Electrospun Nanofibers with Pomegranate Peel Extract as a New Concept for Treating Oral Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Pomegranate Peel Extraction Using Design of Experiments
2.4. Determination of Selected Active Component Content and Total Phenolic Content (TPC)
Total Phenolic Content
2.5. Studying the Biological Activity of Pomegranate Peel Extract
2.5.1. Antioxidant Activity
2.5.2. Anti-Inflammatory Activity
2.6. Prediction of the DoE Model and Preparation of an Optimized Extract
2.6.1. The Antioxidative and Anti-Inflammatory Assays
2.6.2. Microbiological Activity
2.7. Preparation of the Electrospun Nanofibers with Optimized Pomegranate Peel Extract
2.8. Identification of Obtained Electrospun Nanofibers
2.8.1. Scanning Electron Microscopy (SEM)
2.8.2. X-ray Powder Diffraction (XRPD)
2.8.3. Infrared Spectroscopy with Attenuated Total Reflectance (IR-ATR)
2.9. Analysis of Electrospun Nanofibers’ Functionality
2.9.1. Dissolution Studies
2.9.2. Mucoadhesive Properties
2.10. Biological Activity of Electrospun Nanofibers
2.10.1. Antioxidant and Anti-Inflammatory Activities
2.10.2. Cytotoxicity Assay
2.10.3. Wound Healing
2.11. Statistical Analysis
3. Results and Discussion
3.1. Optimization of the Orange Peel Extraction Process and Characterization of Biological Activity
3.2. Preparation of the Electrospun Nanofibers and Analysis of Their Functionalities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oral Health. Available online: https://www.who.int/news-room/fact-sheets/detail/oral-health (accessed on 19 April 2024).
- Nazir, M.A. Prevalence of Periodontal Disease, Its Association with Systemic Diseases and Prevention. Int. J. Health Sci. 2017, 11, 72–80. [Google Scholar]
- Amato, M.; Santonocito, S.; Polizzi, A.; Tartaglia, G.M.; Ronsivalle, V.; Viglianisi, G.; Grippaudo, C.; Isola, G. Local Delivery and Controlled Release Drugs Systems: A New Approach for the Clinical Treatment of Periodontitis Therapy. Pharmaceutics 2023, 15, 1312. [Google Scholar] [CrossRef] [PubMed]
- Gościniak, A.; Paczkowska-Walendowska, M.; Skotnicka, A.; Ruchała, M.A.; Cielecka-Piontek, J. Can Plant Materials Be Valuable in the Treatment of Periodontal Diseases? Practical Review. Pharmaceutics 2021, 13, 2185. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska-Walendowska, M.; Cielecka-Piontek, J. Chitosan as a Functional Carrier for the Local Delivery Anti-Inflammatory Systems Containing Scutellariae Baicalensis Radix Extract. Pharmaceutics 2022, 14, 2148. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska-Walendowska, M.; Koumentakou, I.; Lazaridou, M.; Bikiaris, D.; Miklaszewski, A.; Plech, T.; Cielecka-Piontek, J. 3D-Printed Chitosan-Based Scaffolds with Scutellariae Baicalensis Extract for Dental Applications. Pharmaceutics 2024, 16, 359. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, A.; Mohammadipour, H.S.; Forouzanfar, F. The Potential Role of Tea in Periodontal Therapy: An Updated Review. Curr. Drug Discov. Technol. 2021, 18, 1–7. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Dvořák, J.; Rosiak, N.; Tykarska, E.; Szymańska, E.; Winnicka, K.; Ruchała, M.A.; Cielecka-Piontek, J. Buccal Resveratrol Delivery System as a Potential New Concept for the Periodontitis Treatment. Pharmaceutics 2021, 13, 417. [Google Scholar] [CrossRef]
- Fahmy, H.A.; Farag, M.A. Ongoing and Potential Novel Trends of Pomegranate Fruit Peel; a Comprehensive Review of Its Health Benefits and Future Perspectives as Nutraceutical. J. Food Biochem. 2022, 46, e14024. [Google Scholar] [CrossRef]
- Mo, Y.; Ma, J.; Gao, W.; Zhang, L.; Li, J.; Li, J.; Zang, J. Pomegranate Peel as a Source of Bioactive Compounds: A Mini Review on Their Physiological Functions. Front. Nutr. 2022, 9, 887113. [Google Scholar] [CrossRef]
- Sweidan, N.; Abu Rayyan, W.; Mahmoud, I.; Ali, L. Phytochemical Analysis, Antioxidant, and Antimicrobial Activities of Jordanian Pomegranate Peels. PLoS ONE 2023, 18, e0295129. [Google Scholar] [CrossRef]
- Umar, D.; Dilshad, B.; Farhan, M.; Ali, A.; Baroudi, K. The Effect of Pomegranate Mouthrinse on Streptococcus Mutans Count and Salivary pH: An in Vivo Study. J. Adv. Pharm. Technol. Res. 2016, 7, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Cai, J.; Peng, G.; Zhou, H.; Zhang, W.; Zhang, D.; Gong, D. Metal Organic Framework-Loaded Biohybrid Magnetic Microrobots for Enhanced Antibacterial Treatment. Colloids Surf. A Physicochem. Eng. Asp. 2024, 685, 133295. [Google Scholar] [CrossRef]
- Lu, J.; Shen, X.; Li, H.; Du, J. Recent Advances in Bacteria-Based Platforms for Inflammatory Bowel Diseases Treatment. Exploration 2024, 20230142. [Google Scholar] [CrossRef]
- Gupte, M.J.; Ma, P.X. Nanofibrous Scaffolds for Dental and Craniofacial Applications. J. Dent. Res. 2012, 91, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Mosher, C.Z.; Brudnicki, P.A.P.; Gong, Z.; Childs, H.R.; Lee, S.W.; Antrobus, R.M.; Fang, E.C.; Schiros, T.N.; Lu, H.H. Green Electrospinning for Biomaterials and Biofabrication. Biofabrication 2021, 13, 035049. [Google Scholar] [CrossRef] [PubMed]
- Batra, S.; Sharma, S. Chapter 14—Trend of Nanofibers in Dental Regeneration: Perspectives and Challenges. In Materials for Biomedical Engineering; Grumezescu, V., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 463–484. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780128184318000143 (accessed on 21 May 2024).
- Kapahi, H.; Khan, N.M.; Bhardwaj, A.; Mishra, N. Implication of Nanofibers in Oral Drug Delivery. Curr. Pharm. Des. 2015, 21, 2021–2036. [Google Scholar] [CrossRef] [PubMed]
- Ghasemiyeh, P.; Mohammadi-Samani, S.; Nokhodchi, A. An Overview of Nanofibers and Microfibers for Improved Oral Delivery of Medicines: Challenges and Advances. J. Drug Deliv. Sci. Technol. 2024, 91, 105235. [Google Scholar] [CrossRef]
- Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D.S.; Mehrotra, D. Polycaprolactone as Biomaterial for Bone Scaffolds: Review of Literature. J. Oral. Biol. Craniofac Res. 2020, 10, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Polycaprolactone—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/polycaprolactone (accessed on 19 April 2024).
- Kim, G.-M.; Le, K.H.T.; Giannitelli, S.M.; Lee, Y.J.; Rainer, A.; Trombetta, M. Electrospinning of PCL/PVP Blends for Tissue Engineering Scaffolds. J. Mater. Sci. Mater. Med. 2013, 24, 1425–1442. [Google Scholar] [CrossRef] [PubMed]
- Bejaoui, M.; Galai, H.; Touati, F.; Kouass, S.; Bejaoui, M.; Galai, H.; Touati, F.; Kouass, S. Multifunctional Roles of PVP as a Versatile Biomaterial in Solid State. In Dosage Forms—Innovation and Future Perspectives; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Živković, J.; Šavikin, K.; Janković, T.; Ćujić, N.; Menković, N. Optimization of Ultrasound-Assisted Extraction of Polyphenolic Compounds from Pomegranate Peel Using Response Surface Methodology. Sep. Purif. Technol. 2018, 194, 40–47. [Google Scholar] [CrossRef]
- Fourati, M.; Smaoui, S.; Ennouri, K.; Ben Hlima, H.; Elhadef, K.; Chakchouk-Mtibaa, A.; Sellem, I.; Mellouli, L. Multiresponse Optimization of Pomegranate Peel Extraction by Statistical versus Artificial Intelligence: Predictive Approach for Foodborne Bacterial Pathogen Inactivation. Evid.-Based Complement. Altern. Med. 2019, 2019, e1542615. [Google Scholar] [CrossRef]
- He, L.; Lan, W.; Ahmed, S.; Qin, W.; Liu, Y. Electrospun Polyvinyl Alcohol Film Containing Pomegranate Peel Extract and Sodium Dehydroacetate for Use as Food Packaging. Food Packag. Shelf Life 2019, 22, 100390. [Google Scholar] [CrossRef]
- Surendhiran, D.; Li, C.; Cui, H.; Lin, L. Fabrication of High Stability Active Nanofibers Encapsulated with Pomegranate Peel Extract Using Chitosan/PEO for Meat Preservation. Food Packag. Shelf Life 2020, 23, 100439. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Miklaszewski, A.; Cielecka-Piontek, J. Improving Solubility and Permeability of Hesperidin through Electrospun Orange-Peel-Extract-Loaded Nanofibers. Int. J. Mol. Sci. 2023, 24, 7963. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska-Walendowska, M.; Gościniak, A.; Szymanowska, D.; Szwajgier, D.; Baranowska-Wójcik, E.; Szulc, P.; Dreczka, D.; Simon, M.; Cielecka-Piontek, J. Blackberry Leaves as New Functional Food? Screening Antioxidant, Anti-Inflammatory and Microbiological Activities in Correlation with Phytochemical Analysis. Antioxidants 2021, 10, 1945. [Google Scholar] [CrossRef] [PubMed]
- Korbecka-Paczkowska, M.; Karpiński, T.M. In Vitro Assessment of Antifungal and Antibiofilm Efficacy of Commercial Mouthwashes against Candida Albicans. Antibiotics 2024, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska-Walendowska, M.; Rosiak, N.; Plech, T.; Karpiński, T.M.; Miklaszewski, A.; Witkowska, K.; Jaskólski, M.; Erdem, C.; Cielecka-Piontek, J. Electrospun Nanofibers Loaded with Marigold Extract Based on PVP/HPβCD and PCL/PVP Scaffolds for Wound Healing Applications. Materials 2024, 17, 1736. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.; Sousa Lobo, J.M. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Szymańska, E.; Winnicka, K.; Szwajgier, D.; Baranowska-Wójcik, E.; Ruchała, M.A.; Simon, M.; Cielecka-Piontek, J. Cyclodextrin as Functional Carrier in Development of Mucoadhesive Tablets Containing Polygoni Cuspidati Extract with Potential for Dental Applications. Pharmaceutics 2021, 13, 1916. [Google Scholar] [CrossRef]
- Benchagra, L.; Berrougui, H.; Islam, M.O.; Ramchoun, M.; Boulbaroud, S.; Hajjaji, A.; Fulop, T.; Ferretti, G.; Khalil, A. Antioxidant Effect of Moroccan Pomegranate (Punica Granatum L. Sefri Variety) Extracts Rich in Punicalagin against the Oxidative Stress Process. Foods 2021, 10, 2219. [Google Scholar] [CrossRef]
- Chukwuma, C.I.; Mashele, S.S.; Akuru, E.A. Evaluation of the in Vitro ⍺-Amylase Inhibitory, Antiglycation, and Antioxidant Properties of Punica Granatum L. (Pomegranate) Fruit Peel Acetone Extract and Its Effect on Glucose Uptake and Oxidative Stress in Hepatocytes. J. Food Biochem. 2020, 44, e13175. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, Z.; Ma, H.; Atungulu, G.G. Extract of Phenolics From Pomegranate Peels. Open Food Sci. J. 2011, 5, 17–25. [Google Scholar] [CrossRef]
- Smaoui, S.; Hlima, H.B.; Mtibaa, A.C.; Fourati, M.; Sellem, I.; Elhadef, K.; Ennouri, K.; Mellouli, L. Pomegranate Peel as Phenolic Compounds Source: Advanced Analytical Strategies and Practical Use in Meat Products. Meat Sci. 2019, 158, 107914. [Google Scholar] [CrossRef] [PubMed]
- Elfalleh, W.; Hannachi, H.; Tlili, N.; Yahia, Y.; Nasri, N.; Ferchichi, A. Total Phenolic Contents and Antioxidant Activities of Pomegranate Peel, Seed, Leaf and Flower. J. Med. Plants Res. 2011, 6, 4724–4730. [Google Scholar] [CrossRef]
- Politis, S.N.; Colombo, P.; Colombo, G.; Rekkas, D.M. Design of Experiments (DoE) in Pharmaceutical Development. Drug Dev. Ind. Pharm. 2017, 43, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Shen, C.; Yang, Z.; Cai, Z.; Deng, Z.; Wu, D. Polycaprolactone/Polyvinyl Pyrrolidone Nanofibers Developed by Solution Blow Spinning for Encapsulation of Chlorogenic Acid. Food Qual. Saf. 2022, 6, fyac014. [Google Scholar] [CrossRef]
- Varsei, M.; Tanha, N.R.; Gorji, M.; Mazinani, S. Fabrication and Optimization of PCL/PVP Nanofibers with Lawsonia Inermis for Antibacterial Wound Dressings. Polym. Polym. Compos. 2021, 29 (Suppl. 9), S1403–S1413. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Qian, Y.; Lv, L.; Li, X.; Liu, Y. Characteristics of MgO/PCL/PVP Antibacterial Nanofiber Membranes Produced by Electrospinning Technology. Surf. Interfaces 2022, 28, 101661. [Google Scholar] [CrossRef]
- Abdelrazek, E.M.; Abdelghany, A.M.; Badr, S.I.; Morsi, M.A. Structural, Optical, Morphological and Thermal Properties of PEO/PVP Blend Containing Different Concentrations of Biosynthesized Au Nanoparticles. J. Mater. Res. Technol. 2018, 7, 419–431. [Google Scholar] [CrossRef]
- García-Casas, I.; Montes, A.; Valor, D.; Pereyra, C.; Martínez de la Ossa, E.J. Foaming of Polycaprolactone and Its Impregnation with Quercetin Using Supercritical CO2. Polymers 2019, 11, 1390. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Miklaszewski, A.; Michniak-Kohn, B.; Cielecka-Piontek, J. The Antioxidant Potential of Resveratrol from Red Vine Leaves Delivered in an Electrospun Nanofiber System. Antioxidants 2023, 12, 1777. [Google Scholar] [CrossRef]
- Knopp, M.M.; Nguyen, J.H.; Becker, C.; Francke, N.M.; Jørgensen, E.B.; Holm, P.; Holm, R.; Mu, H.; Rades, T.; Langguth, P. Influence of Polymer Molecular Weight on in Vitro Dissolution Behavior and in Vivo Performance of Celecoxib:PVP Amorphous Solid Dispersions. Eur. J. Pharm. Biopharm. 2016, 101, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Saluja, H.; Mehanna, A.; Panicucci, R.; Atef, E. Hydrogen Bonding: Between Strengthening the Crystal Packing and Improving Solubility of Three Haloperidol Derivatives. Molecules 2016, 21, 719. [Google Scholar] [CrossRef] [PubMed]
- Huo, P.; Han, X.; Zhang, W.; Zhang, J.; Kumar, P.; Liu, B. Electrospun Nanofibers of Polycaprolactone/Collagen as a Sustained-Release Drug Delivery System for Artemisinin. Pharmaceutics 2021, 13, 1228. [Google Scholar] [CrossRef] [PubMed]
- Flamini, M.D.; Lima, T.; Corkum, K.; Alvarez, N.J.; Beachley, V. Annealing Post-Drawn Polycaprolactone (PCL) Nanofibers Optimizes Crystallinity and Molecular Alignment and Enhances Mechanical Properties and Drug Release Profiles. Mater. Adv. 2022, 3, 3303–3315. [Google Scholar] [CrossRef]
- Augustine, R.; Kalarikkal, N.; Thomas, S. Effect of Zinc Oxide Nanoparticles on the in Vitro Degradation of Electrospun Polycaprolactone Membranes in Simulated Body Fluid. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 28–37. [Google Scholar] [CrossRef]
- Bikiaris, N.D.; Koumentakou, I.; Michailidou, G.; Kostoglou, M.; Vlachou, M.; Barmpalexis, P.; Karavas, E.; Papageorgiou, G.Z. Investigation of Molecular Weight, Polymer Concentration and Process Parameters Factors on the Sustained Release of the Anti-Multiple-Sclerosis Agent Teriflunomide from Poly(ε-Caprolactone) Electrospun Nanofibrous Matrices. Pharmaceutics 2022, 14, 1693. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, Y. The Guest Polymer Effect on the Dissolution of Drug–Polymer Crystalline Inclusion Complexes. RSC Adv. 2021, 11, 13091–13096. [Google Scholar] [CrossRef] [PubMed]
- Abid, Z.; Dalskov Mosgaard, M.; Manfroni, G.; Singh Petersen, R.; Hagner Nielsen, L.; Müllertz, A.; Boisen, A.; Sylvest Keller, S. Investigation of Mucoadhesion and Degradation of PCL and PLGA Microcontainers for Oral Drug Delivery. Polymers 2019, 11, 1828. [Google Scholar] [CrossRef]
- Intini, C.; Elviri, L.; Cabral, J.; Mros, S.; Bergonzi, C.; Bianchera, A.; Flammini, L.; Govoni, P.; Barocelli, E.; Bettini, R.; et al. 3D-Printed Chitosan-Based Scaffolds: An in Vitro Study of Human Skin Cell Growth and an in-Vivo Wound Healing Evaluation in Experimental Diabetes in Rats. Carbohydr. Polym. 2018, 199, 593–602. [Google Scholar] [CrossRef]
Number of Extract | % Methanol Concentration (V/V) | Extraction Temperature (°C) | Extraction Time (min) |
---|---|---|---|
E1 | 30 | 30 | 30 |
E2 | 30 | 50 | 90 |
E3 | 30 | 70 | 60 |
E4 | 50 | 30 | 90 |
E5 | 50 | 50 | 60 |
E6 | 50 | 70 | 30 |
E7 | 70 | 30 | 60 |
E8 | 70 | 50 | 30 |
E9 | 70 | 70 | 90 |
N1 | N2 | N3 | N4 | N5 | N6 | |
---|---|---|---|---|---|---|
PCL | 1.0 g | 1.0 g | 0.5 g | 0.5 g | - | - |
PVP | 1.0 g | 1.0 g | 1.5 g | 1.5 g | 2.0 g | 2.0 g |
Extract | 0.5 g | - | 0.5 g | - | 0.5 g | - |
Number of Extract | Content of Active Components | Antioxidant Properties | Anti-Inflammatory Properties | ||||
---|---|---|---|---|---|---|---|
Rutin (μg/1 g Plant Material) | Kaemferol (μg/1 g Plant Material) | TPC (mg GAE/1 g Plant Material) | DPPH IC50 (µg/mL) | FRAP IC0.5 (µg/mL) | CUPRAC IC0.5 (µg/mL) | Inhibition of Hyaluronidase Activity IC50 (mg/mL) | |
E1 | 108.21 ± 0.53 | 0.84 ± 0.19 | 81.08 ± 1.40 | 39.64 ± 4.84 | 20.73 ± 1.86 | 22.29 ± 0.62 | 8.72 ± 0.28 |
E2 | 132.72 ± 1.59 | 0.86 ± 0.01 | 85.54 ± 0.18 | 35.02 ± 0.09 | 20.34 ± 1.65 | 22.73 ± 0.56 | 4.78 ± 0.11 |
E3 | 140.98 ± 0.49 | 1.19 ± 0.05 | 89.35 ± 3.76 | 36.09 ± 2.21 | 21.63 ± 1.29 | 21.37 ± 0.43 | 4.71 ± 0.05 |
E4 | 171.87 ± 5.45 | 5.29 ± 0.37 | 113.56 ± 7.39 | 34.47 ± 1.55 | 13.96 ± 0.62 | 16.25 ± 0.36 | 4.7 ± 0.10 |
E5 | 184.58 ± 3.21 | 5.97 ± 0.27 | 113.62 ± 2.82 | 29.33 ± 1.42 | 13.73 ± 0.53 | 14.84 ± 0.88 | 4.67 ± 0.20 |
E6 | 202.17 ± 17.23 | 4.03 ± 0.09 | 113.50 ± 5.71 | 27.97 ± 3.00 | 12.48 ± 0.02 | 14.99 ± 1.03 | 4.56 ± 0.26 |
E7 | 223.75 ± 3.53 | 10.12 ± 0.62 | 138.44 ± 4.68 | 24.40 ± 0.66 | 10.84 ± 1.51 | 12.45 ± 0.39 | 3.74 ± 0.98 |
E8 | 242.16 ± 15.17 | 9.80 ± 0.13 | 146.63 ± 12.07 | 20.74 ± 0.92 | 9.96 ± 0.76 | 10.56 ± 0.17 | 3.53 ± 1.02 |
E9 | 273.22 ± 4.19 | 7.52 ± 0.56 | 145.78 ± 8.22 | 22.98 ± 1.17 | 10.39 ± 0.45 | 11.21 ± 0.46 | 3.66 ± 0.90 |
MIC (mg/mL) | |
---|---|
Candida albicans | 6.25–12.5 |
Staphylococcus aureus | 6.25–12.5 |
Pseudomonas aeruginosa | 12.5 |
Streptococcus mutans ATCC 25175 | 6.25 |
Schaalia odontolytica (Actinomyces odontolyticus) ATCC 17929 | 3.125–6.25 |
Fusobacterium nucleatum ATCC 25586 | 25 |
Porphyromonas gingivalis ATCC 33277 | 12–25 |
Prevotella intermedia ATCC 25611 | 12–25 |
Number of Nanofibers | Average Diameter of Nanofibers (nm) | Nanofiber Production Efficiency (%) |
---|---|---|
N1 | 476.19 ± 37.90 | 15.79 |
N2 | 2270.21 ± 198.49 | 13.52 |
N3 | 1135.11 ± 73.36 | 47.2 |
N4 | 1162.79 ± 87.36 | 42.82 |
N5 | 208.19 ± 10.93 | 98.17 |
N6 | 376.52 ± 21.04 | 86.52 |
Nanofibers | Antioxidant Activity | Anti-Inflammatory Activity |
---|---|---|
IC50 (μg/mL) | IC50 (μg/mL) | |
N1 | 267.57 ± 2.94 | 183.73 ± 9.27 |
N3 | 244.13 ± 2.04 | 165.18 ± 11.19 |
N5 | 147.59 ± 0.79 | 120.82 ± 10.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paczkowska-Walendowska, M.; Ignacyk, M.; Miklaszewski, A.; Plech, T.; Karpiński, T.M.; Kwiatek, J.; Swora-Cwynar, E.; Walendowski, M.; Cielecka-Piontek, J. Electrospun Nanofibers with Pomegranate Peel Extract as a New Concept for Treating Oral Infections. Materials 2024, 17, 2558. https://doi.org/10.3390/ma17112558
Paczkowska-Walendowska M, Ignacyk M, Miklaszewski A, Plech T, Karpiński TM, Kwiatek J, Swora-Cwynar E, Walendowski M, Cielecka-Piontek J. Electrospun Nanofibers with Pomegranate Peel Extract as a New Concept for Treating Oral Infections. Materials. 2024; 17(11):2558. https://doi.org/10.3390/ma17112558
Chicago/Turabian StylePaczkowska-Walendowska, Magdalena, Miłosz Ignacyk, Andrzej Miklaszewski, Tomasz Plech, Tomasz M. Karpiński, Jakub Kwiatek, Ewelina Swora-Cwynar, Michał Walendowski, and Judyta Cielecka-Piontek. 2024. "Electrospun Nanofibers with Pomegranate Peel Extract as a New Concept for Treating Oral Infections" Materials 17, no. 11: 2558. https://doi.org/10.3390/ma17112558
APA StylePaczkowska-Walendowska, M., Ignacyk, M., Miklaszewski, A., Plech, T., Karpiński, T. M., Kwiatek, J., Swora-Cwynar, E., Walendowski, M., & Cielecka-Piontek, J. (2024). Electrospun Nanofibers with Pomegranate Peel Extract as a New Concept for Treating Oral Infections. Materials, 17(11), 2558. https://doi.org/10.3390/ma17112558