Experiment and Analysis of Variance for Stabilizing Fine-Grained Soils with Cement and Sawdust Ash as Liner Materials
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.1.1. Natural Soil
2.1.2. Sawdust Ash
2.1.3. Cement
2.2. UCS Test
2.3. Hydraulic Conductivity
- k = hydraulic conductivity
- a = cross-section area of standpipe
- L = length of sample
- A = cross-sectional area of the sample
- h1 = head at time, t1
- h2 = head at time, t2.
2.4. Volumetric Shrinkage
2.5. Analysis of Variance (ANOVA)—Two-Way Analysis of Variance (ANOVA) without Replication
2.5.1. p-Value (Probability Value)
- Fobserved = calculated F-value from the data;
- H0 = null hypothesis, which states no significant difference between the group means;
- p-value = the probability of observing an F-value as extreme or more extreme than the calculated F-value, assuming the null hypothesis is true.
2.5.2. F-Value (F-Statistic or F-Ratio)
- yi = individual observation;
- ymean = overall mean;
- ygroup mean = mean of each group.
- dfbetween groups = number of groups − 1;
- dfwithin groups = total number of observations − number of groups;
- dftotal = total number of observations − 1
3. Results and Discussion
3.1. Specific Gravity
3.2. Atterberg Limits
3.2.1. Liquid Limit
3.2.2. ANOVA of Liquid Limit
3.2.3. Plastic Limit
3.2.4. ANOVA of Plastic Limit
3.2.5. Plasticity Index
3.2.6. ANOVA of Plasticity Index
3.2.7. Linear Shrinkage
3.2.8. ANOVA of Linear Shrinkage
3.2.9. Compacted Behavior
3.2.10. ANOVA of Compacted Behavior
3.3. Key Engineering Parameters to Characterize Clay Liner Barrier
3.3.1. Hydraulic Conductivity
3.3.2. ANOVA of Hydraulic Conductivity against Water Content
3.3.3. Effect of Sawdust Ash in Soil/Cement Mixture on Hydraulic Conductivity
3.3.4. ANOVA of Hydraulic Conductivity Results of Soil–Cement–Sawdust Ash Mixtures
3.3.5. Volumetric Shrinkage Strain
3.3.6. ANOVA of Volumetric Shrinkage Strain against Molding Water Content
3.3.7. Effect of Sawdust Ash in Soil/Cement Mixture on Volumetric Shrinkage Strain
3.3.8. ANOVA of Volumetric Shrinkage of Soil–Cement Mixture with Sawdust Ash Content
3.3.9. Unconfined Compressive Strength (UCS)
3.3.10. ANOVA of UCS Results of Soil–Cement–Sawdust Ash Mixtures
3.3.11. Effect of Sawdust Ash in Soil/Cement Mixture on Unconfined Compressive Strength
3.3.12. ANOVA of Sawdust ash in Soil/Cement Mixture on Unconfined Compressive Strength
4. Conclusions
- -
- There was a maximum dry density of 1.745 g/cm3 and optimum moisture content of 23% for the untreated soil. At 6% cement and 6% SDA by dry weight of soil, this combination has the lowest liquid limit of 30.1%, indicating reduced plasticity, the lowest plasticity index of 15.2%, representing the smallest range of moisture content over which the soil exhibits plastic behavior, and the lowest linear shrinkage of 4.14%, implying reduced volumetric instability upon drying.
- -
- The optimum proportions of cement and sawdust ash were found to be 6% cement and 6% SDA by dry weight of soil, resulting in maximum improvements in UCS (51 to 375 kN/m2) and decreases in HC (1.7 × 10−8 to 4.7 × 10−10 m/s) and VSS (12.8 to 3.51%) compared to unamended soil.
- -
- The ANOVA tests showed that cement and sawdust ash (SDA) inclusions significantly change the stabilized soil matrix’s HC, UCS, and VSS. For example, at the 5% significance level, the F-statistic values were 15.69096 and 4.788327 for cement and SDA, respectively, exceeding the critical F-value of 3.28738 for hydraulic conductivity.
- -
- Conducting a long-term field study to assess the durability and continued effectiveness of the stabilized soil under actual environmental conditions would be valuable. This could include monitoring the performance of the stabilized soil liner over time, including its resistance to cyclic wetting and drying and exposure to various environmental factors. Such an evaluation would provide insight into the stabilization technique’s long-term behavior and practical applicability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Property | Source of Variation | Degrees of Freedom | FCAL | p-Value | FCRIT | Remark |
---|---|---|---|---|---|---|
Specific gravity | Cement | 3 | 66.22449 | 6.99 × 10−09 | 3.287382 | FCAL > FCRIT Significant effect |
SDA | 5 | 52.26531 | 5.85 × 10−09 | 2.901295 | FCAL > FCRIT Significant effect |
Property | Source of Variation | Degrees of Freedom | FCAL | p-Value | FCRIT | Remark |
---|---|---|---|---|---|---|
Liquid limit | Cement | 3 | 278.907 | 2.24 × 10−13 | 3.287382 | FCAL > FCRIT Significant effect |
SDA | 5 | 73.77099 | 5.08 × 10−10 | 2.901295 | FCAL > FCRIT Significant effect | |
Plastic limit | Cement | 3 | 25.74292 | 3.64 × 10−06 | 3.287382 | FCAL > FCRIT Significant effect |
SDA | 5 | 13.969 | 3.42 × 10−05 | 2.901295 | FCAL > FCRIT Significant effect | |
Plasticity index | Cement | 3 | 417.5243 | 1.14 × 10−14 | 3.287382 | FCAL > FCRIT Significant effect |
SDA | 5 | 47.25471 | 1.18 × 10−08 | 2.901295 | FCAL > FCRIT Significant effect | |
Linear shrinkage | Cement | 3 | 1289.157 | 2.58 × 10−18 | 3.287382 | FCAL > FCRIT Significant effect |
SDA | 5 | 47.10454 | 1.21 × 10−08 | 2.901295 | FCAL > FCRIT Significant effect |
Property | Source of Variation | Degrees of Freedom | FCAL | p-Value | FCRIT | Remark |
---|---|---|---|---|---|---|
MDD | Cement | 3 | 51.31148 | 4.04 × 10−08 | 3.287382 | FCAL > FCRIT Significant effect |
SDA | 5 | 20.90164 | 2.84 × 10−06 | 2.901295 | FCAL > FCRIT Significant effect | |
OMC | Cement | 3 | 39.33962 | 2.4 × 10−07 | 3.287382 | FCAL > FCRIT Significant effect |
SDA | 5 | 23.18868 | 1.45 × 10−06 | 2.901295 | FCAL > FCRIT Significant effect |
Property | Source of Variation | Degrees of Freedom | FCAL | p-Value | FCRIT | Remark | |
---|---|---|---|---|---|---|---|
HC | −2% | Cement | 3 | 17.47646 | 3.69 × 10−05 | 3.287382 | FCAL > FCRIT Significant effect |
SDA | 5 | 5.215878 | 5.68 × 10−03 | 2.901295 | FCAL > FCRIT Significant effect | ||
0% | Cement | 3 | 23.47024 | 6.43 × 10−06 | 3.287382 | FCAL > FCRIT Significant effect | |
SDA | 5 | 6.148309 | 2.74 × 10−03 | 2.901295 | FCAL > FCRIT Significant effect | ||
+2% | Cement | 3 | 33.74422 | 6.53 × 10−07 | 3.287382 | FCAL > FCRIT Significant effect | |
SDA | 5 | 12.55617 | 6.41 × 10−05 | 2.901295 | FCAL > FCRIT Significant effect | ||
+4% | Cement | 3 | 15.63979 | 6.93 × 10−05 | 3.287382 | FCAL > FCRIT Significant effect | |
SDA | 5 | 4.894346 | 7.45 × 10−03 | 2.901295 | FCAL > FCRIT Significant effect |
Property | Source of Variation | Degrees of Freedom | FCAL | p-Value | FCRIT | Remark |
---|---|---|---|---|---|---|
HC | Cement | 3 | 15.69096 | 6.8 × 10−05 | 3.287382 | FCAL > FCRIT Significant effect |
SDA | 5 | 4.788327 | 8.16 × 10−03 | 2.901295 | FCAL > FCRIT Significant effect |
Property | Source of Variation | Degrees of Freedom | FCAL | p-Value | FCRIT | Remark | |
---|---|---|---|---|---|---|---|
VSS | −2% | Cement | 3 | 86.30367 | 1.67 × 10−10 | 3.287382 | FCAL > FCRIT Significant effect |
SDA | 5 | 112.3474 | 1.65 × 10−10 | 2.901295 | FCAL > FCRIT Significant effect | ||
0% | Cement | 3 | 155.1971 | 1.62 × 10−11 | 3.287382 | FCAL > FCRIT Significant effect | |
SDA | 5 | 155.3852 | 2.3 × 10−12 | 2.901295 | FCAL > FCRIT Significant effect | ||
+2% | Cement | 3 | 22.14195 | 9.17 × 10−06 | 3.287382 | FCAL > FCRIT Significant effect | |
SDA | 5 | 37.69041 | 5.65 × 10−08 | 2.901295 | FCAL > FCRIT Significant effect | ||
+4% | Cement | 3 | 27.30304 | 2.52 × 10−06 | 3.287382 | FCAL > FCRIT Significant effect | |
SDA | 5 | 49.79083 | 8.22 × 10−09 | 2.901295 | FCAL > FCRIT Significant effect |
Property | Source of Variation | Degrees of Freedom | FCAL | p-Value | FCRIT | Remark |
---|---|---|---|---|---|---|
VSS | Cement | 3 | 18.64996 | 2.54 × 10−05 | 3.287382 | FCAL > FCRIT Significant effect |
SDA | 5 | 38.157 | 5.2 × 10−08 | 2.901295 | FCAL > FCRIT Significant effect |
Property | Source of Variation | Degrees of Freedom | FCAL | p-Value | FCRIT | Remark | |
---|---|---|---|---|---|---|---|
UCS | −2% | Cement | 3 | 121.1904 | 9.72 × 10−11 | 3.287382 | FCAL > FCRIT Significant effect |
SDA | 5 | 68.19628 | 8.9 × 10−10 | 2.901295 | FCAL > FCRIT Significant effect | ||
0% | Cement | 3 | 56.60906 | 2.06 × 10−08 | 3.287382 | FCAL > FCRIT Significant effect | |
SDA | 5 | 37.6517 | 5.69 × 10−08 | 2.901295 | FCAL > FCRIT Significant effect | ||
+2% | Cement | 3 | 59.14261 | 1.53 × 10−08 | 3.287382 | FCAL > FCRIT Significant effect | |
SDA | 5 | 23.92532 | 1.19 × 10−06 | 2.901295 | FCAL > FCRIT Significant effect | ||
+4% | Cement | 3 | 56.24673 | 2.16 × 10−08 | 3.287382 | FCAL > FCRIT Significant effect | |
SDA | 5 | 25.52665 | 7.75 × 10−07 | 2.901295 | FCAL > FCRIT Significant effect |
Property | Source of Variation | Degrees of Freedom | FCAL | p-Value | FCRIT | Remark |
---|---|---|---|---|---|---|
UCS | Cement | 3 | 56.24673 | 2.16 × 10−08 | 3.287382 | FCAL > FCRIT Significant effect |
SDA | 5 | 25.52665 | 7.75 × 10−07 | 2.901295 | FCAL > FCRIT Significant effect |
References
- Tian, K. Application of geosynthetic clay liner for coal combustion products disposal. In Managing Mining and Minerals Processing Wastes; Qi, C., Benson, C.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 165–187. [Google Scholar]
- Chen, J.; Peng, D. Management and disposal of alumina production wastes. In Managing Mining and Minerals Processing Wastes; Qi, C., Benson, C.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 133–163. [Google Scholar]
- Muralikrishna, I.V.; Manickam, V. Hazardous Waste Management. In Environmental Management; Muralikrishna, I.V., Manickam, V., Eds.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 463–494. [Google Scholar]
- Umar, I.H.; Lin, H.; Hassan, J.I. Transforming Landslide Prediction: A Novel Approach Combining Numerical Methods and Advanced Correlation Analysis in Slope Stability Investigation. Appl. Sci. 2024, 14, 3685. [Google Scholar] [CrossRef]
- Safari, E.; Jalili Ghazizade, M.; Abduli, M.A.; Gatmiri, B. Variation of crack intensity factor in three compacted clay liners exposed to annual cycle of atmospheric conditions with and without geotextile cover. Waste Manag. 2014, 34, 1408–1415. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, P.J.; Philip, L.K. Problems of clay desiccation in composite lining systems. Eng. Geol. 1999, 53, 107–113. [Google Scholar] [CrossRef]
- Chen, A.; Li, C.; Zhao, S.; Yang, B.; Ding, C. Study on the Dynamic Mechanism of the Desiccation Crack Initiation and Propagation in Red Clay. Sustainability 2023, 15, 11156. [Google Scholar] [CrossRef]
- Kumar, R.; Kumari, S. Geotechnical properties of materials used in landfill clay liner: A critical review. Sādhanā 2023, 48, 64. [Google Scholar] [CrossRef]
- Murthi, P.; Saravanan, R.; Poongodi, K. Studies on the impact of polypropylene and silica fume blended combination on the material behaviour of black cotton soil. Mater. Today Proc. 2021, 39, 621–626. [Google Scholar] [CrossRef]
- Rasheed, R.M.; Moghal, A.A.; Jannepally, S.S.; Rehman, A.U.; Chittoori, B.C.S. Shrinkage and Consolidation Characteristics of Chitosan-Amended Soft Soil—A Sustainable Alternate Landfill Liner Material. Buildings 2023, 13, 2230. [Google Scholar] [CrossRef]
- Jamaluddin, K.; Munirwan, R. Improvement of geotechnical properties of clayey soil with saw dust ash stabilization. E3S Web Conf. 2022, 340, 01009. [Google Scholar] [CrossRef]
- Medina-Martinez, C.J.; Sandoval Herazo, L.C.; Zamora-Castro, S.A.; Vivar-Ocampo, R.; Reyes-Gonzalez, D. Use of Sawdust Fibers for Soil Reinforcement: A Review. Fibers 2023, 11, 58. [Google Scholar] [CrossRef]
- Rachan, R.; Chinkulkijniwat, A.; Raksachon, Y.; Suddeepong, A. Analysis of Strength Development in Cement-stabilized Silty Clay from Microstructural Considerations. Constr. Build. Mater. 2010, 24, 2011–2021. [Google Scholar] [CrossRef]
- Yin, Z.; Li, R.; Lin, H.; Chen, Y.; Wang, Y.; Zhao, Y. Analysis of influencing factors of cementitious material properties of lead-zinc tailings based on orthogonal tests. Materials 2023, 16, 361. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yin, Z.; Lin, H. Research status and prospects for the utilization of lead-zinc tailings as building materials. Buildings 2023, 13, 150. [Google Scholar] [CrossRef]
- Yagüe, S.A.-O.; González Gaya, C.; Rosales Prieto, V.; Sánchez Lite, A.A.-O. Sustainable Ecocements: Chemical and Morphological Analysis of Granite Sawdust Waste as Pozzolan Material. Materials 2020, 13, 4941. [Google Scholar] [CrossRef] [PubMed]
- Haruna, I.U.; Kabir, M.; Yalo, S.G.; Muhammad, A.; Ibrahim, A.S. Quantitative Analysis of Solid Waste Generation from Tanneries in Kano State. J. Environ. Eng. Stud. 2022, 7, 23–30. [Google Scholar] [CrossRef]
- Olaiya, B.C.; Lawan, M.M.; Olonade, K.A. Utilization of sawdust composites in construction—A review. SN Appl. Sci. 2023, 5, 140. [Google Scholar] [CrossRef]
- Sheikh, A.; Akbari, M.; Shafabakhsh, G. Laboratory Study of the Effect of Zeolite and Cement Compound on the Unconfined Compressive Strength of a Stabilized Base Layer of Road Pavement. Materials 2022, 15, 7981. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.; Ju, H.; Nguyen, T.-N.; Hoang, T.; Abdelaziz, S.; Brand, A. Effects of curing temperature on cement-stabilized soils. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1289, 012097. [Google Scholar] [CrossRef]
- Al-Mahbashi, A.M.; Dafalla, M.; Al-Shamrani, M. Long-Term Performance of Liners Subjected to Freeze-Thaw Cycles. Water 2022, 14, 3218. [Google Scholar] [CrossRef]
- Jamshidi, R.; Lake, C.; Gunning, P.; Hills, C. Effect of Freeze/Thaw Cycles on the Performance and Microstructure of Cement-Treated Soils. J. Mater. Civ. Eng. 2016, 28, 04016162. [Google Scholar] [CrossRef]
- Kong, D.-J.; Wu, H.-N.; Chai, J.-C.; Arulrajah, A. State-of-the-Art Review of Geosynthetic Clay Liners. Sustainability 2017, 9, 2110. [Google Scholar] [CrossRef]
- Chen, J.; Dan, H.; Ding, Y.; Gao, Y.; Guo, M.; Guo, S.; Han, B.; Hong, B.; Hou, Y.; Hu, C.; et al. New innovations in pavement materials and engineering: A review on pavement engineering research 2021. J. Traffic Transp. Eng. (Engl. Ed.) 2021, 8, 815–999. [Google Scholar] [CrossRef]
- Ikeagwuani, C.C.; Obeta, I.N.; Agunwamba, J.C. Stabilization of black cotton soil subgrade using sawdust ash and lime. Soils Found. 2019, 59, 162–175. [Google Scholar] [CrossRef]
- Benson, C.; Zhai, H.; Wang, X. Estimating Hydraulic Conductivity of Compacted Clay Liners. J. Geotech. Eng. 1994, 120, 2. [Google Scholar] [CrossRef]
- Di Emidio, G. Hydraulic and Chemico-Osmotic Performance of Polymer Treated Clays. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2010. [Google Scholar]
- Christensen, R. Analysis of Variance and Generalized Linear Models. In International Encyclopedia of the Social & Behavioral Sciences; Smelser, N.J., Baltes, P.B., Eds.; Pergamon: Oxford, UK, 2001; pp. 473–480. [Google Scholar]
- ASTM D2166-06; Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM: West Conshohocken, PA, USA, 2010.
- Ilek, A.; Kucza, J. A laboratory method to determine the hydraulic conductivity of mountain forest soils using undisturbed soil samples. J. Hydrol. 2014, 519, 1649–1659. [Google Scholar] [CrossRef]
- Gallage, C.; Kodikara, J.; Uchimura, T. Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes. Soils Found. 2013, 53, 417–430. [Google Scholar] [CrossRef]
- ASTM D5084-16a; Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM: West Conshohocken, PA, USA, 2016.
- Julina, M.; Thyagaraj, T. Determination of volumetric shrinkage of an expansive soil using digital camera images. Int. J. Geotech. Eng. 2018, 15, 624–632. [Google Scholar] [CrossRef]
- Tang, C.-S.; Cui, Y.J.; Tang, A.-M.; Shi, B. Volumetric shrinkage characteristics of soil during drying. Yantu Gongcheng Xuebao/Chin. J. Geotech. Eng. 2011, 33, 1271–1279. [Google Scholar]
- ASTM D4943-18; Standard Test Method for Shrinkage Factors of Cohesive Soils by the Water Submersion Method. ASTM: West Conshohocken, PA, USA, 2018.
- King, B.M. Analysis of Variance. In International Encyclopedia of Education, 3rd ed.; Peterson, P., Baker, E., McGaw, B., Eds.; Elsevier: Oxford, UK, 2010; pp. 32–36. [Google Scholar]
- Smalheiser, N.R. ANOVA. In Data Literacy; Smalheiser, N.R., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 149–155. [Google Scholar]
- McIntosh, A.M.; Sharpe, M.; Lawrie, S.M. Research methods, statistics and evidence-based practice. In Companion to Psychiatric Studies, 8th ed.; Johnstone, E.C., Owens, D.C., Lawrie, S.M., McIntosh, A.M., Sharpe, M., Eds.; Churchill Livingstone: St. Louis, MO, USA, 2010; pp. 157–198. [Google Scholar]
- Henson, R.N. Analysis of Variance (ANOVA). In Brain Mapping; Toga, A.W., Ed.; Academic Press: Waltham, MA, USA, 2015; pp. 477–481. [Google Scholar]
- Dahiru, T. p-value, a true test of statistical significance? A cautionary note. Ann. Ib. Postgrad. Med. 2008, 6, 21–26. [Google Scholar] [CrossRef]
- Kao, L.S.; Green, C.E. Analysis of variance: Is there a difference in means and what does it mean? Natl. Inst. Health 2008, 144, 158–170. [Google Scholar] [CrossRef]
- Umar, I.H.; Lin, H.; Ibrahim, A.S. Laboratory Testing and Analysis of Clay Soil Stabilization Using Waste Marble Powder. Appl. Sci. 2023, 13, 9274. [Google Scholar] [CrossRef]
- Muntohar, A.; Abidin, Z. A Comparative Study of Different Additive on the Index Properties of Expansive Soils. J. Semesta Tek. 2001, 4, 59–67. [Google Scholar]
- Dąbska, A. Hydraulic Conductivity of Compacted Lime-Softening Sludge Used as Landfill Liners. Water Air Soil Pollut. 2019, 230, 280. [Google Scholar] [CrossRef]
- Umar, I.H.; Orakoglu Firat, M.E. A Study on Uniaxial Compressive Strength and Ultrasonic Non-Destructive Analysis of Fine-Grained Soil in Seasonally Frozen Regions. Turk. J. Sci. Technol. 2022, 17, 267–277. [Google Scholar] [CrossRef]
- Umar, I.H.; Orakoglu Firat, M.E. Investigation of Unconfined Compressive Strength of Soils Stabilized with Waste Elazig Cherry Marble Powder at Different Water Contents. In Proceedings of the 14th International Conference on Engineering & Natural Sciences, Sivas, Turkey, 18–19 July 2022. [Google Scholar]
- Umar, I.H.; Muhammad, A.; Yusuf, A.; Muhammad, K.I. Study on the Geotechnical Properties of Road Pavement Failures “(A Case Study of Portion Of Malam Aminu Kano Way, Kano State From Tal-Udu Roundabout To Mambaya House Roundabout)”. J. Geotech. Stud. 2020, 5, 8–15. [Google Scholar] [CrossRef]
- Umar, I.H.; Muhammad, A.; Ahmad, A.; Yusif, M.A.; Yusuf, A. Suitability of Geotechnical Properties of Bentonite-Bagasse Ash Mixtures Stabilized Lateritic Soil as Barrier in Engineered Waste Landfills. In Proceedings of the 7th International Student Symposium, Ondokuz Mayiz University, Samsun, Turkey, 1–3 October 2021. [Google Scholar]
- Darsi, B.P.; Molugaram, K.; Madiraju, S.V.H. Subgrade Black Cotton Soil Stabilization Using Ground Granulated Blast-Furnace Slag (GGBS) and Lime, an Inorganic Mineral. Environ. Sci. Proc. 2021, 6, 15. [Google Scholar] [CrossRef]
- Firat, S.; Khatib, J.M.; Yilmaz, G.; Comert, A.T. Effect of curing time on selected properties of soil stabilized with fly ash, marble dust and waste sand for road sub-base materials. Waste Manag. Res. 2017, 35, 747–756. [Google Scholar] [CrossRef]
- Ola, S.A. The geology and geotechnical properties of the black cotton soils of North Eastern Nigeria. Eng. Geol. 1978, 12, 375–391. [Google Scholar] [CrossRef]
- Khatti, J.; Grover, K.S. Prediction of compaction parameters for fine-grained soil: Critical comparison of the deep learning and standalone models. J. Rock Mech. Geotech. Eng. 2023, 15, 3010–3038. [Google Scholar] [CrossRef]
- Long, G.; Li, L.; Li, W.; Ma, K.; Dong, W.; Bai, C.; Zhou, J. Enhanced mechanical properties and durability of coal gangue reinforced cement-soil mixture for foundation treatments. J. Clean. Prod. 2019, 231, 468–482. [Google Scholar] [CrossRef]
- Butt, W.; Gupta, K.; Jha, J. Strength behavior of clayey soil stabilized with saw dust ash. Int. J. Geo-Eng. 2016, 7, 18. [Google Scholar] [CrossRef]
- Danish, A.; Totiç, E.; Bayram, M.A.-O.; Sütçü, M.A.-O.; Gencel, O.; Erdoğmuş, E.; Ozbakkaloglu, T.A.-O.X. Assessment of Mineralogical Characteristics of Clays and the Effect of Waste Materials on Their Index Properties for the Production of Bricks. Materials 2022, 15, 8908. [Google Scholar] [CrossRef]
- Karakan, E. Comparative Analysis of Atterberg Limits, Liquidity Index, Flow Index and Undrained Shear Strength Behavior in Binary Clay Mixtures. Appl. Sci. 2022, 12, 8616. [Google Scholar] [CrossRef]
- Oluremi, J.; Siddique, R.; Adeboje, E. Stabilization Potential of Cement Kiln Dust Treated Lateritic Soil. Int. J. Eng. Res. Afr. 2016, 23, 52–63. [Google Scholar] [CrossRef]
- Nuaklong, P.; Jongvivatsakul, P.; Pothisiri, T.; Sata, V.; Chindaprasirt, P. Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J. Clean. Prod. 2019, 252, 119797. [Google Scholar] [CrossRef]
- Sani, J.E.; Yohanna, P.; Chukwujama, I.A. Effect of rice husk ash admixed with treated sisal fibre on properties of lateritic soil as a road construction material. J. King Saud Univ.—Eng. Sci. 2020, 32, 11–18. [Google Scholar] [CrossRef]
- Nitin, M.; Guleria, H. To Study the Basic Geotechnical Characteristics of Fly Ash-Limegypsum Commix with Quarry Dust. Int. J. Adv. Res. Eng. Technol. 2020, 11, 921–930. [Google Scholar]
- Al-Jabban, W.; Laue, J.; Knutsson, S.; Al-Ansari, N. A Comparative Evaluation of Cement and By-Product Petrit T in Soil Stabilization. Appl. Sci. 2019, 9, 5238. [Google Scholar] [CrossRef]
- Abbey, S.; Olubanwo, A.; Ng’ambi, S.; Eyo, E.; Adeleke, B. Effect of Organic Matter on Swell and Undrained Shear Strength of Treated Soils. J. Civ. Constr. Environ. Eng. 2019, 4, 48–58. [Google Scholar] [CrossRef]
- Sariosseiri, F.; Muhunthan, B. Effect of cement treatment on geotechnical properties of some Washington State soils. Eng. Geol. 2009, 104, 119–125. [Google Scholar] [CrossRef]
- Moradi, S. Effects of CEC on Atterberg limits and Plastic Index in Different Soil Textures. VictorQuest 2013, 4, 2111–2118. [Google Scholar]
- Yohanna, P. Evaluation of Compacted Black Cotton Soil–Sawdust Ash Mixtures as Road Construction Material. Niger. J. Mater. Sci. Eng. 2018, 7, 65–72. [Google Scholar]
- Muhmed, A.; Mohamed, M. The Impact of Moisture and Clay Content on the Unconfined Compressive Strength of Lime Treated Highly Reactive Clays. Geotech. Geol. Eng. 2022, 40, 5869–5893. [Google Scholar] [CrossRef]
- Sabat, A.K.; Nanda, R.P. Effect of marble dust on strength and durability of Rice husk ash stabilised expansive soil Effect of marble dust on strength and durability of Rice husk ash. Int. J. Civ. Struct. Eng. 2011, 1, 939–948. [Google Scholar]
- Khan, S.; Khan, M.H. Improvement of Mechanical Properties by Waste Sawdust Ash Addition into Soil. Electron. J. Geotech. Eng. 2015, 20, Bundle 7. [Google Scholar] [CrossRef]
- Soni, S.R.; Dahale, P.P.; Dobale, R.M. Disposal of solid waste for black cotton soil Stabilization. Int. J. Adv. Eng. Sci. Technol. 2011, 8, 113–120. [Google Scholar]
- Farooq, K.; ur Rehman, Z.; Shahzadi, M.; Mujtaba, H.; Khalid, U. Optimization of Sand-Bentonite Mixture for the Stable Engineered Barriers using Desirability Optimization Methodology: A Macro-Micro-Evaluation. KSCE J. Civ. Eng. 2023, 27, 40–52. [Google Scholar] [CrossRef]
- Mustafa, Y.M.H.; Zami, M.S.; Al-Amoudi, O.S.B.; Al-Osta, M.A.; Wudil, Y.S. Analysis of Unconfined Compressive Strength of Rammed Earth Mixes Based on Artificial Neural Network and Statistical Analysis. Materials 2022, 15, 9029. [Google Scholar] [CrossRef]
- Mohamed, A.A.M.S.; Yuan, J.; Al-Ajamee, M.; Dong, Y.; Ren, Y.; Hakuzweyezu, T. Improvement of expansive soil characteristics stabilized with sawdust ash, high calcium fly ash and cement. Case Stud. Constr. Mater. 2023, 18, e01894. [Google Scholar] [CrossRef]
- Das, B.M.; Sobhan, K.; Sobhan, K. Principles of Geotechnical Engineering; Cengage Learning: Boston, MA, USA, 2018. [Google Scholar]
- Ikeagwuani, C.C.; Nwonu, D.C. Emerging trends in expansive soil stabilisation: A review. J. Rock Mech. Geotech. Eng. 2019, 11, 423–440. [Google Scholar] [CrossRef]
- Daniel, D.; Benson, C. Water Content-Density Criteria for Compacted Soil Liners. J. Geotech. Eng. 1990, 116, 1811–1830. [Google Scholar] [CrossRef]
- Osinubi, K.; Nwaiwu, C.M.O. Hydraulic Conductivity of Compacted Lateritic Soil. J. Geotech. Geoenviron. Eng. 2005, 131, 1034–1041. [Google Scholar] [CrossRef]
- Hsiao, D.; Hsieh, C. Improving Mudstone Materials in Badland in Southwestern Taiwan by Increasing Density and Low-Cement Amount. Appl. Sci. 2022, 12, 2290. [Google Scholar] [CrossRef]
- Umar, I.H.; Lin, H. Marble Powder as a Soil Stabilizer: An Experimental Investigation of the Geotechnical Properties and Unconfined Compressive Strength Analysis. Materials 2024, 17, 1208. [Google Scholar] [CrossRef]
- Jorat, E.; Marto, A.; Namazi, E. Engineering Characteristics of Kaolin Mixed with Various Percentages of Bottom Ash. Electron. J. Geotech. Eng. 2011, 16, 841–850. [Google Scholar]
- Mousavi, F.; Abdi, E.; Ghalandarayeshi, S.; Page-Dumroese, D.S. Modeling unconfined compressive strength of fine-grained soils: Application of pocket penetrometer for predicting soil strength. Catena 2021, 196, 104890. [Google Scholar] [CrossRef]
- Agrawal, V.; Gupta, M. Expansive Soil Stabilization Using Marble Dust. Int. J. Earth Sci. Eng. 2011, 4, 59–62. [Google Scholar]
- Archibong, G.A.; Sunday, E.U.; Akudike, J.C.; Okeke, O.C.; Amadi, C. A Review of the Principles and Methods of Soil Stabilization. Int. J. Adv. Acad. Res. Sci. Technol. Eng. 2020, 6, 89–115. [Google Scholar]
- Cetin, B.; Aydilek, A.H.; Guney, Y. Stabilization of recycled base materials with high carbon fly ash. Resour. Conserv. Recycl. 2010, 54, 878–892. [Google Scholar] [CrossRef]
- James, J.; Pandian, P.K. Strength and microstructure of micro ceramic dust admixed lime stabilized soil. Rev. Constr. 2018, 17, 5–22. [Google Scholar] [CrossRef]
- Narnoli, V.; Suman, S.K.; Kumar, R. Stabilization of alluvial soilusing marble dust, lime and burnt brick dust for road construction. In Proceedings of the Indian Conference on Geotechnical and Geo-Environmental Engineering (ICGGE-2019), Prayagraj, India, 1–2 March 2019. [Google Scholar]
- Osinubi Moses, G. Optimizing Soil-Cement-Ash Stabilization Mix for Maximum Compressive Strength. In Proceedings of the West Africa Built Environment Research Conference (WABER 2012) Conference, Abuja, Nigeria, 24–26 July 2012; pp. 1207–1218. [Google Scholar]
- Khemissa, M.; Mahamedi, A. Cement and Lime Mixture Stabilization of an Expansive Overconsolidated Clay. Appl. Clay Sci. 2014, 95, 104–110. [Google Scholar] [CrossRef]
S/No. | SDA Content (%) | Cement Content (%) | Soil Content (%) | Compaction Water Contents (%) | Tests | Tested Temperature (°C) |
---|---|---|---|---|---|---|
1 | 0 | 0 | 100 | −2%, 0%, +2%, and +4% of the optimum moisture content (OMC) | Physical properties, unconfined compressive strength (UCS) test, hydraulic conductivity (HC) test, and volumetric shrinkage strain (VSS) test | ~23 |
2 | 3 | 97 | ||||
3 | 6 | 94 | ||||
4 | 9 | 91 | ||||
5 | 2 | 0 | 98 | |||
6 | 3 | 95 | ||||
7 | 6 | 92 | ||||
8 | 9 | 89 | ||||
9 | 4 | 0 | 96 | |||
10 | 3 | 93 | ||||
11 | 6 | 90 | ||||
12 | 9 | 87 | ||||
13 | 6 | 0 | 94 | |||
14 | 3 | 91 | ||||
15 | 6 | 88 | ||||
16 | 9 | 85 | ||||
17 | 8 | 0 | 92 | |||
18 | 3 | 89 | ||||
19 | 6 | 86 | ||||
20 | 9 | 83 | ||||
21 | 10 | 0 | 90 | |||
22 | 3 | 87 | ||||
23 | 6 | 84 | ||||
24 | 9 | 81 |
Property | Soil |
---|---|
Natural moisture content, % | 16.11 |
Specific gravity, % | 2.68 |
Liquid limit, % | 61.7 |
Plastic limit, % | 26.8 |
Plasticity index, % | 34.9 |
Linear shrinkage, % | 17.4 |
% passing sieve No. 200 | 60 |
Free swell, % | 64.8 |
USCS classification | CH |
Optimum moisture content, % | 23 |
Maximum dry density, Mg/m3 | 1.63 |
Color | Reddish Brown |
Dominant Soil Mineral | Kaolinite |
Property | Cement |
---|---|
Soundness, mm | 0.38 |
Specific gravity, % | 3.13 |
Fineness, m2/kg | 362 |
3 days UCS, Mpa | 29.1 |
Bulk density, kg/m3 | 1101 |
Initial Setting time, min | 33.4 |
Final Setting time, min | 242 |
Color | Ash |
Property | Sawdust Ash |
---|---|
Natural moisture content, % | 26.07 |
Specific gravity, % | 2.09 |
Liquid limit, % | 22.5 |
Plastic limit, % | 12.7 |
Plasticity index, % | 10.2 |
Porosity, % | 82.4 |
Fineness, micron | 650 |
Rate of burning, g/hr | 2224 |
Water absorption, % | 18.23 |
Apparent | 1.056 |
Linear shrinkage, % | 5.05 |
Bulk density, kg/m3 | 412 |
Modulus of rupture, Mg/m3 | 1.249 |
Color | Ash |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iliyas, S.; Idris, A.; Umar, I.H.; Lin, H.; Muhammad, A.; Xie, L. Experiment and Analysis of Variance for Stabilizing Fine-Grained Soils with Cement and Sawdust Ash as Liner Materials. Materials 2024, 17, 2397. https://doi.org/10.3390/ma17102397
Iliyas S, Idris A, Umar IH, Lin H, Muhammad A, Xie L. Experiment and Analysis of Variance for Stabilizing Fine-Grained Soils with Cement and Sawdust Ash as Liner Materials. Materials. 2024; 17(10):2397. https://doi.org/10.3390/ma17102397
Chicago/Turabian StyleIliyas, Sadiq, Ahmad Idris, Ibrahim Haruna Umar, Hang Lin, Ahmad Muhammad, and Linglin Xie. 2024. "Experiment and Analysis of Variance for Stabilizing Fine-Grained Soils with Cement and Sawdust Ash as Liner Materials" Materials 17, no. 10: 2397. https://doi.org/10.3390/ma17102397
APA StyleIliyas, S., Idris, A., Umar, I. H., Lin, H., Muhammad, A., & Xie, L. (2024). Experiment and Analysis of Variance for Stabilizing Fine-Grained Soils with Cement and Sawdust Ash as Liner Materials. Materials, 17(10), 2397. https://doi.org/10.3390/ma17102397