Radio-Frequency Conductivity Characteristics and Corresponding Mechanism of Graphene/Copper Multilayer Structures
Abstract
:1. Introduction
2. Experimental Methods
2.1. Fabrication of Gr/Cu Multilayer Structures
2.2. Characterizations of the Gr/Cu Multilayer Structures
2.3. RF Conductivity Measurements of the Gr/Cu Multilayer Structures
3. Results and Discussion
3.1. Raman Spectra of Deposited Gr
3.2. RF Conductivity of Gr/Cu
3.3. The Mechanism of the Difference in RF Conductivity between Gr/Cu and P-Cu
3.3.1. Carrier Concentration and Mobility of S-Gr/Cu and P-Cu in RF Condition
3.3.2. Scattering Mechanism of M-Gr/Cu in RF Condition
3.3.3. Gr/Cu Interface-Related RF Conductivity Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M.B.; Jeon, S.; Chung, D.Y.; et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803–809. [Google Scholar] [CrossRef]
- Peng, J.; Chen, B.L.; Wang, Z.C.; Guo, J.; Wu, B.H.; Hao, S.Q.; Zhang, Q.H.; Gu, L.; Qin Zhou, Q.; Liu, Z.; et al. Surface coordination layer passivates oxidation of copper. Nature 2020, 586, 390–394. [Google Scholar] [CrossRef]
- Tong, X.; You, G.Q.; Ding, Y.H.; Xue, H.S.; Wang, Y.C.; Guo, W. Effect of grain size on low-temperature electrical resistivity and thermal conductivity of pure magnesium. Mater. Lett. 2018, 229, 261–264. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, Y.R.; Xia, F.; Liu, F.; He, D.L.; Long, G.H.; Zeng, X.W.; Liang, X.L.; Jin, C.H.; Wang, Y.W.; et al. An epidermal electronic system for physiological information acquisition, processing, and storage with an integrated flash memory array. Sci. Adv. 2022, 8, eabp8075. [Google Scholar] [CrossRef]
- Lu, L.; Shen, Y.F.; Chen, X.H.; Qian, L.H.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422–426. [Google Scholar] [CrossRef]
- Singh, G.; Singh, S.; Singh, J.; Pandey, P.M. Parameters effect on electrical conductivity of copper fabricated by rapid manufacturing. Mater. Manuf. Process. 2020, 35, 1769–1780. [Google Scholar] [CrossRef]
- Sun, P.F.; Li, Z.W.; Hou, J.P.; Xu, A.M.; Wang, Q.; Zhang, Y.; Zhang, Z.J.; Zhang, P.L.; Zhang, Z.F. Quantitative study on the evolution of microstructure, strength, and electrical conductivity of the annealed oxygen-free copper wires. Adv. Eng. Mater. 2022, 24, 2200037. [Google Scholar] [CrossRef]
- Guo, T.B.; Wei, S.R.; Wang, C.; Li, Q.; Jia, Z. Texture evolution and strengthening mechanism of single crystal copper during ECAP. Ma Sci. Eng. A-Struct. 2019, 759, 97–104. [Google Scholar] [CrossRef]
- Cao, M.; Luo, Y.Z.; Xie, Y.Q.; Tan, Z.Q.; Fan, G.L.; Guo, Q.; Su, Y.S.; Li, Z.Q.; Xiong, D.B. The influence of interface structure on the electrical conductivity of graphene embedded in aluminum matrix. Adv. Mater. Interfaces 2019, 6, 1900468. [Google Scholar] [CrossRef]
- Wang, J.Q.; Hu, D.K.; Zhu, Y.C.; Guo, P.J. Electrical properties of in situ synthesized Ag-Graphene/Ni composites. Materials 2022, 15, 6423. [Google Scholar] [CrossRef]
- Petrov, Y.N. The influence of the electron structure into the stacking fault energy of noble metals. J. Electron. Spectrosc. 2007, 160, 35–38. [Google Scholar] [CrossRef]
- Robinson, J.A.; Wetherington, M.; Tedesco, J.L.; Campbell, P.M.; Weng, X.; Stitt, J.; Fanton, M.A.; Frantz, E.; Snyder, D.; VanMil, B.L.; et al. Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: A guide to achieving high mobility on the wafer scale. Nano Lett. 2009, 9, 2873–2876. [Google Scholar] [CrossRef]
- Cao, M.; Xiong, D.B.; Yang, L.; Li, S.S.; Xie, Y.Q.; Guo, Q.; Li, Z.Q.; Adams, H.; Gu, J.J.; Fan, T.X.; et al. Ultrahigh electrical conductivity of graphene embedded in metals. Adv. Funct. Mater. 2019, 29, 1806792. [Google Scholar] [CrossRef]
- Williamson, I.A.D.; Nguyen, T.A.N.; Wang, Z. Suppression of the skin effect in radio frequency transmission lines via gridded conductor fibers. Appl. Phys. Lett. 2016, 108, 083502. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Wu, Y.; Kang, K.; Chen, Y.F.; Li, Y.R.; Chen, T.S.; Xu, Y.H. Characterization of CVD graphene permittivity and conductivity in micro-/millimeter wave frequency range. AIP Adv. 2016, 6, 095014. [Google Scholar] [CrossRef]
- Krupka, J.; Strupinski, W.; Kwietniewski, N. Microwave conductivity of very thin graphene and metal films. J. Nanosci. Nanotechnol. 2011, 11, 3358–3362. [Google Scholar] [CrossRef]
- González-Herrero, H.; Pou, P.; Lobo-Checa, J.; Fernández-Torre, D.; Craes, F.; Martínez-Galera, A.J.; Ugeda, M.M.; Corso, M.; Ortega, J.E.; Gómez-Rodríguez, J.M.; et al. Graphene tunable transparency to tunneling electrons: A direct tool to measure the local coupling. ACS Nano 2016, 10, 5131–5144. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, W.; Zhang, H.D.; Wang, H.Q.; Cai, H.; Zhang, Y.X.; Yang, Z.Q. Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators. Nano Energy 2020, 70, 104540. [Google Scholar] [CrossRef]
- Liu, L.; Feng, Y.J.; Wu, L.Y.; Liu, Q.G.; Zhao, E.H.; Fu, Z.L.; Kang, L.; Yang, S.Z.; Wu, P.H. Local microwave characterization of metal films using a scanning microwave near-field microscope. Solid. State Commun. 2001, 119, 133–135. [Google Scholar] [CrossRef]
- Tselev, A.; Lavrik, N.V.; Vlassiouk, I.; Briggs, D.P.; Rutgers, M.; Proksch, R.; Kalinin, S.V. Near-field microwave scanning probe imaging of conductivity inhomogeneities in CVD graphene. Nanotechnology 2012, 23, 385706. [Google Scholar] [CrossRef]
- Pushkarev, V.; Nemec, H.; Paingad, V.C.; Manák, J.; Jurka, V.; Novák, V.; Ostatnicky, T.; Kuzel, P. charge transport in single-crystalline GaAs nanobars: Impact of band bending revealed by terahertz spectroscopy. Adv. Mater. Interface 2022, 32, 2107403. [Google Scholar] [CrossRef]
- Lin, I.T.; Liu, J.M. Terahertz frequency-dependent carrier scattering rate and mobility of monolayer and AA-stacked multilayer graphene. IEEE J. Sel. Top. Quant. 2014, 20, 8400108. [Google Scholar]
- Fonseca, J.M.; Moura-Melo, W.A.; Pereira, A.R. Scattering of charge carriers in graphene induced by topological defects. Phys. Lett. A 2010, 374, 4359–4363. [Google Scholar] [CrossRef]
- Talanov, V.V.; Del Barga, C.; Wickey, L.; Kalichava, I.; Gonzales, E.; Shaner, E.A.; Gin, A.V.; Kalugin, N.G. Few-Layer graphene characterization by near-field scanning microwave microscopy. ACS Nano 2010, 4, 3831–3838. [Google Scholar] [CrossRef]
- Yang, K.M.; Ma, Y.C.; Zhang, Z.Y.; Zhu, J.; Sun, Z.B.; Chen, J.S.; Zhao, H.H.; Song, J.; Li, Q.; Chen, N.Q.; et al. Anisotropic thermal conductivity and associated heat transport mechanism in roll-to-roll graphene reinforced copper matrix composites. Acta Mater. 2020, 197, 342–354. [Google Scholar] [CrossRef]
- Symons, W.C.; Whites, K.W.; Lodder, R.A. Theoretical and experimental characterization of a near-field scanning microwave (NSMM). IEEE Trans. Microw. Theory 2003, 51, 91–99. [Google Scholar] [CrossRef]
- Yue, S.; Tian, S.K.; Wang, N.; Xin, T.M.; Wang, J.Q.; Xu, G. Measurements on the conductivity of copper coating with resonant cavity. Radiat. Detect. Technol. 2023, 7, 248–254. [Google Scholar] [CrossRef]
- Kataria, S.; Patsha, A.; Dhara, S.; Tyagi, A.K.; Barshilia, H.C. Raman imaging on high-quality graphene grown by hot-filament chemical vapor deposition. J. Raman Spectrosc. 2012, 43, 1864–1867. [Google Scholar] [CrossRef]
- Li, J.; Ji, H.X.; Zhang, X.; Wang, X.Y.; Jin, Z.; Wang, D.; Wan, L.J. Controllable atmospheric pressure growth of mono-layer, bi-layer and tri-layer graphene. Chem. Commun. 2014, 50, 11012–11015. [Google Scholar] [CrossRef]
- Zhang, L.; Ju, Y.; Hosoi, A.; Fujimoto, A. Microwave atomic force microscopy: Quantitative measurement and characterization of electrical properties on the nanometer scale. Appl. Phys. Express 2012, 5, 016602. [Google Scholar] [CrossRef]
- Okazaki, S.; Okazaki, N.; Hirose, Y.; Furubayashi, Y.; Hitosugi, T.; Shimada, T.; Hasegawa, T. Quantitative analysis of thin-film conductivity by scanning microwave microscope. Appl. Surf. Sci. 2007, 254, 757–759. [Google Scholar] [CrossRef]
- Zhang, L.; Ju, Y.; Hosoi, A.; Fujimoto, A. Microwave atomic force microscopy imaging for nanometer-scale electrical property characterization. Rev. Sci. Instrum. 2010, 81, 123708. [Google Scholar] [CrossRef]
- Monti, T.; AD Donato, A.D.; Mencarelli, D.; Venanzoni, G.; Tselev, A. Near field microwave microscopy for nanoscale characterization, imaging and patterning of graphene. In Proceedings of the Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Taipei, China, 12 March 2015. [Google Scholar]
- Nandy, T.; Hassan, A.; Dutta, A.; Tawsif, A. Temperature effect on electronic properties of armchair graphene nanoribbon. In Proceedings of the International Conference on Advances in Electrical Engineering, Dhaka, Bangladesh, 17–19 December 2015. [Google Scholar]
- Mishra, S.; Dizon, J.R.; Aga, R.S.; Wu, J.Z. A comparative study of simulated and experimentally obtained nonuniformity in thermal and electrical properties of conducting films. J. Appl. Phys. 2006, 100, 083709. [Google Scholar] [CrossRef]
- Popov, V.N.; Henrard, L.; Lambin, P. Resonant Raman spectra of graphene with point defects. Carbon 2009, 47, 2448–2455. [Google Scholar] [CrossRef]
- Massabeau, S.; Baillergeau, M.; Phuphachong, T.; Berger, C.; de Heer, W.A.; Dhillon, S.; Tignon, J.; de Vaulchier, L.A.; Ferreira, R.; Mangeney, J. Evidence of fermi level pinning at the Dirac point in epitaxial multilayer graphene. Phys. Rev. B 2017, 95, 085311. [Google Scholar] [CrossRef]
- Moktadir, Z.; Hang, S.; Mizuta, H. Defect-induced Fermi level pinning and suppression of ambipolar behaviour in graphene. Carbon 2015, 93, 325–334. [Google Scholar] [CrossRef]
- Lee, H.; Galstyan, O.; Babajanyan, A.; Friedman, B.; Berthiau, G.; Kim, J.; Han, D.S.; Lee, K. Characterization of anisotropic electrical conductivity of carbon fiber composite materials by a microwave probe pumping technique. J. Compos. Mater. 2015, 50, 1999–2004. [Google Scholar] [CrossRef]
- Zheng, H.S.; Sun, E.W.; Qi, X.D.; Yang, B.; Zhang, R.; Cao, W.W. Temperature and frequency dependent defect dipole kinematics in “hard” piezoelectric ceramics. Sens. Actuat. A-Phys. 2022, 344, 113712. [Google Scholar] [CrossRef]
- Huang, F.R.; Fan, S.T.; Tian, Y.Q.; Qu, X.H.; Li, X.Y.; Qin, M.F.; Muhammad, J.; Zhang, X.F.; Zhang, Z.D.; Dong, X.L. Influence of N-doping on dielectric properties of carbon-coated copper nanocomposites in the microwave and terahertz ranges. J. Mater. 2022, 8, 1131–1140. [Google Scholar] [CrossRef]
- Ni, J.M.; Cao, L.; Zhong, B.A.; Li, Q.; Guo, C.X.; Song, J.; Liu, Y.; Lu, M.H.; Fan, T.X. Characterizing local electronic states of twin boundaries in copper. Nano Lett. 2024, 24, 5474–5480. [Google Scholar] [CrossRef]
Type of Gr (Controlled by Growth Pressure) | Ratio of I2D/IG | ||
---|---|---|---|
Percentage with a Ratio of 1.5–2.5 (%) | Percentage with a Ratio of 1–1.5 (%) | Percentage with a Ratio of 0–1 (%) | |
S-Gr (1 Torr) | 98.1 | 1.3 | 0.6 |
M-Gr (250 Torr) | 2.1 | 3.7 | 94.2 |
Test Conditions | Electrical Conductivity (MS/m) | ||
---|---|---|---|
P-Cu | M-Gr/Cu | S-Gr/Cu | |
DC | 17 ± 0.8 | 19.8 ± 1.2 | 21 ± 1.5 |
SMIM | 17 ± 2.5 | 6.5 ± 2.2 | 71.1 ± 2.5 |
Test Frequency (GHz) | RF Conductivity (MS/m) | ||
---|---|---|---|
P-Cu | M-Gr/Cu | S-Gr/Cu | |
3.1 | 56.8 ± 1.8 | 37.1 ± 1.4 | 65.9 ± 2.9 |
8.2 | 51.8 ± 2.5 | 31.6 ± 2.3 | 59.8 ± 3.1 |
(%) | |||
P-Cu | M-Gr/Cu | S-Gr/Cu | |
3.1 | - | −34.68 | 15.49 |
8.2 | - | −37.06 | 15.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Song, J.; Ni, J.; Liu, Y.; Fan, T. Radio-Frequency Conductivity Characteristics and Corresponding Mechanism of Graphene/Copper Multilayer Structures. Materials 2024, 17, 2999. https://doi.org/10.3390/ma17122999
Guo C, Song J, Ni J, Liu Y, Fan T. Radio-Frequency Conductivity Characteristics and Corresponding Mechanism of Graphene/Copper Multilayer Structures. Materials. 2024; 17(12):2999. https://doi.org/10.3390/ma17122999
Chicago/Turabian StyleGuo, Chongxiao, Jian Song, Jiamiao Ni, Yue Liu, and Tongxiang Fan. 2024. "Radio-Frequency Conductivity Characteristics and Corresponding Mechanism of Graphene/Copper Multilayer Structures" Materials 17, no. 12: 2999. https://doi.org/10.3390/ma17122999
APA StyleGuo, C., Song, J., Ni, J., Liu, Y., & Fan, T. (2024). Radio-Frequency Conductivity Characteristics and Corresponding Mechanism of Graphene/Copper Multilayer Structures. Materials, 17(12), 2999. https://doi.org/10.3390/ma17122999