A Study on Nanoleakage of Apical Retrograde Filling of Premixed Calcium Silicate-Based Cement Using a Lid Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Evaluation of Nanoleakage
2.3. Scanning Electron Microscopy (SEM) Examination
2.4. Statistical Analysis
3. Results
3.1. Nanoleakage Measurements Using NFMD
3.2. SEM Examination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serrano-Giménez, M.; Sánchez-Torres, A.; Gay-Escoda, C. Prognostic factors on periapical surgery: A systematic review. Med. Oral Patol. Oral Cir. Bucal 2015, 20, e715–e722. [Google Scholar] [CrossRef]
- Pinto, D.; Marques, A.; Pereira, J.F.; Palma, P.J.; Santos, J.M. Long-Term Prognosis of Endodontic Microsurgery—A Systematic Review and Meta-Analysis. Medicina 2020, 56, 447. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guo, Z.; Li, C.; Ma, X.; Wang, Y.; Zhou, X.; Johnson, T.M.; Huang, D. Materials for retrograde filling in root canal therapy. Cochrane Database Syst. Rev. 2021, 10, CD005517. [Google Scholar] [PubMed]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part I: Chemical, physical, and antibacterial properties. J. Endod. 2010, 36, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, R.; Araghid, A.; Ghanem, S.; Fatahi, A. Effect of temperature on the setting time of Mineral Trioxide Aggregate (MTA). J. Med. Life 2015, 8, 88. [Google Scholar] [PubMed]
- Torabinejad, M.; Hong, C.; McDonald, F.; Ford, T.P. Physical and chemical properties of a new root-end filling material. J. Endod. 1995, 21, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Damas, B.A.; Wheater, M.A.; Bringas, J.S.; Hoen, M.M. Cytotoxicity comparison of mineral trioxide aggregates and EndoSequence bioceramic root repair materials. J. Endod. 2011, 37, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Debelian, G.; Trope, M. The use of premixed bioceramic materials in endodontics. G. Ital. Endod. 2016, 30, 70–80. [Google Scholar] [CrossRef]
- Walsh, R.M.; Woodmansey, K.F.; Glickman, G.N.; He, J. Evaluation of compressive strength of hydraulic silicate-based root-end filling materials. J. Endod. 2014, 40, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Ree, M.; Schwartz, R. Clinical applications of premixed bioceramic materials in endodontics. ENDO Endod. Pract. Today 2015, 9, 111–127. [Google Scholar]
- Nasseh, A.A. Premixed nanoparticulate bioceramics in endodontics: The first decade. Endod. Pract. US 2017, 10, 10–13. [Google Scholar]
- Koch, K.; Brave, D.; Nasseh, A.A. A review of bioceramic technology in endodontics. CE Artic. 2012, 4, 6–12. [Google Scholar]
- Küçükkaya Eren, S.; Parashos, P. Adaptation of mineral trioxide aggregate to dentine walls compared with other root-end filling materials: A systematic review. Aust. Endod. J. 2019, 45, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Rencher, B.; Chang, A.M.; Fong, H.; Johnson, J.D.; Paranjpe, A. Comparison of the sealing ability of various bioceramic materials for endodontic surgery. Restor. Dent. Endod. 2021, 46, e35. [Google Scholar] [CrossRef] [PubMed]
- Zarzour, D.S.; Habib, A.A.; Doumani, M.; Layous, K.; Aldajani, E.H.; Alhasan, D.S.; Almarzooq, A.A. Comparative Evaluation of Sealing Ability of Three Materials Used in Furcal Perforation Repair (In Vitro). World 2021, 12, 179. [Google Scholar]
- Cervino, G.; Laino, L.; D’Amico, C.; Russo, D.; Nucci, L.; Amoroso, G.; Gorassini, F.; Tepedino, M.; Terranova, A.; Gambino, D.; et al. Mineral Trioxide Aggregate Applications in Endodontics: A Review. Eur. J. Dent. 2020, 14, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, E.; Kim, D.; Lee, I. The evaluation of dentinal tubule occlusion by desensitizing agents: A real-time measurement of dentinal fluid flow rate and scanning electron microscopy. Oper. Dent. 2013, 38, 419–428. [Google Scholar] [CrossRef]
- Karobari, M.I.; Basheer, S.N.; Sayed, F.R.; Shaikh, S.; Agwan, M.A.S.; Marya, A.; Messina, P.; Scardina, G.A. An In Vitro Stereomicroscopic Evaluation of Bioactivity between Neo MTA Plus, Pro Root MTA, BIODENTINE & Glass Ionomer Cement Using Dye Penetration Method. Materials 2021, 14, 3159. [Google Scholar] [PubMed]
- Lee, S.-H.; Oh, S.; Al-Ghamdi, A.S.; Mandorah, A.O.; Kum, K.-Y.; Chang, S.W. Sealing Ability of AH Plus and GuttaFlow Bioseal. Bioinorg. Chem. Appl. 2020, 2020, 8892561. [Google Scholar] [CrossRef] [PubMed]
- Lertmalapong, P.; Jantarat, J.; Srisatjaluk, R.L.; Komoltri, C. Bacterial leakage and marginal adaptation of various bioceramics as apical plug in open apex model. J. Investig. Clin. Dent. 2019, 10, e12371. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-M.; Yoo, Y.-J.; Lee, I.-B.; Lee, W. Real-time nanoleakage and the flow characteristics of calcium silicate root canal filling materials. J. Mech. Behav. Biomed. Mater. 2020, 112, 104111. [Google Scholar] [CrossRef] [PubMed]
- Revathi Bashyam, R.K.; Murali, K.; Selvarajan, N.B.; Vasaviah, S.K.; Duraisamy, V. An in vitro Assessment of the Apical Sealing Ability of MTA Plus and Biodentin. Int. J. Curr. Res. Rev. 2021, 13, 70. [Google Scholar] [CrossRef]
- Nair, U.; Ghattas, S.; Saber, M.; Natera, M.; Walker, C.; Pileggi, R. A comparative evaluation of the sealing ability of 2 root-end filling materials: An in vitro leakage study using Enterococcus faecalis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2011, 112, e74–e77. [Google Scholar] [CrossRef] [PubMed]
- Arvelaiz, C.; Fernandes, A.; Graterol, V.; Gomez, K.; Gomez-Sosa, J.F.; Caviedes-Bucheli, J.; Guilarte, C. In Vitro Comparison of MTA and BC RRM-Fast Set Putty as Retrograde Filling Materials. 2021; preprint. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608128/ (accessed on 13 March 2024).
- Jacobovitz, M.; Vianna, M.E.; Pandolfelli, V.C.; Oliveira, I.R.; Rossetto, H.L.; Gomes, B.P. Root canal filling with cements based on mineral aggregates: An in vitro analysis of bacterial microleakage. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 108, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Antunes, H.; Gominho, L.; Andrade-Junior, C.; Dessaune-Neto, N.; Alves, F.; Rôças, I.; Siqueira Jr, J. Sealing ability of two root-end filling materials in a bacterial nutrient leakage model. Int. Endod. J. 2016, 49, 960–965. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, P.L.; Bernardineli, N.; Cavenago, B.C.; Torres, S.A.; Duarte, M.A.H.; Bramante, C.M.; Marciano, M.A. Sealing ability of MTA, CPM, and MBPc as root-end filling materials: A bacterial leakage study. J. Appl. Oral Sci. 2016, 24, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Zhang, D.D.; Chen, X.; Bao, Z.F.; Guo, Y.J. Apical sealing ability of bioceramic paste and mineral trioxide aggregate retrofillings: A dye leakage study. Iran. Endod. J. 2015, 10, 99–103. [Google Scholar] [PubMed]
- Perdigao, J.; Lambrechts, P.; Van Meerbeek, B.; Vanherle, G.; Lopes, A.L. Field emission SEM comparison of four postfixation drying techniques for human dentin. J. Biomed. Mater. Res. 1995, 29, 1111–1120. [Google Scholar] [CrossRef]
- Markova, K.; Manchorova, N.; Pecheva, A. Classification of dental materials for retrograde endodontic filling—An overview. IOSR J. Dent. Med. Sci. 2021, 20, 1–5. [Google Scholar]
- Brito-Júnior, M.; Sá, M.A.B.d.; Nobre, S.A.M.; Faria-e-Silva, A.L.; Pereira, R.D.; Camilo, C.C.; Silveira, F.F.; Sousa-Neto, M.D. Polymicrobial Leakage and Retention of MTA and Portland Cement in a Model of Apexification. Pesqui. Bras. Odontopediatr. Clín. Integr. 2020, 19, e4435. [Google Scholar] [CrossRef]
- Lagisetti, A.K.; Hegde, P.; Hegde, M.N. Evaluation of bioceramics and zirconia-reinforced glass ionomer cement in repair of furcation perforations: An in vitro study. J. Conserv. Dent. 2018, 21, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Brasseale, B.J. An In-Vitro Comparison of Microleakage with E. faecalis in Teeth with Root-End Fillings of Proroot MTA and Brasseler’s EndoSequence Root Repair Putty. Master’s Thesis, Indiana University School of Dentistry, Indianapolis, IN, USA, 2011. [Google Scholar]
- Hirschberg, C.S.; Patel, N.S.; Patel, L.M.; Kadouri, D.E.; Hartwell, G.R. Comparison of sealing ability of MTA and EndoSequence Bioceramic Root Repair Material: A bacterial leakage study. Quintessence Int. 2013, 44, e157–e162. [Google Scholar] [PubMed]
- Abusrewil, S.M.; McLean, W.; Scott, J.A. The use of Bioceramics as root-end filling materials in periradicular surgery: A literature review. Saudi Dent. J. 2018, 30, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Kogan, P.; He, J.; Glickman, G.N.; Watanabe, I. The effects of various additives on setting properties of MTA. J. Endod. 2006, 32, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.G.; Iacono, F.; Agee, K.; Siboni, F.; Tay, F.; Pashley, D.H.; Prati, C. Setting time and expansion in different soaking media of experimental accelerated calcium-silicate cements and ProRoot MTA. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2009, 108, e39–e45. [Google Scholar] [CrossRef] [PubMed]
- Kohli, M.; Karabucak, B. Bioceramic usage in endodontics. AAE Communiqué, 8 July 2019. [Google Scholar]
Groups | Number of Specimens | Retro-Filling Method | |
---|---|---|---|
Group 1 | Ceraseal+ Well-Root putty (C + WR) | 15 | root-end cavity filled with calcium-silicate based sealing material and the putty lid was placed. |
Group 2 | Well-Root putty (WR) only | 15 | root-end cavity filled only with calcium-silicate based putty material |
Group3 | Ceraseal+ ProRoot MTA(C + PR) | 15 | root-end cavity filled with calcium-silicate based sealing material and placing lid of MTA |
Group 4 | ProRoot MTA (PR) only | 15 | root-end cavity filled only with MTA |
Time | N | C + WR | WR | C + PR | PR | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
Day1 | 60 | 1.867 | 2.036 | 1.182 | 0.954 | 2.056 | 1.987 | 2.390 | 2.651 | 0.836 |
Day3 | 60 | 1.137 | 1.378 | 0.426 | 0.382 | 0.262 | 0.404 | 1.822 | 3.008 | 0.006 |
Day7 | 60 | 0.645 | 0.881 | 0.122 | 0.144 | 0.115 | 0.086 | 1.512 | 2.068 | <0.001 |
Day15 | 60 | 0.276 | 0.398 | 0.208 | 0.377 | 0.204 | 0.162 | 0.142 | 0.219 | 0.500 |
Day30 | 60 | 0.125 | 0.150 | 0.077 | 0.100 | 0.255 | 0.232 | 0.307 | 0.546 | 0.195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enkhbileg, N.; Kim, J.W.; Chang, S.W.; Park, S.-H.; Cho, K.M.; Lee, Y. A Study on Nanoleakage of Apical Retrograde Filling of Premixed Calcium Silicate-Based Cement Using a Lid Technique. Materials 2024, 17, 2366. https://doi.org/10.3390/ma17102366
Enkhbileg N, Kim JW, Chang SW, Park S-H, Cho KM, Lee Y. A Study on Nanoleakage of Apical Retrograde Filling of Premixed Calcium Silicate-Based Cement Using a Lid Technique. Materials. 2024; 17(10):2366. https://doi.org/10.3390/ma17102366
Chicago/Turabian StyleEnkhbileg, Nyamsuren, Jin Woo Kim, Seok Woo Chang, Se-Hee Park, Kyung Mo Cho, and Yoon Lee. 2024. "A Study on Nanoleakage of Apical Retrograde Filling of Premixed Calcium Silicate-Based Cement Using a Lid Technique" Materials 17, no. 10: 2366. https://doi.org/10.3390/ma17102366
APA StyleEnkhbileg, N., Kim, J. W., Chang, S. W., Park, S.-H., Cho, K. M., & Lee, Y. (2024). A Study on Nanoleakage of Apical Retrograde Filling of Premixed Calcium Silicate-Based Cement Using a Lid Technique. Materials, 17(10), 2366. https://doi.org/10.3390/ma17102366