Microstructure and Mechanical Properties of Multilayered Ti-Based Bulk Metallic Glass Composites Containing Various Thicknesses of Ti-Rich Laminates
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, X.; Zhou, Z.; Shang, Y.; Yang, Y.; Zi, Y. Metallic glass-based triboelectric nanogenerators. Nat. Commun. 2023, 14, 1023. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, L.; Chen, Y.; Dai, S.; Liu, Q.; Xue, N.; Li, W.; Wang, J.; Huang, Y.; Yang, K.; et al. Effect of Chemical Composition on the Thermoplastic Formability and Nanoindentation of Ti-Based Bulk Metallic Glasses. Materials 2024, 17, 1699. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Du, Y. Mechanical Properties of Bulk Metallic Glasses Additively Manufactured by Laser Powder Bed Fusion: A Review. Materials 2023, 16, 7034. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-T.; Zhao, R.; Ding, D.-W.; Liu, Y.-H.; Bai, H.-Y.; Li, M.-Z.; Wang, W.-H. Distinct relaxation mechanism at room temperature in metallic glass. Nat. Commun. 2023, 14, 540. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Ding, J.; Ma, E. Machine learning bridges local static structure with multiple properties in metallic glasses. Mater. Today 2020, 40, 48–62. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, C.; Jiang, J.-Z. Bulk metallic glass composites containing B2 phase. Prog. Mater. Sci. 2021, 121, 100799. [Google Scholar] [CrossRef]
- Xing, B.; Du, C.; Du, Z.; Fu, H.; Zhu, Z.; Zhou, F. Research on explosive damage effects of tungsten fiber-reinforced Zr-based bulk metallic glass matrix composite shell. Front. Mater. 2023, 10, 1241011. [Google Scholar] [CrossRef]
- Zhu, R.T.; Wang, Z.; Shi, X.H.; Yang, H.J.; Guo, X.T.; Qiao, J.W. Work hardening in Ti48Zr29Ni6Ta1Be16 metallic glass matrix composites at cryogenic temperature. J. Appl. Phys. 2022, 131, 135103. [Google Scholar] [CrossRef]
- Qiao, J.; Jia, H.; Liaw, P.K. Metallic glass matrix composites. Mater. Sci. Eng. R 2016, 100, 1–69. [Google Scholar] [CrossRef]
- Song, M.; Li, Y.-Q.; Wu, Z.-G.; He, Y.-H. The effect of annealing on the mechanical properties of a ZrAlNiCu metallic glass. J. Non-Cryst. Solids 2011, 357, 1239–1241. [Google Scholar] [CrossRef]
- Meng, Y.; Sha, P.; Zhu, Z.; Yu, D.; Fu, H.; Wang, A.; Li, H.; Zhang, H. The influence of different preparation methods on the microstructures and properties of the in situ bulk-metallic-glass-matrix composites. J. Mater. Res. 2015, 30, 512–520. [Google Scholar] [CrossRef]
- Villapún, V.M.; Esat, F.; Bull, S.; Dover, L.; González, S. Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealing. Materials 2017, 10, 506. [Google Scholar] [CrossRef]
- Dong, Q.; Tan, J.; Li, C.; Sarac, B.; Eckert, J. Room-temperature plasticity of metallic glass composites: A review. Compos. Part B Eng. 2024, 280, 111453. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Y.; Wang, H.; Liu, X.; Jiang, S.; Wang, X.; Lu, Z. Work-hardenable Zr-based bulk metallic glass composites reinforced with ex-situ TiNi fibers. J. Alloys Compd. 2019, 806, 1497–1508. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, C. Strengthening and toughening mechanisms of amorphous/amorphous nanolaminates. Int. J. Plast. 2016, 80, 75–85. [Google Scholar] [CrossRef]
- Sha, Z.-D.; Branicio, P.S.; Lee, H.P.; Tay, T.E. Strong and ductile nanolaminate composites combining metallic glasses and nanoglasses. Int. J. Plast. 2017, 90, 231–241. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Huang, F. FEM analysis on the deformation and failure of fiber reinforced metallic glass matrix composite. Mater. Sci. Eng. A 2016, 652, 145–166. [Google Scholar] [CrossRef]
- Du, C.; Zhou, F.; Gao, G.; Du, Z.; Fu, H.; Zhu, Z.; Cheng, C. Penetration Fracture Mechanism of Tungsten-Fiber-Reinforced Zr-Based Bulk Metallic Glasses Matrix Composite under High-Velocity Impact. Materials 2022, 16, 40. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhu, Z.; Liu, Z.; Ge, S.; Liu, D.; Li, H.; Li, Z.; Fu, H.; Wang, A.; Zhang, Z.; et al. A damage-tolerant Ti-rich multiphase metallic-glass composite with hierarchically heterogeneous architecture. Compos. Part B Eng. 2023, 263, 110818. [Google Scholar] [CrossRef]
- Lin, S.; Zhu, Z.; Ge, S.; Zhang, L.; Liu, D.; Zhuang, Y.; Fu, H.; Li, H.; Wang, A.; Zhang, H. Designing new work-hardenable ductile Ti-based multilayered bulk metallic glass composites with ex-situ and in-situ hybrid strategy. J. Mater. Sci. Technol. 2020, 50, 128–138. [Google Scholar] [CrossRef]
- Lin, S.; Ge, S.; Li, W.; Li, H.; Fu, H.; Wang, A.; Zhuang, Y.; Zhang, H.; Zhu, Z. Work-hardenable TiZr-based multilayered bulk metallic glass composites through the solid solution strengthening in ex-situ Ti layers. J. Non-Cryst. Solids 2021, 553, 120508. [Google Scholar] [CrossRef]
- Li, D.; Zhu, Z.; Wang, A.; Fu, H.; Li, H.; Zhang, H. New ductile laminate structure of Ti-alloy/Ti-based metallic glass composite with high specific strength. J. Mater. Sci. Technol. 2018, 34, 708–712. [Google Scholar] [CrossRef]
- Sun, H.; Song, K.; Han, X.; Xing, H.; Li, X.; Wang, S.; Kim, J.; Chawake, N.; Maity, T.; Wang, L.; et al. Martensitic Trans-formation and Plastic Deformation of TiCuNiZr-Based Bulk Metallic Glass Composites. Metal 2018, 8, 196. [Google Scholar] [CrossRef]
- Jin, H.; Hu, H.; Chi, J.; Ma, Y.; Su, X. Interface Characteristics of Tungsten-Particle-Reinforced Zr-Based Bulk-Metallic-Glass Composites with Different Tungsten Particle Sizes. Materials 2023, 16, 5212. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xing, L.; Jiang, Y.; Li, R.; Lu, C.; Zeng, R.; Luo, J.; Zhang, P.; Liu, W. Additive Manufactured Large Zr-Based Bulk Metallic Glass Composites with Desired Deformation Ability and Corrosion Resistance. Materials 2020, 13, 597. [Google Scholar] [CrossRef]
- Li, Z.; Wu, S.; Huang, X.; Li, N. Versatile fabrication of bulk metallic glass composites reinforced by dissimilar secondary phase. Mater. Sci. Eng. A 2020, 791, 139643. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, W.; Zhang, T.; Yang, C.; Huang, X.; Liu, Z.; Wang, Z.; Li, W.; Li, W.; Li, L.; et al. Large tensile plasticity in Zr-based metallic glass/stainless steel interpenetrating-phase composites prepared by high pressure die casting. Compos. Part B Eng. 2021, 224, 109226. [Google Scholar] [CrossRef]
- Liu, B.; Huang, L.; Rong, X.; Geng, L.; Yin, F. Bending behaviors and fracture characteristics of laminatedductile-tough composites under different modes. Compos. Sci. Technol. 2016, 126, 94–105. [Google Scholar] [CrossRef]
- Wang, M.; Yang, W.; Lan, S.; Li, Z.; Wang, Q.; Li, W.; Tao, J.; Zhou, J.; Li, Q.; Liu, H.; et al. Unusual gradient stress induced superior room-temperature plasticity in brittle ferromagnetic bulk metallic glass. J. Mater. Sci. Technol. 2024, 178, 70–79. [Google Scholar] [CrossRef]
- Kawashima, A.; Kurishita, H.; Kimura, H.; Zhang, T.; Inoue, A. Fracture toughness of Zr55Al10Ni5Cu30 bulk metallic glass by 3-point bend testing. Mater. Trans. 2005, 46, 1725–1732. [Google Scholar] [CrossRef]
- Teixeira, C.; da Silva, R.; Pereira, L.; de Oliveira, M. Oxygen effect on bending behavior of a zirconium based bulk metallic glass. J. Non-Cryst. Solids 2020, 535, 119966. [Google Scholar] [CrossRef]
- Chaudhri, M. Comment on “Berkovich nanoindentation of Zr55Cu30Al10Ni5 bulk metallic glass at a constant loading rate”. J. Non-Cryst Solids 2021, 561, 120750. [Google Scholar]
- ASTM E1820-18; Standard Test Method for Measurement of Fracture Toughness. ASTM International: West Conshohocken, PA, USA, 2011.
- Li, Z.; Zhang, M.; Li, N.; Liu, L. Metal frame reinforced bulk metallic glass composites. Mater. Res. Lett. 2019, 8, 60–67. [Google Scholar] [CrossRef]
- Li, N.; Zhang, J.; Xing, W.; Ouyang, D.; Liu, L. 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness. Mater. Des. 2018, 143, 285–296. [Google Scholar] [CrossRef]
- Rajpoot, D.; Narayan, R.L.; Zhang, L.; Kumar, P.; Zhang, H.; Tandaiya, P.; Ramamurty, U. Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite. J. Mater. Sci. Technol. 2021, 106, 225–235. [Google Scholar] [CrossRef]
- Lin, S.; Ge, S.; Zhu, Z.; Li, W.; Li, Z.; Li, H.; Fu, H.; Wang, A.; Zhuang, Y.; Zhang, H. Double toughening Ti-based bulk metallic glass composite with high toughness, strength and tensile ductility via phase engineering. Appl. Mater. Today 2021, 22, 100944. [Google Scholar] [CrossRef]
- Oh, Y.S.; Kim, C.P.; Lee, S.; Kim, N.J. Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites. Acta Mater. 2011, 59, 7277–7286. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, Y.; Chen, G.; Liu, C.T.; Lu, Z. Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 2010, 22, 2770–2773. [Google Scholar] [CrossRef]
BMGCs | Ti50 | Ti80 | Ti100 | Ti150 | Ti200 |
---|---|---|---|---|---|
Yield strength, σy (MPa) | 2066 | 1754 | 1482 | 964 | 668 |
Ultimate strength, σu (MPa) | 2717 | 2345 | 2025 | 1468 | 1163 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Zhang, L.; Lin, R.; Zhu, Z.; Zhang, H. Microstructure and Mechanical Properties of Multilayered Ti-Based Bulk Metallic Glass Composites Containing Various Thicknesses of Ti-Rich Laminates. Materials 2024, 17, 3184. https://doi.org/10.3390/ma17133184
Lin S, Zhang L, Lin R, Zhu Z, Zhang H. Microstructure and Mechanical Properties of Multilayered Ti-Based Bulk Metallic Glass Composites Containing Various Thicknesses of Ti-Rich Laminates. Materials. 2024; 17(13):3184. https://doi.org/10.3390/ma17133184
Chicago/Turabian StyleLin, Shifeng, Lei Zhang, Rushan Lin, Zhengwang Zhu, and Haifeng Zhang. 2024. "Microstructure and Mechanical Properties of Multilayered Ti-Based Bulk Metallic Glass Composites Containing Various Thicknesses of Ti-Rich Laminates" Materials 17, no. 13: 3184. https://doi.org/10.3390/ma17133184
APA StyleLin, S., Zhang, L., Lin, R., Zhu, Z., & Zhang, H. (2024). Microstructure and Mechanical Properties of Multilayered Ti-Based Bulk Metallic Glass Composites Containing Various Thicknesses of Ti-Rich Laminates. Materials, 17(13), 3184. https://doi.org/10.3390/ma17133184