, NY, USA, 2020; pp. 1–4. [Google Scholar]
- Lee, W.W.; Nguyen, L.T.; Selvaduray, G.S. Solder Joint fatigue models: Review and Applicability to Chip Scale Packages. Microelectron. Reliab. 2000, 40, 231–244. [Google Scholar] [CrossRef]
- Yoshiki, O.; Chen, P.C. High and low-cycle fatigue damage evaluation of multilayer thin film structure. J. Electron. Packag. 1991, 113, 58–63. [Google Scholar]
- Young, D.; Christou, A. Failure mechanism models for electromigration. IEEE Trans. Reliab. 1994, 43, 186–192. [Google Scholar] [CrossRef]
- Sauber, J. Fracture properties of molding compound materials for IC plastic packaging. Microelectron. Reliab. 1996, 23, 36–40. [Google Scholar]
- Chen, J.; Liu, B.; Hu, M.; Huang, S.; Yu, S.; Wu, Y.; Yang, J. Study of the solder characteristics of IGBT modules based onthermal-mechanical coupling simulation. Materials 2023, 16, 3504. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chang, D.; Zheng, T.Q. Investigation of the RC-IGBT application in high speed railway converters. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 2062–2067. [Google Scholar]
- Sarkany, Z.; Vass, V.A.; Hantos, G.; Rencz, M. Failure prediction of IGBT modules based on power cycling tests. In Proceedings of the IEEE 19th International Workshop on Thermal Investigations of ICs and Systems, Berlin, Germany, 25–27 September 2013; pp. 270–273. [Google Scholar]
- Liang, Y.C.; Lin, H.W.; Chen, H.P.; Chen, C.; Tu, K.N.; Lai, Y.S. Anisotropic grain growth and crack propagation in eutectic microstructure under cyclic temperature annealing in flip-chip SnPb composite solder joints. Scr. Mater. 2013, 69, 25–28. [Google Scholar] [CrossRef]
- Tang, Y.; Luo, S.; Li, G.; Yang, Z.; Hou, C. Effects of Mn nanoparticle addition on wettability, microstructure and microhardness of low-Ag Sn-0.3Ag-0.7Cu-x Mn (np) composite solders. Solder. Surf. Mt. Technol. 2018, 30, 153–163. [Google Scholar] [CrossRef]
- Luo, D.X.; Xue, S.B.; Li, Z.Q. Effects of Ga addition on microstructure and properties of Sn-0.5Ag-0.7Cu solder. J. Mater. Sci. Mater. Electron. 2014, 25, 3566–3571. [Google Scholar] [CrossRef]
- Xujing, N.; Songbai, X.; Peizhuo, Z.; Dongxue, L. Effect of Pr addition on properties of Sn-0.5Ag-0.7Cu-0.5 Ga lead-free solder. J. Electron. Mater. 2016, 45, 5443–5448. [Google Scholar] [CrossRef]
- Kong, X.; Zhai, J.; Sun, F.; Liu, Y.; Zhang, H. Combined effect of Bi and Ni elements on the mechanical properties of low-Ag Cu/Sn-0.7Ag-0.5Cu/Cu solder joints. Microelectron. Reliab. 2020, 107, 113618. [Google Scholar] [CrossRef]
- Shnawah, D.A.; Sabri, M.F.M.; Badruddin, I.A.; Said, S.B.M.; Ariga, T.; Che, F.X. Effect of Ag content and the minor alloying element Fe on the mechanical properties and microstructural stability of Sn-Ag-Cu solder alloy under high-temperature annealing. J. Electron. Mater. 2013, 42, 470–484. [Google Scholar] [CrossRef]
- El-Daly, A.; Ibrahiem, A.; Abdo, M.; Eid, N. Viscoplastic characterization and mechanical strength of novel Sn-1.7Ag-0.7Cu lead-free solder alloys with microalloying of Te and Co. J. Mater. Sci. Mater. Electron. 2019, 30, 12937–12949. [Google Scholar] [CrossRef]
- Wattanakornphaiboon, A.; Canyook, R.; Fakpan, K. Effect of SnO2 reinforcement on creep property of Sn-Ag-Cu solders, Mater. Today. Proc. 2018, 5, 9213–9219. [Google Scholar]
- El-Taher, A.; Razzk, A. Controlling Ag3Sn plate formation and its effect on the creep resistance of Sn-3.0Ag-0.7Cu lead-free solder by adding minor alloying elements Fe, Co, Te and Bi. Met. Mater. Int. 2021, 27, 4294–4305. [Google Scholar] [CrossRef]
- Sobhy, M.; El-Refai, A.; Mousa, M.; Saad, G. Effect of ageing time on the tensile behavior of Sn-3.5 wt% Ag-0.5 wt% Cu (SAC355) solder alloy with and without adding ZnO nanoparticles. Mater. Sci. Eng. A 2015, 646, 82–89. [Google Scholar] [CrossRef]
- Zhang, Q.K.; Long, W.M.; Yu, X.Q.; Pei, Y.; Qiao, P. Effects of Ga addition on microstructure and properties of Sn-Ag-Cu/Cu solder joints. J. Alloy. Compd. 2015, 622, 973–978. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, L.; Liu, Z.-Q.; Xiong, M.-Y.; Sun, L.; Jiang, N.; Xu, K.-K. Microstructures and properties of SnAgCu lead-free solders bearing CuZnAl particles. J. Mater. Sci. Mater. Electron. 2019, 30, 15054–15063. [Google Scholar] [CrossRef]
- Gao, J.G.; Wu, Y.P.; Ding, H. Micro-BGA Package reliability and optimization of reflow soldering profile. In Proceedings of the 2005 International Conference on Asian Green Electronics-Design for Manufacturability and Reliability, Shanghai, China, 15–18 March 2005; pp. 135–139. [Google Scholar]
- Zhao, J.; Miyashita, Y.; Mutoh, Y. Fatigue crack growth behavior of 96.5Sn-3.5Ag lead-free solder. Int. J. Fatigue 2001, 23, 723–731. [Google Scholar] [CrossRef]
- Basaran, C.; Tang, H.; Nie, S. Experimental damage mechanics of microelectronic solder joints under fatigue loading. Mech. Mater. 2004, 36, 1111–1121. [Google Scholar] [CrossRef]
- Erinc, M.; Schreurs, P.J.G.; Geers, M.G.D. Integrated numerical-experimental analysis of interfacial fatigue fracture in SnAgCu solder joints. Int. J. Solids Struct. 2007, 44, 5680–5694. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Wu, Y. Study on rapid thermal cycling by inducted heating for microstructure of single SnAgCu solder joint. Sci. Technol. Weld. Joining. 2012, 17, 237–243. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, Z.; Su, Z.; Zuo, C.; Yao, Z.; Wang, G.; Zhang, H.; Zhang, L.; Zhang, Y. Effects of graphene nanosheets on the wettability and mechanical properties of Sn-0.3Ag-0.7Cu lead-free solder. J. Electron. Mater. 2020, 49, 7394–7399. [Google Scholar] [CrossRef]
- Frear, D.; Grivas, D.; Morris, J.W. Parameters affecting thermal fatigue behavior of 60Sn-40Pb solder joints. J. Electron. Mater. 1989, 18, 671–680. [Google Scholar] [CrossRef]
- Yu, Q.; Shiraori, M. Fatigue-strength prediction of microelectronics solder joints under thermal cyclic loading. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1997, 20, 266–274. [Google Scholar]
- Evans, J.W.; Evans, J.Y.; Lall, P.; Cornford, S.L. Thermomechanical failures in microelectronic interconnects. Microelectron. Reliab. 1998, 38, 523–529. [Google Scholar] [CrossRef]
- Bae, J.-W.; Kim, W.; Cho, S.-H.; Hong, Y.-W.; Shin, J.-E.; Lee, S.-H. Thermal fatigue-resistant EMCs (Epoxy Molding Compounds) for microelectronic encapsulation. Korean J. Chem. Eng. 2000, 17, 41–46. [Google Scholar] [CrossRef]
- Chien, C.H.; Chen, Y.C.; Hsieh, C.C.; Chiou, Y.T.; Wu, Y.D.; Chen, T.P. Thermomechanical behaviour of underfill/solder mask/substrate interface under thermal cycling. Soc. Exp. Mech. 2004, 44, 214–220. [Google Scholar] [CrossRef]
- Vaynman, S.; McKeown, S.A. Energy-based methodology for the fatigue life prediction of solder materials. IEEE Trans. Compon. Hybrids Manuf. Technol. 1993, 16, 317–322. [Google Scholar] [CrossRef]
- Lee, H.T.; Chen, M.H.; Jao, H.M.; Liao, T.L. Influence of interfacial intermetallic compound on fracture behavior of solder joints. Mater. Sci. Eng. 2003, 358, 134–141. [Google Scholar] [CrossRef]
- Pang, J.H.L.; Tan, K.H.; Shi, X.Q.; Wang, Z.P. Microstructure and intermetallic growth effects on shear and fatigue strength of solder joints subjected to thermal cycling aging. Mater. Sci. Eng. A 2001, 307, 42–50. [Google Scholar] [CrossRef]
- Tu, P.L.; Chan Yan, C.; Lai, J.K.L. Effect of intermetallic compounds on the thermal fatigue of surface mount solder joints. IEEE Trans. Compon. Packag. Manuf. Technol. Part B 1997, 20, 87–93. [Google Scholar] [CrossRef]
- Mutoh, Y.; Zhao, J.; Miyashita, Y.; Kanchanomai, C. Fatigue crack growth behaviour of lead-containing and lead-free solders. Solder. Surf. Mt. Technol. 2002, 14, 37–45. [Google Scholar] [CrossRef]
- Kang, S.K.; Lauro, P.A.; Shih, D.Y.; Henderson, D.W.; Puttlitz, K.J. Microstructure and mechanical properties of lead-free solders and solder joints used in microelectronic applications. IBM J. Res. Dev. 2005, 49, 607–620. [Google Scholar] [CrossRef]
- Kariya, Y.; Hirata, Y.; Otsuka, M. Effect of Thermal Cycles on the Mechanical Strength of Quad Flat Pack Leads/Sn-3.5Ag-X (X = Bi and Cu) Solder Joints. J. Electron. Mater. 1999, 28, 1263–1269. [Google Scholar] [CrossRef]
- Ghaleeh, M.; Baroutaji, A.; Al Qubeissi, M. Microstructure, isothermal and thermomechanical fatigue behaviour of leaded and lead-free solder joints. Eng. Fail. Anal. 2020, 117, 104846. [Google Scholar] [CrossRef]
- Lee, T.K.; Teo, Y.C.; Lim, T.B. Reliability Assessment of Transfer Mold CSP. In Proceedings of the IEEE/CPMP Electronic Packaging Technology Conference, Singapore, 8–10 December 1998; pp. 274–278. [Google Scholar]
- Shi, X.Q.; Pang, H.L.J.; Zhou, W.; Wang, Z.P. Low cycling fatigue analysis of temperature and frequency effects in eutectic solder alloy. Int. J. Fatigue 2000, 22, 217–228. [Google Scholar] [CrossRef]
- Basaran, C.; Dishongh, T.; Zhao, Y. Selecting a temperature time history for predicting fatigue life of microelectronics solder joints. J. Therm. Stress. 2001, 24, 1063–1083. [Google Scholar] [CrossRef]
- Kariya, Y.; Otsuka, M. Effect of Bismuth on the isothermal fatigue properties of Sn-3.5mass%Ag solder alloy. J. Electron. Mater. 1998, 27, 866–870. [Google Scholar] [CrossRef]
- Kariya, Y.; Otsuka, M. Mechanical fatigue characteristics of Sn-3.5 Ag-X (x = Bi, Cu, Zn and In) solder alloys. J. Electron. Mater. 1998, 27, 1229–1235. [Google Scholar] [CrossRef]
- Tauscher, M.; Lämmle, S.; Roos, D.; Wilde, J. Bayesian calibration of ball grid array lifetime models for solder fatigue. Microelectron. Reliab. 2024, 155, 115366. [Google Scholar] [CrossRef]
- Qiu, B.; Xiong, J.; Wang, H.; Zhou, S.; Yang, X.; Lin, Z.; Cai, N. Survey on fatigue life prediction of BGA solder joints. Electronics 2022, 11, 542. [Google Scholar] [CrossRef]
- Nagara, J.B.; Mahalingam, M. Package-to-Board Attach Reliability-Methodology and Case Study on OMPAC Package. Trans. ASME J. Electron. Package 1998, 290–295. [Google Scholar] [CrossRef]
- Peng, C.T.; Chiang, K.N.; Ku, T. Design, fabrication and comparison of lead-free/eutectic solder joint reliability of flip chip package. In Proceedings of the 5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, EuroSimE, Brussels, Belgium, 10–12 May 2004; pp. 149–156. [Google Scholar]
- Lee, S.-B.; Kim, I.; Park, T.-S. Fatigue and fracture assessment for reliability in electronics packaging. Int. J. Fract. 2008, 150, 91–104. [Google Scholar] [CrossRef]
- Peyghami, S.; Wang, Z.; Blaabjerg, F. A guideline for reliability prediction in power electronic converters. IEEE Trans. Power Electron. 2020, 35, 10958–10968. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, L.K.; Tripathi, A.K. Reliability Prediction Methods for Electronic Devices: A State-of-the-art Review. IETE Tech. Rev. 2022, 39, 460–470. [Google Scholar] [CrossRef]
- Sandelic, M.; Peyghami, S.; Sangwongwanich, A.; Blaabjerg, F. Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges. Renew. Sustain. Energy Rev. 2022, 159, 112127. [Google Scholar] [CrossRef]
- Gabriel, O.E.; Huitink, D.R. Failure mechanisms driven reliability models for power electronics: A review. J. Electron. Packag. 2023, 145, 020801. [Google Scholar] [CrossRef]
- Abueed, M.; Al Athamneh, R.; Tanash, M.; Hamasha, S.D. The reliability of SAC305 individual solder joints during creep–fatigue conditions at room temperature. Crystals 2022, 12, 1306. [Google Scholar] [CrossRef]
- Depiver, J.A.; Mallik, S.; Amalu, E.H. Thermal fatigue life of ball grid array (BGA) solder joints made from different alloy compositions. Eng. Fail. Anal. 2021, 125, 105447. [Google Scholar] [CrossRef]
- Basaran, C.; Chandaroy, R. Thermomechanical analysis of solder joints under thermal and vibrational loading. Trans. ASME 2002, 124, 60–66. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z. Thermo-fatigue life evaluation pf SnAgCu solder joints in flip chip assemblies. J. Mater. Process. Technol. 2007, 183, 6–12. [Google Scholar] [CrossRef]
- Zhang, L.; Xue, S. Thermal fatigue behavior of SnAgCu soldered joints in fine pitch devices. Rare Met. Mater. Eng. 2010, 39, 0382–0387. [Google Scholar]
- Chen, J.; Yin, Y.; Ye, J.; Wu, Y. Investigation on fatigue behavior of single SnAgCu solder joint by rapid thermal cycling. Solder. Surf. Mt. Technol. 2015, 27, 76–83. [Google Scholar] [CrossRef]
SAC Alloys | Additives | Percent Composition | Shear Stress | Tensile Stress | Hardness | Creep Resistance | Reference |
---|---|---|---|---|---|---|---|
Sn0.3Ag0.7Cu | Al2O3 nano | 0.01–0.5 | increase | increase | [15] | ||
Sn0.5Ag0.7Cu | Ga | 0.05–1.0 | increase | [16] | |||
Sn0.5Ag0.7Cu0.5Ga | Pr | 0.06–0.5 | increase | [17] | |||
Sn0.7Ag0.5Cu | Bi and Ni | 3.5, 0.05 | increase significantly | [18] | |||
Sn1.0Ag0.3Cu | Fe | 0.1–0.5 | decrease significantly | [19] | |||
Sn1.7Ag0.7Cu | Co | 0.5 | increase | [20] | |||
Sn3.0Ag0.5Cu | SnO2 nano | 0.1–1.0 | increase significantly | increase significantly | [21] | ||
Sn3.0Ag0.7Cu | Fe, Te, Co, and B | 0.1, 0.2 | increase significantly | [22] | |||
Sn3.5Ag0.5Cu | ZnO nano | 0.5 | increase | [23] | |||
Sn3.5Ag0.7Cu | Ga | 1.5 | increase | [24] | |||
Sn3.8Ag0.7Cu | Al nano | 0.1–0.4 | increase | increase | increase significantly | [25] |
Fatigue Model | Strain | Energy | Damage | |
---|---|---|---|---|
Plastic | Creep | |||
Coffin–Manson | ● | |||
Total strain | ● | |||
Soloman | ● | |||
Engelmaier | ● | |||
Miner | ● | ● | ||
Knecht and Fox | ● | |||
Syed | ● | ● | ||
Akay | ● | |||
Liang | ● | |||
Heinrich | ● | |||
Pan | ● | |||
Darveaux | ● | ● | ||
Stolkarts | ● |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Du, X.; Chen, J.; Wu, Y. Thermal Fatigue Failure of Micro-Solder Joints in Electronic Packaging Devices: A Review. Materials 2024, 17, 2365. https://doi.org/10.3390/ma17102365
Li L, Du X, Chen J, Wu Y. Thermal Fatigue Failure of Micro-Solder Joints in Electronic Packaging Devices: A Review. Materials. 2024; 17(10):2365. https://doi.org/10.3390/ma17102365
Chicago/Turabian StyleLi, Lei, Xinyu Du, Jibing Chen, and Yiping Wu. 2024. "Thermal Fatigue Failure of Micro-Solder Joints in Electronic Packaging Devices: A Review" Materials 17, no. 10: 2365. https://doi.org/10.3390/ma17102365
APA StyleLi, L., Du, X., Chen, J., & Wu, Y. (2024). Thermal Fatigue Failure of Micro-Solder Joints in Electronic Packaging Devices: A Review. Materials, 17(10), 2365. https://doi.org/10.3390/ma17102365