Reversible Multi-Mode Optical Modification in Inverse-Opal-Structured WO3: Yb3+, Er3+ Photonic Crystal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
- (1)
- Preparation of Polystyrene (PS) Opal Templates:
- (2)
- Preparation of Precursor Sol:
- (3)
- Preparation of Inverse Opal Photonic Crystals:
2.2. Characterization
3. Results and Discussion
3.1. The Phase and Structure of WO3: Yb3+, Er3 Inverse Photonic Crystals
3.2. The Optical Performance of WO3: Yb3+, Er3+ Inverse Photonic Crystal
3.3. Reversible Optical Modulation in WO3: Yb3+, Er3+ Inverse Photonic Crystal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, X.; Xu, Z.; Zi, Y.; Xiao, D.; Fu, L.; He, Y.; Zhao, H.; Yang, Z.; Song, Y.; Asif, A.H.; et al. Reversible Fluorescence Modulation and Applications Based on Chromic Effect in Inorganic Rare-earth Luminescent Materials. Chin. J. Lumin. 2022, 43, 463–477. [Google Scholar] [CrossRef]
- Lv, H.; Du, P.; Luo, L.; Li, W. Negative thermal expansion triggered anomalous thermal upconversion luminescence behaviors in Er3+/Yb3+-codoped Y2Mo3O12 microparticles for highly sensitive thermometry. Mater. Adv. 2021, 2, 2642–2648. [Google Scholar] [CrossRef]
- Nyk, M.; Kumar, R.; Ohulchanskyy, T.Y.; Bergey, E.J.; Prasad, P.N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008, 8, 3834–3838. [Google Scholar] [CrossRef]
- Zheng, B.; Fan, J.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R.; Liu, X. Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 2022, 122, 5519–5603. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, Y.; Huang, Q.; Xu, J.; Lin, H.; Wang, Y. Abnormal thermally enhanced upconversion luminescence of lanthanide-doped phosphors: Proposed mechanisms and potential applications. J. Mater. Chem. C 2021, 9, 2220–2230. [Google Scholar] [CrossRef]
- Song, P.; Qiao, B.; Song, D.; Cao, J.; Shen, Z.; Xu, Z.; Zhao, S.; Wageh, S.; Al-Ghamdi, A. Modifying the crystal field of CsPbCl3: Mn2+ nanocrystals by co-doping to enhance its red emission by a hundredfold. ACS Appl. Mater. Interfaces 2020, 12, 30711–30719. [Google Scholar] [CrossRef] [PubMed]
- Suo, H.; Guo, C.; Li, T. Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba5Gd8Zn4O21: Er3+/Yb3+. J. Phys. Chem. C 2016, 120, 2914–2924. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, Y.; Chen, L.; Wang, X. Color tuning of Ba2ZnSi2O7: Ce3+, Tb3+ phosphor via energy transfer. J. Lumin. 2014, 153, 412–416. [Google Scholar] [CrossRef]
- Song, Y.; Lu, M.; Mandl, G.A.; Xie, Y.; Sun, G.; Chen, J.; Liu, X.; Capobianco, J.A.; Sun, L. Energy migration control of multimodal emissions in an Er3+-doped nanostructure for information encryption and deep-learning decoding. Angew. Chem.-Int. Ed. 2021, 60, 23790–23796. [Google Scholar] [CrossRef]
- Bednarkiewicz, A.; Prorok, K.; Pawlyta, M.; Strek, W.S. Energy migration up-conversion of Tb3+ in Yb3+ and Nd3+ codoped active-core/active-shell colloidal nanoparticles. Chem. Mater. 2016, 28, 2295–2300. [Google Scholar]
- Yang, Z.; Zhu, K.; Song, Z.; Yu, X.; Zhou, D.; Yin, Z.; Lei, Y.; Qiu, J. Photonic band gap and upconversion emission properties of Yb, Er co-doped lead lanthanum titanate inverse opal photonic crystals. Appl. Phys. A 2011, 103, 995–999. [Google Scholar]
- Shao, B.; Yang, Z.; Wang, Y.; Li, J.; Yang, J.; Qiu, J.; Song, Z. Coupling of Ag nanoparticle with inverse opal photonic crystals as a novel strategy for upconversion emission enhancement of NaYF4: Yb3+, Er3+ nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 25211–25218. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Li, H.; Xu, W.; Cui, S.; Zhou, D.; Chen, X.; Zhu, Y.; Qin, G.; Song, H. Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect. Adv. Mater. 2016, 28, 2518–2525. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E.; O’Dwyer, C. Artificial Opal Photonic Crystals and Inverse Opal Structures-Fundamentals and Applications from Optics to Energy Storage. J. Mater. Chem. C 2015, 3, 6109–6143. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Xu, Q.; Chen, W.; Dong, Y.; Fan, J.; Ma, D. Recent advances in opal/inverted opal photonic crystal photocatalysts. Sol. RRL 2021, 5, 2000541. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Recent advances in photonic crystal optical devices: A review. Opt. Laser Technol. 2021, 142, 107265. [Google Scholar] [CrossRef]
- Tang, G.-J.; He, X.-T.; Shi, F.-L.; Liu, J.-W.; Chen, X.-D.; Dong, J.-W. Topological photonic crystals: Physics, designs, and applications. Laser Photonics Rev. 2022, 16, 2100300. [Google Scholar] [CrossRef]
- Zhu, C.; Zhou, W.; Fang, J.; Ni, Y.; Fang, L.; Lu, C.; Xu, Z.; Kang, Z. Improved upconversion efficiency and thermal stability of NaYF4@SiO2 photonic crystal film. J. Alloys Compd. 2018, 741, 337–347. [Google Scholar] [CrossRef]
- Yang, X.; Jin, H.; Tao, X.; Yao, Y.; Xie, Y.; Lin, S. Photo-Responsive Azobenzene-Containing Inverse Opal Films for Information Security. Adv. Funct. Mater. 2023, 33, 2304424. [Google Scholar] [CrossRef]
- Akhter, P.; Nawaz, S.; Shafiq, I.; Nazir, A.; Shafique, S.; Jamil, F.; Park, Y.-K.; Hussain, M. Efficient visible light assisted photocatalysis using ZnO/TiO2 nanocomposites. Mol. Catal. 2023, 535, 112896. [Google Scholar] [CrossRef]
- Cheng, C.; Amini, A.; Zhu, C.; Xu, Z.; Song, H.; Wang, N. Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci. Rep. 2014, 4, 4181. [Google Scholar] [CrossRef] [PubMed]
- Rajput, R.B.; Jamble, S.N.; Kale, R.B. A review on TiO2/SnO2 heterostructures as a photocatalyst for the degradation of dyes and organic pollutants. J. Environ. Manag. 2022, 307, 114533. [Google Scholar] [CrossRef]
- Pligovka, A.; Hoha, A.; Turavets, U.; Poznyak, A.; Zakharau, Y. Formation features, morphology and optical properties of nanostructures via anodizing Al/Nb on Si and glass. Mater. Today Proc. 2021, 37, A8–A15. [Google Scholar] [CrossRef]
- Pligovka, A.; Zakhlebayeva, A.; Lazavenka, A. Niobium oxide nanocolumns formed via anodic alumina with modulated pore diameters. J. Phys. Conf. Ser. 2018, 987, 012006. [Google Scholar] [CrossRef]
- Zhan, Y.; Yang, Z.; Xu, Z.; Hu, Z.; Bai, X.; Ren, Y.; Li, M.; Ullah, A.; Khan, I.; Qiu, J.; et al. Electrochromism induced reversible upconversion luminescence modulation of WO3: Yb3+, Er3+ inverse opals for optical storage application. Chem. Eng. J. 2020, 394, 124967. [Google Scholar] [CrossRef]
- Popov, V.V.; Menushenkov, A.P.; Yastrebtsev, A.A.; Rudakov, S.G.; Ivanov, A.A.; Gaynanov, B.R.; Svetogorov, R.D.; Khramov, E.V.; Zubavichus, Y.V.; Molokova, A.Y.; et al. Multiscale study on the formation and evolution of the crystal and local structures in lanthanide tungstates Ln2(WO4)3. J. Alloys Compd. 2022, 910, 164922. [Google Scholar] [CrossRef]
- Lu, Y.; Jia, X.; Ma, Z.; Li, Y.; Yue, S.; Liu, X.; Zhang, J. W5+-W5+ pair induced LSPR of W18O49 to sensitize ZnIn2S4 for full-spectrum solar-light-driven photocatalytic hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2203638. [Google Scholar] [CrossRef]
- Wang, Z.; Meijerink, A. Concentration quenching in upconversion nanocrystals. J. Phys. Chem. C 2018, 122, 26298–26306. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Qiu, P.; Xu, D.; Lin, J.; Tang, Y.; Wang, F.; He, X.; Zhou, Z.; Sun, N.; Zhang, X.; et al. Controllable synthesis and upconversion luminescence of NaYF4: Yb3+, Er3+ nanocrystals. Ceram. Int. 2015, 41, S713–S718. [Google Scholar] [CrossRef]
- Yuan, J.; Zheng, G.; Ye, Y.; Chen, Y.; Deng, T.; Xiao, P.; Ye, Y.; Wang, W. Enhanced 1.5 mu m emission from Yb3+/Er3+ codoped tungsten tellurite glasses for broadband near-infrared optical fiber amplifiers and tunable fiber lasers. RSC Adv. 2021, 11, 27992–27999. [Google Scholar] [CrossRef]
- Chung, J.W.; Kwak, M.; Yang, H.K. Improvement of luminescence properties of NaYF4:Yb3+/Er3+ upconversion materials by a cross-relaxation mechanism based on co-doped Ho3+ ion concentrations. Luminescence 2021, 36, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Song, H.; Yang, L.; Yu, L.; Liu, Z.; Pan, G.; Bai, X.; Fan, L. Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3:Er3+,Yb3+ nanowires. J. Chem. Phys. 2005, 123, 174710. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Yang, Z.; Huang, A.; Zhang, H.; Qiu, J.; Song, Z. Thermomchromic reaction-induced reversible upconversion emission modulation for switching devices and tunable upconversion emission based on defect engineering of WO3: Yb3+, Er3+ phosphor. ACS Appl. Mater. Interfaces 2018, 10, 14941–14947. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Cun, Y.; Xu, Z.; Zi, Y.; Haider, A.A.; Ullah, A.; Khan, I.; Qiu, J.; Song, Z.; Yang, Z. Multiple anti-counterfeiting and optical storage of reversible dual-mode luminescence modification in photochromic CaWO4: Yb3+, Er3+, Bi3+ phosphor. Chem. Eng. J. 2022, 429, 132333. [Google Scholar] [CrossRef]
- Bai, X.; Yang, Z.; Xu, Z.; Cun, Y.; Zi, Y.; Zhao, H.; Song, Y.; He, Y.; Haider, A.A.; Qiu, J.; et al. Optical memory and anti-counterfeiting application based on luminescence reversible modification and color contrast of photochromic phosphor. Sci. China Mater. 2023, 66, 2408–2417. [Google Scholar] [CrossRef]
- Jimenez, G.L.; Lisiecki, R.; Starzyk, B.; Vazquez-Lopez, C.; Lesniak, M.; Szumera, M.; Szymczak, P.; Kochanowicz, M.; Dorosz, D. Temperature sensing properties of upconverted-emission materials based on a fluoroindate glass matrix. Sens. Actuators A Phys. 2023, 357, 114367. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Ruan, K.; Tatiana, C.; Cun, Y. Reversible Multi-Mode Optical Modification in Inverse-Opal-Structured WO3: Yb3+, Er3+ Photonic Crystal. Materials 2024, 17, 2436. https://doi.org/10.3390/ma17102436
Zhu B, Ruan K, Tatiana C, Cun Y. Reversible Multi-Mode Optical Modification in Inverse-Opal-Structured WO3: Yb3+, Er3+ Photonic Crystal. Materials. 2024; 17(10):2436. https://doi.org/10.3390/ma17102436
Chicago/Turabian StyleZhu, Bokun, Keliang Ruan, Cherkasova Tatiana, and Yangke Cun. 2024. "Reversible Multi-Mode Optical Modification in Inverse-Opal-Structured WO3: Yb3+, Er3+ Photonic Crystal" Materials 17, no. 10: 2436. https://doi.org/10.3390/ma17102436
APA StyleZhu, B., Ruan, K., Tatiana, C., & Cun, Y. (2024). Reversible Multi-Mode Optical Modification in Inverse-Opal-Structured WO3: Yb3+, Er3+ Photonic Crystal. Materials, 17(10), 2436. https://doi.org/10.3390/ma17102436