Microstructure and Mechanical Properties of Multilayered Ti-Based Bulk Metallic Glass Composites Containing Various Thicknesses of Ti-Rich Laminates
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, X.; Zhou, Z.; Shang, Y.; Yang, Y.; Zi, Y. Metallic glass-based triboelectric nanogenerators. Nat. Commun. 2023, 14, 1023. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, L.; Chen, Y.; Dai, S.; Liu, Q.; Xue, N.; Li, W.; Wang, J.; Huang, Y.; Yang, K.; et al. Effect of Chemical Composition on the Thermoplastic Formability and Nanoindentation of Ti-Based Bulk Metallic Glasses. Materials 2024, 17, 1699. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Du, Y. Mechanical Properties of Bulk Metallic Glasses Additively Manufactured by Laser Powder Bed Fusion: A Review. Materials 2023, 16, 7034. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-T.; Zhao, R.; Ding, D.-W.; Liu, Y.-H.; Bai, H.-Y.; Li, M.-Z.; Wang, W.-H. Distinct relaxation mechanism at room temperature in metallic glass. Nat. Commun. 2023, 14, 540. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Ding, J.; Ma, E. Machine learning bridges local static structure with multiple properties in metallic glasses. Mater. Today 2020, 40, 48–62. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, C.; Jiang, J.-Z. Bulk metallic glass composites containing B2 phase. Prog. Mater. Sci. 2021, 121, 100799. [Google Scholar] [CrossRef]
- Xing, B.; Du, C.; Du, Z.; Fu, H.; Zhu, Z.; Zhou, F. Research on explosive damage effects of tungsten fiber-reinforced Zr-based bulk metallic glass matrix composite shell. Front. Mater. 2023, 10, 1241011. [Google Scholar] [CrossRef]
- Zhu, R.T.; Wang, Z.; Shi, X.H.; Yang, H.J.; Guo, X.T.; Qiao, J.W. Work hardening in Ti48Zr29Ni6Ta1Be16 metallic glass matrix composites at cryogenic temperature. J. Appl. Phys. 2022, 131, 135103. [Google Scholar] [CrossRef]
- Qiao, J.; Jia, H.; Liaw, P.K. Metallic glass matrix composites. Mater. Sci. Eng. R 2016, 100, 1–69. [Google Scholar] [CrossRef]
- Song, M.; Li, Y.-Q.; Wu, Z.-G.; He, Y.-H. The effect of annealing on the mechanical properties of a ZrAlNiCu metallic glass. J. Non-Cryst. Solids 2011, 357, 1239–1241. [Google Scholar] [CrossRef]
- Meng, Y.; Sha, P.; Zhu, Z.; Yu, D.; Fu, H.; Wang, A.; Li, H.; Zhang, H. The influence of different preparation methods on the microstructures and properties of the in situ bulk-metallic-glass-matrix composites. J. Mater. Res. 2015, 30, 512–520. [Google Scholar] [CrossRef]
- Villapún, V.M.; Esat, F.; Bull, S.; Dover, L.; González, S. Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealing. Materials 2017, 10, 506. [Google Scholar] [CrossRef]
- Dong, Q.; Tan, J.; Li, C.; Sarac, B.; Eckert, J. Room-temperature plasticity of metallic glass composites: A review. Compos. Part B Eng. 2024, 280, 111453. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Y.; Wang, H.; Liu, X.; Jiang, S.; Wang, X.; Lu, Z. Work-hardenable Zr-based bulk metallic glass composites reinforced with ex-situ TiNi fibers. J. Alloys Compd. 2019, 806, 1497–1508. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, C. Strengthening and toughening mechanisms of amorphous/amorphous nanolaminates. Int. J. Plast. 2016, 80, 75–85. [Google Scholar] [CrossRef]
- Sha, Z.-D.; Branicio, P.S.; Lee, H.P.; Tay, T.E. Strong and ductile nanolaminate composites combining metallic glasses and nanoglasses. Int. J. Plast. 2017, 90, 231–241. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Huang, F. FEM analysis on the deformation and failure of fiber reinforced metallic glass matrix composite. Mater. Sci. Eng. A 2016, 652, 145–166. [Google Scholar] [CrossRef]
- Du, C.; Zhou, F.; Gao, G.; Du, Z.; Fu, H.; Zhu, Z.; Cheng, C. Penetration Fracture Mechanism of Tungsten-Fiber-Reinforced Zr-Based Bulk Metallic Glasses Matrix Composite under High-Velocity Impact. Materials 2022, 16, 40. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhu, Z.; Liu, Z.; Ge, S.; Liu, D.; Li, H.; Li, Z.; Fu, H.; Wang, A.; Zhang, Z.; et al. A damage-tolerant Ti-rich multiphase metallic-glass composite with hierarchically heterogeneous architecture. Compos. Part B Eng. 2023, 263, 110818. [Google Scholar] [CrossRef]
- Lin, S.; Zhu, Z.; Ge, S.; Zhang, L.; Liu, D.; Zhuang, Y.; Fu, H.; Li, H.; Wang, A.; Zhang, H. Designing new work-hardenable ductile Ti-based multilayered bulk metallic glass composites with ex-situ and in-situ hybrid strategy. J. Mater. Sci. Technol. 2020, 50, 128–138. [Google Scholar] [CrossRef]
- Lin, S.; Ge, S.; Li, W.; Li, H.; Fu, H.; Wang, A.; Zhuang, Y.; Zhang, H.; Zhu, Z. Work-hardenable TiZr-based multilayered bulk metallic glass composites through the solid solution strengthening in ex-situ Ti layers. J. Non-Cryst. Solids 2021, 553, 120508. [Google Scholar] [CrossRef]
- Li, D.; Zhu, Z.; Wang, A.; Fu, H.; Li, H.; Zhang, H. New ductile laminate structure of Ti-alloy/Ti-based metallic glass composite with high specific strength. J. Mater. Sci. Technol. 2018, 34, 708–712. [Google Scholar] [CrossRef]
- Sun, H.; Song, K.; Han, X.; Xing, H.; Li, X.; Wang, S.; Kim, J.; Chawake, N.; Maity, T.; Wang, L.; et al. Martensitic Trans-formation and Plastic Deformation of TiCuNiZr-Based Bulk Metallic Glass Composites. Metal 2018, 8, 196. [Google Scholar] [CrossRef]
- Jin, H.; Hu, H.; Chi, J.; Ma, Y.; Su, X. Interface Characteristics of Tungsten-Particle-Reinforced Zr-Based Bulk-Metallic-Glass Composites with Different Tungsten Particle Sizes. Materials 2023, 16, 5212. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xing, L.; Jiang, Y.; Li, R.; Lu, C.; Zeng, R.; Luo, J.; Zhang, P.; Liu, W. Additive Manufactured Large Zr-Based Bulk Metallic Glass Composites with Desired Deformation Ability and Corrosion Resistance. Materials 2020, 13, 597. [Google Scholar] [CrossRef]
- Li, Z.; Wu, S.; Huang, X.; Li, N. Versatile fabrication of bulk metallic glass composites reinforced by dissimilar secondary phase. Mater. Sci. Eng. A 2020, 791, 139643. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, W.; Zhang, T.; Yang, C.; Huang, X.; Liu, Z.; Wang, Z.; Li, W.; Li, W.; Li, L.; et al. Large tensile plasticity in Zr-based metallic glass/stainless steel interpenetrating-phase composites prepared by high pressure die casting. Compos. Part B Eng. 2021, 224, 109226. [Google Scholar] [CrossRef]
- Liu, B.; Huang, L.; Rong, X.; Geng, L.; Yin, F. Bending behaviors and fracture characteristics of laminatedductile-tough composites under different modes. Compos. Sci. Technol. 2016, 126, 94–105. [Google Scholar] [CrossRef]
- Wang, M.; Yang, W.; Lan, S.; Li, Z.; Wang, Q.; Li, W.; Tao, J.; Zhou, J.; Li, Q.; Liu, H.; et al. Unusual gradient stress induced superior room-temperature plasticity in brittle ferromagnetic bulk metallic glass. J. Mater. Sci. Technol. 2024, 178, 70–79. [Google Scholar] [CrossRef]
- Kawashima, A.; Kurishita, H.; Kimura, H.; Zhang, T.; Inoue, A. Fracture toughness of Zr55Al10Ni5Cu30 bulk metallic glass by 3-point bend testing. Mater. Trans. 2005, 46, 1725–1732. [Google Scholar] [CrossRef]
- Teixeira, C.; da Silva, R.; Pereira, L.; de Oliveira, M. Oxygen effect on bending behavior of a zirconium based bulk metallic glass. J. Non-Cryst. Solids 2020, 535, 119966. [Google Scholar] [CrossRef]
- Chaudhri, M. Comment on “Berkovich nanoindentation of Zr55Cu30Al10Ni5 bulk metallic glass at a constant loading rate”. J. Non-Cryst Solids 2021, 561, 120750. [Google Scholar]
- ASTM E1820-18; Standard Test Method for Measurement of Fracture Toughness. ASTM International: West Conshohocken, PA, USA, 2011.
- Li, Z.; Zhang, M.; Li, N.; Liu, L. Metal frame reinforced bulk metallic glass composites. Mater. Res. Lett. 2019, 8, 60–67. [Google Scholar] [CrossRef]
- Li, N.; Zhang, J.; Xing, W.; Ouyang, D.; Liu, L. 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness. Mater. Des. 2018, 143, 285–296. [Google Scholar] [CrossRef]
- Rajpoot, D.; Narayan, R.L.; Zhang, L.; Kumar, P.; Zhang, H.; Tandaiya, P.; Ramamurty, U. Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite. J. Mater. Sci. Technol. 2021, 106, 225–235. [Google Scholar] [CrossRef]
- Lin, S.; Ge, S.; Zhu, Z.; Li, W.; Li, Z.; Li, H.; Fu, H.; Wang, A.; Zhuang, Y.; Zhang, H. Double toughening Ti-based bulk metallic glass composite with high toughness, strength and tensile ductility via phase engineering. Appl. Mater. Today 2021, 22, 100944. [Google Scholar] [CrossRef]
- Oh, Y.S.; Kim, C.P.; Lee, S.; Kim, N.J. Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites. Acta Mater. 2011, 59, 7277–7286. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, Y.; Chen, G.; Liu, C.T.; Lu, Z. Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 2010, 22, 2770–2773. [Google Scholar] [CrossRef]
BMGCs | Ti50 | Ti80 | Ti100 | Ti150 | Ti200 |
---|---|---|---|---|---|
Yield strength, σy (MPa) | 2066 | 1754 | 1482 | 964 | 668 |
Ultimate strength, σu (MPa) | 2717 | 2345 | 2025 | 1468 | 1163 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Zhang, L.; Lin, R.; Zhu, Z.; Zhang, H. Microstructure and Mechanical Properties of Multilayered Ti-Based Bulk Metallic Glass Composites Containing Various Thicknesses of Ti-Rich Laminates. Materials 2024, 17, 3184. https://doi.org/10.3390/ma17133184
Lin S, Zhang L, Lin R, Zhu Z, Zhang H. Microstructure and Mechanical Properties of Multilayered Ti-Based Bulk Metallic Glass Composites Containing Various Thicknesses of Ti-Rich Laminates. Materials. 2024; 17(13):3184. https://doi.org/10.3390/ma17133184
Chicago/Turabian StyleLin, Shifeng, Lei Zhang, Rushan Lin, Zhengwang Zhu, and Haifeng Zhang. 2024. "Microstructure and Mechanical Properties of Multilayered Ti-Based Bulk Metallic Glass Composites Containing Various Thicknesses of Ti-Rich Laminates" Materials 17, no. 13: 3184. https://doi.org/10.3390/ma17133184
APA StyleLin, S., Zhang, L., Lin, R., Zhu, Z., & Zhang, H. (2024). Microstructure and Mechanical Properties of Multilayered Ti-Based Bulk Metallic Glass Composites Containing Various Thicknesses of Ti-Rich Laminates. Materials, 17(13), 3184. https://doi.org/10.3390/ma17133184