Evaluation of the Surface Topography of Microfinishing Abrasive Films in Relation to Their Machining Capability of Nimonic 80A Superalloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation of the Surface Topography of Microfinishing Abrasive Films
2.2. Microfinishing Process
2.3. Research on the Topography of Finished Surfaces
2.4. Surface Analysis of the Abrasive Film following the Microfinishing Process
3. Results and Discussion
3.1. Analysis of the Finishing Capability of Abrasive Films
3.2. Research on Finished Surfaces
- Sp: maximum height of peaks;
- Sv: maximum height of valleys;
- Sz: maximum height of the surface;
- Sa: arithmetical mean height of the surface.
3.3. Surface Analysis of the Worn Abrasive Tool
4. Summary and Conclusions
- The analysis of contact frequency between abrasive grains and the workpiece revealed an optimal range for efficient material removal. Abrasive films with moderate contact frequencies, as observed with the 15 micrometer grain size, demonstrated effective material removal while maintaining surface integrity. This indicates that achieving an appropriate balance in contact frequency is essential for maximizing material removal efficiency.
- The study identified various wear mechanisms, including fractured abrasive grains and cracked binder surfaces, which can impact tool longevity and performance. Understanding these wear mechanisms is crucial for optimizing tool design and material selection to enhance durability and minimize tool degradation during microfinishing operations.
- Effective chip removal mechanisms, such as micro-chip segmentation, were found to play a significant role in the efficiency of the microfinishing process. Proper chip removal prevents chip re-deposition and surface contamination, leading to improved surface quality and consistency.
- The findings emphasize the importance of considering material-specific characteristics when selecting abrasive films for microfinishing applications. In the case of Nimonic 80A superalloy, the study highlighted the effectiveness of abrasive films with finer grain sizes in achieving smoother surface finishes, indicating potential variations in optimal abrasive film selection based on the material being processed.
- The insights gained from this study provide valuable guidance for optimizing microfinishing processes to achieve desired surface characteristics efficiently. By understanding the relationships between abrasive grain size, contact frequency, wear mechanisms, and chip removal efficiency, manufacturers can refine their microfinishing processes to enhance productivity and product quality.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sunulahpašić, R.; Oruč, M.; Hadžalić, M.; Gigović-Gekić, A. Analysis of the influence of chemical composition and temperature on mechanical properties of Superalloys Nimonic 80A. Metalurgija 2014, 53, 13–16. [Google Scholar]
- Kozar, R.W.; Suzuki, A.; Milligan, W.W.; Schirra, J.J.; Savage, M.F.; Pollock, T.M. Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys Materials for engines. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2009, 40, 1588–1603. [Google Scholar] [CrossRef]
- Erdogan, A.; Yener, T.; Doleker, K.M.; Korkmaz, M.E.; Gök, M.S. Low-temperature aluminizing influence on degradation of nimonic 80A surface: Microstructure, wear and high temperature oxidation behaviors. Surf. Interfaces 2021, 25, 101240. [Google Scholar] [CrossRef]
- Jayaraj, R.; Sateesh, N.; Ram, S.; Nookaraju, B.C. Experimental Investigation and Optimization of EDM process in different Paramaters on NICKEL material (nimonic 8A). E3S Web Conf. 2023, 430, 01239. [Google Scholar]
- Korkmaz, M.E.; Günay, M.; Verleysen, P. Investigation of tensile Johnson-Cook model parameters for Nimonic 80A superalloy. J. Alloys Compd. 2019, 801, 542–549. [Google Scholar] [CrossRef]
- Korkmaz, M.E.; Verleysen, P.; Günay, M. Identification of Constitutive Model Parameters for Nimonic 80A Superalloy. Trans. Indian Inst. Met. 2018, 71, 2945–2952. [Google Scholar] [CrossRef]
- Pant, P.; Bharti, P.S. Experimental Investigation on Micro-Electrical Discharge Machining process for heat treated Nickel-based Nimonic 80A. Mater. Manuf. Process. 2023, 38, 1–12. [Google Scholar] [CrossRef]
- Jadhav, P.S.; Mohanty, C.P.; Shirguppikar, S.S. Cryogenic treatment of nimonic alloy-hard turning: State-ofthe-art, challenges and future directions. Mater. Today Proc. 2019, 18, 4120–4132. [Google Scholar] [CrossRef]
- Sunulahpasic, R.; Hadzalic, M.; Oruc, M.; Begovic, E. Contribution to Investigation of the Influence of Chemical Composition on Machinability of Superalloy Nimonic 80A. Procedia Eng. 2015, 132, 480–485. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Z.; Shi, W.; Yang, J.; Yu, C.; Shen, J.; Han, G. Very high cycle fretting fatigue of Nimonic 80A modified by laser cladding with Stellite X-40 and In625/20% WC. Surf. Coat. Technol. 2022, 441, 128596. [Google Scholar] [CrossRef]
- Wang, L.; Yang, G.; Liu, Z.-D.; Yang, Z.-Q.; Wang, L. Optimization of heat treatment process of nickel-based superalloy Nimonic105. Cailiao Rechuli Xuebao/Trans. Mater. Heat Treat. 2016, 37, 62–68. [Google Scholar]
- Parvizi, S.; Hashemi, S.M.; Moein, S. NiTi Shape Memory Alloys: Properties. In Nickel-Titanium Smart Hybrid Materials; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Behera, A.; Sahoo, A.K.; Mohapatra, S.S. Nickel-Titanium Smart Hybrid Materials for Automotive Industry; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Prasad, G.; Raghavendra Kamath, C.; Vijay, G.S. A review on conventional and nonconventional machining of Nickel-based Nimonic superalloy. Manuf. Rev. 2023, 10, 10. [Google Scholar] [CrossRef]
- Kacalak, W.; Lipiński, D.; Różański, R.; Królczyk, G.M. Assessment of the classification ability of parameters characterizing surface topography formed in manufacturing and operation processes. Meas. J. Int. Meas. Confed. 2021, 170, 108715. [Google Scholar] [CrossRef]
- Rypina, Ł.; Lipiński, D.; Banaszek, K.; Kacalak, W.; Szafraniec, F. Influence of the Geometrical Features of the Cutting Edges of Abrasive Grains on the Removal Efficiency of the Ti6Al4V Titanium Alloy. Materials 2022, 15, 6189. [Google Scholar] [CrossRef]
- Rypina, Ł.; Lipiński, D.; Bałasz, B.; Kacalak, W.; Szatkiewicz, T. Analysis and modeling of the micro-cutting process of Ti-6Al-4V titanium alloy with single abrasive grain. Materials 2020, 13, 5835. [Google Scholar] [CrossRef]
- Fan, W.; Wu, C.; Wu, Z.; Liu, Y.; Wang, J. Static contact mechanism between serrated contact wheel and rail in rail grinding with abrasive belt. J. Manuf. Process 2022, 84, 1229–1245. [Google Scholar] [CrossRef]
- Wang, W.; Salvatore, F.; Rech, J.; Li, J. Investigating adhesion wear on belt and its effects on dry belt finishing. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 2119–2123. [Google Scholar] [CrossRef]
- Tandecka, K.; Kacalak, W.; Rypina, Ł.; Wiliński, M.; Wieczorowski, M.; Mathia, T.G. Effects of Pressure Rollers with Variable Compliance in the Microfinishing Process Utilizing Abrasive Films. Materials 2024, 17, 1795. [Google Scholar] [CrossRef]
- Kacalak, W.; Szafraniec, F.; Lipiński, D.; Banaszek, K.; Rypina, Ł. Modeling and Analysis of Micro-Grinding Processes with the Use of Grinding Wheels with a Conical and Hyperboloid Active Surface. Materials 2022, 15, 5751. [Google Scholar] [CrossRef]
- Mezghani, S.; El Mansori, M.; Sura, E. Wear mechanism maps for the belt finishing of steel and cast iron. Wear 2009, 267, 86–91. [Google Scholar] [CrossRef]
- Serpin, K.; Mezghani, S.; El Mansori, M. Wear study of structured coated belts in advanced abrasive belt finishing. Surf. Coat. Technol. 2015, 284, 365–376. [Google Scholar] [CrossRef]
- Mezghani, S.; El Mansori, M. Abrasiveness properties assessment of coated abrasives for precision belt grinding. Surf. Coat. Technol. 2008, 203, 786–789. [Google Scholar] [CrossRef]
- Mezghani, S.; El Mansori, M.; Massaq, A.; Ghidossi, P. Correlation between surface topography and tribological mechanisms of the belt-finishing process using multiscale finishing process signature. Comptes Rendus Mécanique 2008, 336, 794–799. [Google Scholar] [CrossRef]
- Mezghani, S.; El Mansori, M.; Zahouani, H. New criterion of grain size choice for optimal surface texture and tolerance in belt finishing production. Wear 2009, 266, 578–580. [Google Scholar] [CrossRef]
- Khellouki, A.; Rech, J.; Zahouani, H. The effect of lubrication conditions on belt finishing. Int. J. Mach. Tools Manuf. 2010, 50, 917–921. [Google Scholar] [CrossRef]
- Jourani, A.; Dursapt, M.; Hamdi, H.; Rech, J.; Zahouani, H. Effect of the belt grinding on the surface texture: Modeling of the contact and abrasive wear. Wear 2005, 259, 1137–1143. [Google Scholar] [CrossRef]
- Zhang, S.J.; To, S.J.; Wang, S.; Zhu, Z.W. A review of surface roughness generation in ultra-precision machining. Int. J. Mach. Tools Manuf. 2015, 91, 76–95. [Google Scholar] [CrossRef]
- Zong, W.; Li, D.; Cheng, K.; Sun, T.; Wang, H.; Liang, Y. The material removal mechanism in mechanical lapping of diamond cutting tools. Int. J. Mach. Tools Manuf. 2005, 45, 783–788. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, S.; Wang, D.; Yang, S.; Jiang, F.; Li, C. A review of surface quality control technology for robotic abrasive belt grinding of aero-engine blades. Meas. J. Int. Meas. Confed. 2023, 220, 113381. [Google Scholar] [CrossRef]
- Wang, W.; Salvatore, F.; Rech, J.; Li, J. Comprehensive investigation on mechanisms of dry belt grinding on AISI52100 hardened steel. Tribol. Int. 2018, 121, 310–320. [Google Scholar] [CrossRef]
- Biermann, D.; Goeke, S.; Tillmann, W.; Nebel, J. Improvement of wear resistant thermally sprayed coatings by microfinishing. CIRP Ann. Manuf. Technol. 2013, 62, 559–562. [Google Scholar] [CrossRef]
- Bigerelle, M.; Gautier, A.; Hagege, B.; Favergeon, J.; Bounichane, B. Roughness characteristic length scales of belt finished surface. J. Mater. Process. Technol. 2009, 209, 6103–6116. [Google Scholar] [CrossRef]
- Grzesik, W.; Rech, J.; Wanat, T. Surface finish on hardened bearing steel parts produced by superhard and abrasive tools. Int. J. Mach. Tools Manuf. 2007, 47, 255–262. [Google Scholar] [CrossRef]
- Courbon, C.; Valiorgue, F.; Claudin, C.; Jacquier, M.; Dumont, F.; Rech, J. Influence of Some Superfinishing Processes on Surface Integrity in Automotive Industry. Procedia CIRP 2016, 45, 99–102. [Google Scholar] [CrossRef]
- Jourani, A.; Hagège, B.; Bouvier, S.; Bigerelle, M.; Zahouani, H. Influence of abrasive grain geometry on friction coefficient and wear rate in belt finishing. Tribol. Int. 2013, 59, 30–37. [Google Scholar] [CrossRef]
- El Mansori, M.; Sura, E.; Ghidossi, P.; Deblaise, S.; Negro, T.D.; Khanfir, H. Toward physical description of form and finish performance in dry belt finishing process by a tribo-energetic approach. J. Mater. Process. Technol. 2007, 182, 498–511. [Google Scholar] [CrossRef]
- Tilger, M.; Kipp, M.; Schumann, S.; Dereli, T.T.; Biermann, D. Structuring surfaces by microfinishing using defined abrasive belts. Inventions 2017, 2, 33. [Google Scholar] [CrossRef]
- Tandecka, K.; Kacalak, W.; Wiliński, M.; Wieczorowski, M.; Mathia, T.G. Morphology of Microchips in the Surface Finishing Process Utilizing Abrasive Films. Materials 2024, 17, 688. [Google Scholar] [CrossRef]
- Tandecka, K.; Kacalak, W.; Wiliński, M.; Wieczorowski, M.; Mathia, T.G. Superfinishing with Abrasive Films Featuring Discontinuous Surfaces. Materials 2024, 17, 1704. [Google Scholar] [CrossRef]
- Kermouche, G.; Rech, J.; Hamdi, H.; Bergheau, J. On the residual stress field induced by a scratching round abrasive grain. Wear 2010, 269, 86–92. [Google Scholar] [CrossRef]
- Diniz, A.E.; Machado, R.; Corrêa, J.G. Tool wear mechanisms in the machining of steels and stainless steels. Int. J. Adv. Manuf. Technol. 2016, 87, 3157–3168. [Google Scholar] [CrossRef]
- Halila, F.; Czarnota, C.; Nouari, M. New stochastic wear law to predict the abrasive flank wear and tool life in machining process. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2014, 228, 1243–1251. [Google Scholar] [CrossRef]
- Wang, W.; Salvatore, F.; Rech, J.; Li, J. Effects of belt’s adhesive wear on surface integrity in dry belt finishing. Procedia CIRP 2018, 71, 31–34. [Google Scholar] [CrossRef]
- Kacalak, W.; Lipiński, D.; Szafraniec, F.; Zawada-Tomkiewicz, A.; Tandecka, K.; Królczyk, G. Metrological basis for assessing the state of the active surface of abrasive tools based on parameters characterizing their machining potential. Meas. J. Int. Meas. Confed. 2020, 165, 108068. [Google Scholar] [CrossRef]
- Kacalak, W.; Tandecka, K.; Mathia, T.G. A method and new parameters for assessing the active surface topography of diamond abrasive films. J. Mach. Eng. 2016, 16, 95–108. [Google Scholar]
- ISO 25178-2:2021; Geometrical Product Specifications (GPS): Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. ISO: Geneva, Switzerland, 2021.
- Szada-Borzyszkowska, M.; Kacalak, W.; Lipiński, D.; Bałasz, B. Analysis of the erosivity of high-pressure pulsating water jets produced in the self-excited drill head. Materials 2021, 14, 4165. [Google Scholar] [CrossRef]
- Szada-Borzyszkowska, M.; Kacalak, W.; Banaszek, W.; Borkowski, P.J.; Szada-Borzyszkowski, W. Analysis of the pulsating properties of a high-pressure water jet generated in a self-excited head for erosion processing. Arch. Civ. Mech. Eng. 2023, 23, 236. [Google Scholar] [CrossRef]
Workpiece Material | Pressure Roll Hardness | Pressure Force | Tool Speed | Workpiece Speed | Oscillation Frequency | Processing Time |
---|---|---|---|---|---|---|
Nimonic 80A | 50° Sh | 50 N | 160 mm/min | 40 m/min | 80 Hz | 180 s |
MFF | n | nN | Aa [µm2] | AaN | [µm] | σh [µm] | σhN | ce | |
---|---|---|---|---|---|---|---|---|---|
9 | 254.40 | 0.88 | 314.35 | 0.60 | 17.73 | 0.72 | 3.48 | 0.42 | 1.51 |
15 | 161.45 | 0.54 | 166.53 | 0.40 | 12.90 | 0.28 | 2.86 | 0.23 | 0.66 |
30 | 46.48 | 0.11 | 273.90 | 0.55 | 16.54 | 0.61 | 4.59 | 0.77 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tandecka, K.; Kacalak, W.; Szafraniec, F.; Wieczorowski, M.; Mathia, T.G. Evaluation of the Surface Topography of Microfinishing Abrasive Films in Relation to Their Machining Capability of Nimonic 80A Superalloy. Materials 2024, 17, 2430. https://doi.org/10.3390/ma17102430
Tandecka K, Kacalak W, Szafraniec F, Wieczorowski M, Mathia TG. Evaluation of the Surface Topography of Microfinishing Abrasive Films in Relation to Their Machining Capability of Nimonic 80A Superalloy. Materials. 2024; 17(10):2430. https://doi.org/10.3390/ma17102430
Chicago/Turabian StyleTandecka, Katarzyna, Wojciech Kacalak, Filip Szafraniec, Michał Wieczorowski, and Thomas G. Mathia. 2024. "Evaluation of the Surface Topography of Microfinishing Abrasive Films in Relation to Their Machining Capability of Nimonic 80A Superalloy" Materials 17, no. 10: 2430. https://doi.org/10.3390/ma17102430