Fabricating Spinel-Type High-Entropy Oxides of (Co, Fe, Mn, Ni, Cr)3O4 for Efficient Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrocatalyst Preparation
2.3. Physical Characterization
2.4. Electrochemical Determinations
3. Results
3.1. Structure Characterization
3.2. Electrocatalytic Performances
3.3. Catalytic Mechanism Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, J.; You, S.; Li, X.; Tang, B.; Jiang, B.; Yu, Y.; Cai, Z.; Ren, N.; Zou, J. In Situ Crystallization of Active NiOOH/CoOOH Heterostructures with Hydroxide Ion Adsorption Sites on Velutipes-like CoSe/NiSe Nanorods as Catalysts for Oxygen Evolution and Cocatalysts for Methanol Oxidation. ACS Appl. Mater. Interfaces 2020, 12, 686–697. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kang, S.H.; Youn, D.H. Direct One-Step Growth of Bimetallic Ni2Mo3N on Ni Foam as an Efficient Oxygen Evolution Electrocatalyst. Materials 2021, 14, 4768. [Google Scholar] [CrossRef]
- Yan, Z.; Guo, S.; Tan, Z.; Wang, L.; Li, G.; Tang, M.; Feng, Z.; Yuan, X.; Wang, Y.; Cao, B. Research Advances of Non-Noble Metal Catalysts for Oxygen Evolution Reaction in Acid. Materials 2024, 17, 1637. [Google Scholar] [CrossRef]
- Hwang, S.; Chen, X.; Zhou, G.; Su, D. In Situ Transmission Electron Microscopy on Energy-Related Catalysis. Adv. Energy Mater. 2019, 10, 1902105. [Google Scholar] [CrossRef]
- Pan, K.; Zhai, Y.; Zhang, J.; Yu, K. FeS2/C Nanowires as an Effective Catalyst for Oxygen Evolution Reaction by Electrolytic Water Splitting. Materials 2019, 12, 3364. [Google Scholar] [CrossRef] [PubMed]
- Gorlin, M.; Chernev, P.; Paciok, P.; Tai, C.W.; Ferreira de Araujo, J.; Reier, T.; Heggen, M.; Dunin-Borkowski, R.; Strasser, P.; Dau, H. Formation of unexpectedly active Ni-Fe oxygen evolution electrocatalysts by physically mixing Ni and Fe oxyhydroxides. Chem. Commun. 2019, 55, 818–821. [Google Scholar] [CrossRef]
- Liu, X.; Guo, X.; Gong, M.; Deng, S.; Liang, J.; Zhao, T.; Lu, Y.; Zhu, Y.; Zhang, J.; Wang, D. Corrosion-assisted large-scale production of hierarchical iron rusts/Ni(OH)2 nanosheet-on-microsphere arrays for efficient electrocatalysis. Electrochim. Acta 2020, 353, 136478. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, T.; Li, C.; Xu, K.; Li, Y. Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. J. Mater. Chem. A 2020, 8, 13415–13436. [Google Scholar] [CrossRef]
- Fan, R.; Mu, Q.; Wei, Z.; Peng, Y.; Shen, M. Atomic Ir-doped NiCo layered double hydroxide as a bifunctional electrocatalyst for highly efficient and durable water splitting. J. Mater. Chem. A 2020, 8, 9871–9881. [Google Scholar] [CrossRef]
- Li, Y.; Li, F.; Meng, X.; Li, S.; Zeng, J.; Chen, Y. Ultrathin Co3O4 Nanomeshes for the Oxygen Evolution Reaction. ACS Catal. 2018, 8, 1913–1920. [Google Scholar] [CrossRef]
- Kim, B.; Kim, T.; Lee, K.; Li, J. Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting under Neutral pH Conditions. ChemElectroChem 2020, 7, 3578–3589. [Google Scholar] [CrossRef]
- Zhang, C.; Pu, Z.; Amiinu, I.S.; Zhao, Y.; Zhu, J.; Tang, Y.; Mu, S. Co2P quantum dot embedded N, P dual-doped carbon self-supported electrodes with flexible and binder-free properties for efficient hydrogen evolution reactions. Nanoscale 2018, 10, 2902–2907. [Google Scholar] [CrossRef] [PubMed]
- Amiinu, I.S.; Pu, Z.; Liu, X.; Owusu, K.A.; Monestel, H.G.R.; Boakye, F.O.; Zhang, H.; Mu, S. Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries. Adv. Funct. Mater. 2017, 27, 1702300. [Google Scholar] [CrossRef]
- He, D.; Wu, X.; Liu, W.; Lei, C.; Yu, C.; Zheng, G.; Pan, J.; Lei, L.; Zhang, X. Co1−xS embedded in porous carbon derived from metal organic framework as a highly efficient electrocatalyst for oxygen evolution reaction. Chin. Chem. Lett. 2019, 30, 229–233. [Google Scholar] [CrossRef]
- Keerthana, S.; Rani, B.J.; Yuvakkumar, R.; Ravi, G.; Hong, S.I.; Saravanakumar, B.; Velauthapillai, D.; Al-Mohaimeed, A.M.; Algarni, T.S. Electrochemical Oxygen Evolution Reaction Activity of Tin Sulfide Nanostructures. ChemistrySelect 2020, 5, 11703–11707. [Google Scholar] [CrossRef]
- Guo, Y.; Yuan, P.; Zhang, J.; Xia, H.; Cheng, F.; Zhou, M.; Li, J.; Qiao, Y.; Mu, S.; Xu, Q. Co2P-CoN double active centers confined in N-doped carbon nanotube: Heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting. Adv. Funct. Mater. 2018, 28, 1805641. [Google Scholar] [CrossRef]
- Xiong, B.; Ge, L.; Lei, X.; Wang, Y.; Yang, J.; Li, W.; Li, X.; Cheng, Z.; Fu, Z.; Lu, Y. Tailoring the electronic structure of ZnCo2O4 by incorporating anions with low electronegativity to improve the water oxidation activity. Sci. China Mater. 2023, 66, 1793–1800. [Google Scholar] [CrossRef]
- Yue, X.; Qin, X.; Chen, Y.; Peng, Y.; Liang, C.; Feng, M.; Qiu, X.; Shao, M.; Huang, S. Constructing Active Sites from Atomic-Scale Geometrical Engineering in Spinel Oxide Solid Solutions for Efficient and Robust Oxygen Evolution Reaction Electrocatalysts. Adv. Sci. 2021, 8, 2101653. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef]
- Liu, X.; Gong, M.; Xiao, D.; Deng, S.; Liang, J.; Zhao, T.; Lu, Y.; Shen, T.; Zhang, J.; Wang, D. Turning waste into treasure: Regulating the oxygen corrosion on Fe foam for efficient electrocatalysis. Small 2020, 16, 2000663. [Google Scholar] [CrossRef]
- Xie, J.; Xin, J.; Wang, R.; Zhang, X.; Lei, F.; Qu, H.; Hao, P.; Cui, G.; Tang, B.; Xie, Y. Sub-3 nm pores in two-dimensional nanomesh promoting the generation of electroactive phase for robust water oxidation. Nano Energy 2018, 53, 74–82. [Google Scholar] [CrossRef]
- Yao, M.; Hu, H.; Wang, N.; Hu, W.; Komarneni, S. Quaternary (Fe/Ni)(P/S) mesoporous nanorods templated on stainless steel mesh lead to stable oxygen evolution reaction for over two months. J. Colloid Interf. Sci. 2020, 561, 576–584. [Google Scholar] [CrossRef]
- Yu, F.; Zhou, H.; Huang, Y.; Sun, J.; Qin, F.; Bao, J.; Goddard, W.A., 3rd; Chen, S.; Ren, Z. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 2018, 9, 2551. [Google Scholar] [CrossRef]
- Zhang, N.; Feng, X.; Rao, D.; Deng, X.; Cai, L.; Qiu, B.; Long, R.; Xiong, Y.; Lu, Y.; Chai, Y. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 2020, 11, 4066. [Google Scholar] [CrossRef]
- Park, H.; Park, B.H.; Choi, J.; Kim, S.; Kim, T.; Youn, Y.-S.; Son, N.; Kim, J.H.; Kang, M. Enhanced electrochemical properties and OER performances by Cu substitution in NiCo2O4 spinel structure. Nanomaterials 2020, 10, 1727. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S.; Jang, Y.; Park, J.; Byeon, J.; Lee, J. Oxophilicity induced surface hydroxylation to promote oxygen evolution in selectively substituted spinel-type cobalt oxides. J. Phys. Chem. C 2023, 127, 15062–15068. [Google Scholar] [CrossRef]
- Vazhayil, A.; Ashok, C.S.; Thomas, N. Probing the electrocatalytic activity of hierarchically mesoporous M-Co3O4 (M = Ni, Zn, and Mn) with branched pattern for oxygen evolution reaction. J. Electroanal. Chem. 2023, 934, 117298. [Google Scholar] [CrossRef]
- Qi, C.; Liu, Q.; Dong, Y.; Zhang, G.; Jiang, X.; Gao, D. Quenching-induced surface reconstruction of FeMn2O4 for promoted oxygen evolution reaction. J. Alloys Compd. 2023, 967, 171754. [Google Scholar] [CrossRef]
- Huang, X.; Wang, X.; Liu, Y.; Hou, Y.; Li, C.; Cai, M.; Gu, H.; Cao, X. General synthesis of CoCeMOx trimetallic oxides via a cation exchange reaction for the oxygen evolution reaction. Dalton Trans. 2023, 52, 5312–5320. [Google Scholar] [CrossRef]
- Guo, S.; Wang, X.; Zhou, X.; Li, H.; Ding, X. Tuning oxygen vacancies in Co3O4 nanorods through solvent reduction method for enhanced oxygen evolution activity. Energy Fuels 2023, 37, 5421–5428. [Google Scholar] [CrossRef]
- Sultan, F.; González Sepúlveda, G.E.; Medina, D.I.; Videa, M.; Sánchez-Domínguez, M.; Cholula-Díaz, J.L. Synthesis of MFe2O4 (M = Ni, Co) nanoparticles by a bicontinuous microemulsion method for the oxygen evolution reaction. ChemNanoMat 2024, 10, e202300541. [Google Scholar] [CrossRef]
- Shoaib, M.; Qiao, F.; Xu, X.; Zhou, T.; Liu, Y. Influence of Mo concentration on the structural and electrochemical properties of double-doped Mo-Co-Ni3S2/NF composites. CrystEngComm 2024, 26, 1884–1891. [Google Scholar] [CrossRef]
- Kayış, Z.; Akyüz, D. A high-performance electrocatalyst via graphitic carbon nitride nanosheet-decorated bimetallic phosphide for alkaline water electrolysis. Phys. Chem. Chem. Phys. 2024, 26, 14908–14918. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, S.; Wei, L.; He, H.; Jiang, B.; Zhan, Z.; Wang, J.; Li, X.; Gou, W. One-pot hydrothermal synthesis of bifunctional Co/Mo-rGO efficient electrocatalyst for HER/OER in water splitting. Catal. Lett. 2024. [Google Scholar] [CrossRef]
- Li, W.; Xu, H.; Pei, Y.; Hu, L.; Yang, Z. Investigation into the performance of tremella-like LaNiO3-NiO composite as an electrocatalyst for oxygen evolution reaction. Ionics 2024. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Li, Y.; Dong, X.; Shan, H.; Chen, S.; Sun, P.; Zhang, F.; Li, W.; Chu, X.; et al. Cobalt-based transition metal boride electrocatalysts for alkaline water oxidation reactions. Ionics 2024, 30, 943–950. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, G.; Wang, D.; Chen, H.; Lv, Y.; Zhang, Y.; He, X.; Pang, H. Emerging Metal Single Atoms in Electrocatalysts and Batteries. Adv. Funct. Mater. 2020, 30, 2003870. [Google Scholar] [CrossRef]
- Zhao, K.; Ma, X.; Lin, S.; Xu, Z.; Li, L. Ambient Growth of Hierarchical FeOOH/MXene as Enhanced Electrocatalyst for Oxygen Evolution Reaction. ChemistrySelect 2020, 5, 1890–1895. [Google Scholar] [CrossRef]
- Liu, X.; Gong, M.; Deng, S.; Zhao, T.; Zhang, J.; Wang, D. Recent advances on metal alkoxide-based electrocatalysts for water splitting. J. Mater. Chem. A 2020, 8, 10130–10149. [Google Scholar] [CrossRef]
- Gouda, L.; Sévery, L.; Moehl, T.; Mas-Marzá, E.; Adams, P.; Fabregat-Santiago, F.; Tilley, S.D. Tuning the selectivity of biomass oxidation over oxygen evolution on NiO-OH electrodes. Green Chem. 2021, 23, 8061–8068. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, X.; Wang, R.; Tan, X.; Zhang, X.; Liu, X.; Wu, Z.; Yuan, D. Fabricating Spinel-Type High-Entropy Oxides of (Co, Fe, Mn, Ni, Cr)3O4 for Efficient Oxygen Evolution Reaction. Materials 2024, 17, 3415. https://doi.org/10.3390/ma17143415
Hao X, Wang R, Tan X, Zhang X, Liu X, Wu Z, Yuan D. Fabricating Spinel-Type High-Entropy Oxides of (Co, Fe, Mn, Ni, Cr)3O4 for Efficient Oxygen Evolution Reaction. Materials. 2024; 17(14):3415. https://doi.org/10.3390/ma17143415
Chicago/Turabian StyleHao, Xiaofei, Ran Wang, Xiumin Tan, Xiufeng Zhang, Xupo Liu, Zhaoyang Wu, and Dongli Yuan. 2024. "Fabricating Spinel-Type High-Entropy Oxides of (Co, Fe, Mn, Ni, Cr)3O4 for Efficient Oxygen Evolution Reaction" Materials 17, no. 14: 3415. https://doi.org/10.3390/ma17143415
APA StyleHao, X., Wang, R., Tan, X., Zhang, X., Liu, X., Wu, Z., & Yuan, D. (2024). Fabricating Spinel-Type High-Entropy Oxides of (Co, Fe, Mn, Ni, Cr)3O4 for Efficient Oxygen Evolution Reaction. Materials, 17(14), 3415. https://doi.org/10.3390/ma17143415