The Research Progress of Magnesium Alloy Building Formwork
Abstract
:1. Introduction
2. Application Status of Building Formwork
3. Development Status of Magnesium Alloy Building Formwork
3.1. Working Environment of Magnesium Alloy Building Formwork
3.2. Advantages of Magnesium Alloy Building Formwork
3.3. Application Prospect of Magnesium Alloy Building Formwork
4. Problems in Magnesium Alloy Building Formwork
4.1. Unstable Cost Prices
4.2. The Improvable Processing Efficiency
4.3. Protection Problems during Storage and Use
5. Chemical Conversion Surface Protection Technology of Magnesium Alloy Building Formwork
5.1. Chromate Chemical Conversion Coating
5.2. Phosphate Chemical Conversion Coating
5.3. Vanadate Chemical Conversion Coating
5.4. Stannate Chemical Conversion Coating
5.5. Molybdate Chemical Conversion Coating
5.6. Permanganate Chemical Conversion Coating
6. The Development Direction of Magnesium Alloy Building Formwork in the Future
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liebringshausen, A.; Eversmann, P.; Goebert, A. Circular, zero waste formwork—Sustainable and reusable systems for complex concrete elements. J. Build. Eng. 2023, 80, 107696. [Google Scholar] [CrossRef]
- Ai, X.; Wan, X.; Pan, Z.; Luo, Z.; Yang, H.; Liu, L.; Jiang, K. Deformation, Bearing Capacity, and Reliability of Building Formwork System Based on Real-Time Monitoring. Mob. Inf. Syst. 2022, 2022, 3967734. [Google Scholar] [CrossRef]
- de Abreu, M.M.; Lordsleem, A.C., Jr. Aluminum formwork system: Loss and productivity. Built Environ. Proj. Asset Manag. 2019, 9, 616–627. [Google Scholar] [CrossRef]
- Gao, K.; Xu, J.; Zhu, Y.; Zhang, Z.; Zeng, Q. Study on the Technology and Mechanism of Cleaning Architectural Aluminum Formwork for Concrete Pouring by High Energy and High Repetition Frequency Pulsed Laser. Photonics 2023, 10, 242. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, X.; Liu, Y.; Deng, L.; Lv, F.; Zhao, S. Lateral Pressure Test of Vertical Joint Concrete and Formwork Optimization Design for Monolithic Precast Concrete Structure. Buildings 2022, 12, 261. [Google Scholar] [CrossRef]
- Chen, J.-C.; Li, M.-X.; Yu, Z.-Y.; Meng, Z.-Y.; Wang, C.; Yang, Z.-Z.; Wang, H.-Y. Simultaneous refinement of α-Mg grains and β-Mg17Al12 in Mg-Al based alloys via heterogeneous nucleation on Al8Mn4Sm. J. Magnes. Alloys 2023, 11, 348–360. [Google Scholar] [CrossRef]
- Jin, Z.-Z.; Zha, M.; Wang, S.-Q.; Wang, S.-C.; Wang, C.; Jia, H.-L.; Wang, H.-Y. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility. J. Magnes. Alloys 2022, 10, 1191–1206. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Wang, J.; Ma, K.; Dai, C.; Wang, J.; Pan, F. Corrosion resistance of Mg-Al-Zn magnesium alloy concrete formwork in Portland cement paste. Constr. Build. Mater. 2022, 325, 126745. [Google Scholar] [CrossRef]
- Nordlien, J.H.; Nisancioglu, K.; Ono, S.; Masuko, N. Morphology and structure of oxide films formed on MgAl alloys by exposure to air and water. J. Electrochem. Soc. 1996, 143, 2564–2572. [Google Scholar] [CrossRef]
- Imai, Y.; Osato, K.; Nakauchi, H. Algorithm for Computer-Aided Construction of the Potential-pH Diagrams of Metal-Ion-Water Systems and Its Application to the Corrosion in Iodine-Iodide Solution. Zairyo-to-Kankyo 1987, 36, 195–203. [Google Scholar] [CrossRef]
- Frankel, G.S. Pitting Corrosion of Metals: A Review of the Critical Factors. J. Electrochem. Soc. 1998, 145, 2186. [Google Scholar] [CrossRef]
- Kruger, J. Passivity of metals—A materials science perspective. Int. Mater. Rev. 1988, 33, 113–130. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, G.; Xu, C.; Yang, Z.; Sun, J. Revealing anti-corrosion behavior of magnesium alloy in simulated concrete pore solution. Mater. Lett. 2021, 285, 129047. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Xu, A.; Liu, X. Understanding pitting corrosion behavior of AZ91 alloy and its MAO coating in 3.5% NaCl solution by cyclic potentiodynamic polarization. J. Magnes. Alloys 2022, 10, 1368–1380. [Google Scholar] [CrossRef]
- Song, W.; Martin, H.J.; Hicks, A.; Seely, D.; Walton, C.A.; Lawrimore, W.B., II; Wang, P.T.; Horstemeyer, M.F. Corrosion behaviour of extruded AM30 magnesium alloy under salt-spray and immersion environments. Corros. Sci. 2014, 78, 353–368. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Hafeez, M.A.; Farooq, A.; Zang, A.; Saleem, A.; Deen, K.M. Phosphate chemical conversion coatings for magnesium alloys: A review. J. Coat. Technol. Res. 2020, 17, 827–849. [Google Scholar] [CrossRef]
- Darband, G.B.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. J. Magnes. Alloys 2017, 5, 74–132. [Google Scholar] [CrossRef]
- Yao, W.; Wu, L.; Wang, J.; Jiang, B.; Zhang, D.; Serdechnova, M.; Shulha, T.; Blawert, C.; Zheludkevich, M.L.; Pan, F. Micro-arc oxidation of magnesium alloys: A review. J. Mater. Sci. Technol. 2022, 118, 158–180. [Google Scholar] [CrossRef]
- Chen, T.Y.; Zhang, Q.Y.; Shi, J.H.; Wu, Q. Properties of AZ91D magnesium alloy Anodized in Oxalic and Sulfuric Acids and its corrosion resistance in 3.5% NaCl solution. Int. J. Electrochem. Sci. 2022, 17, 221219. [Google Scholar] [CrossRef]
- Liu, J.L.; Yu, H.J.; Chen, C.Z.; Weng, F.; Dai, J.J. Research and development status of laser cladding on magnesium alloys: A review. Opt. Lasers Eng. 2017, 93, 195–210. [Google Scholar] [CrossRef]
- Zhang, D.; Peng, F.; Liu, X. Protection of magnesium alloys: From physical barrier coating to smart self-healing coating. J. Alloys Compd. 2021, 853, 157010. [Google Scholar] [CrossRef]
- Anjum, M.J.; Asl, V.Z.; Tabish, M.; Yang, Q.X.; Malik, M.U.; Ali, H.; Yasin, G.; Zhao, J.M.; Khan, W.Q. A Review on Understanding of Corrosion and Protection Strategies of Magnesium and Its Alloys. Surf. Rev. Lett. 2022, 29, 2230012. [Google Scholar] [CrossRef]
- Natarajan, S.; Sivan, V.; Tennyson, P.G.; Kiran, V.R. Protective coatings on magnesium and its alloys: A critical review. Corros. Prev. Control 2004, 51, 142–163. [Google Scholar]
- Pommiers, S.; Frayret, J.; Castetbon, A.; Potin-Gautier, M. Alternative conversion coatings to chromate for the protection of magnesium alloys. Corros. Sci. 2014, 84, 135–146. [Google Scholar] [CrossRef]
- Schmutz, P.; Guillaumin, V.; Lillard, R.S.; Lillard, J.A.; Frankel, G.S. Influence of dichromate ions on corrosion processes on pure magnesium. J. Electrochem. Soc. 2003, 150, B99–B110. [Google Scholar] [CrossRef]
- Chen, B.; Li, Q.; Gao, H.; Fan, J.M.; Tan, X. Microstructural characteristics and corrosion property of non-chromate surface treatments on AZ91D magnesium alloy. Mater. Corros.-Werkst. Korros. 2009, 60, 521–526. [Google Scholar] [CrossRef]
- Gupta, R.K.; Hinton, B.R.W.; Birbilis, N. The effect of chromate on the pitting susceptibility of AA7075-T651 studied using potentiostatic transients. Corros. Sci. 2014, 82, 197–207. [Google Scholar] [CrossRef]
- Kuzenkov, Y.A.; Oleinik, S.V.; Zimina, A.S.; Kazanskii, L.P.; Ivonin, V.N.; Karpov, V.A. Submicron free-chromate chemical conversion coatings on AMg-3 aluminum alloy. Prot. Met. Phys. Chem. Surf. 2016, 52, 1175–1180. [Google Scholar] [CrossRef]
- Simonova, M.; Abrashov, A.; Grigoryan, N.; Vagramyan, T.; Men’shikov, V.; Tanger, l. Development of Chromate-Free Passivation Processes for Magnesium Alloy AZ31B. In Proceedings of the 29th International Conference on Metallurgy and Materials (METAL), Brno, Czech Republic, 20–22 May 2020; pp. 771–776. [Google Scholar]
- Sudagar, J.; Lian, J.-S.; Chen, X.-M.; Lang, P.; Liang, Y.-Q. High corrosion resistance of electroless Ni-P with chromium-free conversion pre-treatments on AZ91D magnesium alloy. Trans. Nonferrous Met. Soc. China 2011, 21, 921–928. [Google Scholar] [CrossRef]
- Han, E.H.; Zhou, W.Q.; Shan, D.Y.; Ke, W. Corrosion and protection of magnesium alloy AZ31D by a new conversion coating. In Magnesium Alloys 2003, Pts 1 and 2; Kojima, Y., Aizawa, T., Higashi, K., Kamado, S., Eds.; Materials Science Forum; Scientific Net: Osaka, Japan, 2003; Volume 419-4, pp. 879–882. [Google Scholar]
- Yin, Z.-Z.; Qi, W.-C.; Zeng, R.-C.; Chen, X.-B.; Gu, C.-D.; Guan, S.-K.; Zheng, Y.-F. Advances in coatings on biodegradable magnesium alloys. J. Magnes. Alloys 2020, 8, 42–65. [Google Scholar] [CrossRef]
- Chen, X.B.; Birbilis, N.; Abbott, T.B. Review of Corrosion-Resistant Conversion Coatings for Magnesium and Its Alloys. Corrosion 2011, 67, 035005-1–035005-16. [Google Scholar] [CrossRef]
- Luan, B.L.; Yang, D.; Liu, X.Y.; Song, G.L. 15—Corrosion protection of magnesium (Mg) alloys using conversion and electrophoretic coatings. In Corrosion of Magnesium Alloys; Song, G.-L., Ed.; Woodhead Publishing: Cambridgeshire, UK, 2011; pp. 541–564. [Google Scholar]
- Saran, D.; Kumar, A.; Bathula, S.; Klaumünzer, D.; Sahu, K.K. Review on the phosphate-based conversion coatings of magnesium and its alloys. Int. J. Miner. Metall. Mater. 2022, 29, 1435–1452. [Google Scholar] [CrossRef]
- Brunelli, K.; Dabalà, M.; Calliari, I.; Magrini, M. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys. Corros. Sci. 2005, 47, 989–1000. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, W. Electroless nickel plating on AZ91 Mg alloy substrate. Surf. Coat. Technol. 2006, 200, 5087–5093. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Liu, B.; Yu, B.X.; Lu, X.P.; Wei, Y.; Zhang, T.; Mol, J.M.C.; Wang, F.H. Influence of surface pretreatment on phosphate conversion coating on AZ91 Mg alloy. Surf. Coat. Technol. 2019, 359, 414–425. [Google Scholar] [CrossRef]
- Li, T.; Leng, Z.J.; Wang, S.F.; Wang, X.T.; Ghomashchi, R.; Yang, Y.S.; Zhou, J.X. Comparison of the effects of pre-activators on morphology and corrosion resistance of phosphate conversion coating on magnesium alloy. J. Magnes. Alloys 2022, 10, 3485–3494. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, G.; Chen, J. Improving Corrosion Resistance of Magnesium Alloy in Cl- Containing Simulated Concrete Pore Solution by Ultrasound-Assisted Chemical Deposition. Scanning 2021, 2021, 5462741. [Google Scholar] [CrossRef]
- Han, E.H.; Zhou, W.Q.; Shan, D.Y.; Ke, W. Chemical conversion coating on AZ91D and its corrosion resistance. In Proceedings of the Symposium on Magnesium Technology 2004 held at the TMS Annual Meeting, Charlotte, NC, USA, 14–18 March 2004; pp. 121–123. [Google Scholar]
- Zhou, W.Q.; Shan, D.Y.; Han, E.H.; Ke, W. Phosphate conversion coating on diecast AZ91 and its corrosion resistance. In Magnesium—Science, Technology and Applications; Ke, W., Han, E.H., Han, Y.F., Kainer, K., Luo, A.A., Eds.; Materials Science Forum; Scientific Net: Beijing, China, 2005; Volumes 488–489, pp. 819–821. [Google Scholar]
- Van Phuong, N.; Moon, S. Comparative corrosion study of zinc phosphate and magnesium phosphate conversion coatings on AZ31 Mg alloy. Mater. Lett. 2014, 122, 341–344. [Google Scholar] [CrossRef]
- Fu, L.H.; Dong, C.F.; Li, X.G.; Han, W. Electrochemical behaviors of magnesium alloy with phosphate conversion coating in NaCl solutions. Rare Met. 2016, 35, 747–757. [Google Scholar] [CrossRef]
- Lee, Y.L.; Chu, Y.R.; Li, W.C.; Lin, C.S. Effect of permanganate concentration on the formation and properties of phosphate/permanganate conversion coating on AZ31 magnesium alloy. Corros. Sci. 2013, 70, 74–81. [Google Scholar] [CrossRef]
- Yuan, J.; Yuan, R.; Wang, J.H.; Li, Q.S.; Xing, X.T.; Liu, X.; Hu, W.B. Fabrication and corrosion resistance of phosphate/ZnO multilayer protective coating on magnesium alloy. Surf. Coat. Technol. 2018, 352, 74–83. [Google Scholar] [CrossRef]
- Zhou, W.Q.; Wu, S.W.; Sheng, L.; Li, X. Effect of Ca2+ on Structure and Corrosion Resistance of Conversion Coating Formd on Cast AZ91D Magnesium Alloys. In Proceedings of the 4th International Conference on Advances in Materials and Manufacturing (ICAMMP 2013), Kunming, China, 18–19 December 2013; pp. 1111–1114. [Google Scholar]
- Liu, D.; Li, Y.Y.; Zhou, Y.; Ding, Y.G. The Preparation, Characterization and Formation Mechanism of a Calcium Phosphate Conversion Coating on Magnesium Alloy AZ91D. Materials 2018, 11, 908. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, W.; Ma, K.; Dai, C.; Wang, D.; Wang, J. Formation of a calcium hydrogen phosphate coating on AZ41 magnesium alloy by ultrasound-assisted chemical conversion for concrete formwork. J. Mater. Res. Technol. 2023, 26, 121–136. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, G.S.; Sun, J.P. Improved Corrosion Resistance of Magnesium Alloy in Simulated Concrete Pore Solution by Hydrothermal Treatment. Scanning 2020, 2020, 4860256. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Liao, S.J.; Yu, B.X.; Lu, X.P.; Chen, X.B.; Zhang, T.; Wang, F.H. Ratio of total acidity to pH value of coating bath: A new strategy towards phosphate conversion coatings with optimized corrosion resistance for magnesium alloys. Corros. Sci. 2019, 150, 279–295. [Google Scholar] [CrossRef]
- Yang, K.H.; Ger, M.D.; Hwu, W.H.; Sung, Y.; Liu, Y.C. Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy. Mater. Chem. Phys. 2007, 101, 480–485. [Google Scholar] [CrossRef]
- Ma, Y.B.; Li, N.; Li, D.Y.; Zhang, M.L.; Huang, X.M. Characteristics and corrosion studies of vanadate conversion coating formed on Mg-14 wt%Li-1 wt%Al-0.1 wt%Ce alloy. Appl. Surf. Sci. 2012, 261, 59–67. [Google Scholar] [CrossRef]
- Hamdy, A.S.; Doench, I.; Möhwald, H. Smart self-healing anti-corrosion vanadia coating for magnesium alloys. Prog. Org. Coat. 2011, 72, 387–393. [Google Scholar] [CrossRef]
- Hamdy, A.S.; Doench, I.; Möhwald, H. Assessment of a one-step intelligent self-healing vanadia protective coatings for magnesium alloys in corrosive media. Electrochim. Acta 2011, 56, 2493–2502. [Google Scholar] [CrossRef]
- Niu, L.Y.; Chang, S.H.; Tong, X.; Li, G.Y.; Shi, Z.M. Analysis of characteristics of vanadate conversion coating on the surface of magnesium alloy. J. Alloys Compd. 2014, 617, 214–218. [Google Scholar] [CrossRef]
- Jiang, X.; Guo, R.G.; Jiang, S.Q. Evaluation of self-healing ability of Ce-V conversion coating on AZ31 magnesium alloy. J. Magnes. Alloys 2016, 4, 230–241. [Google Scholar] [CrossRef]
- Yang, J.X.; Wang, X.D.; Cai, Y.R.; Yang, X.Y. Corrosion resistance and electrical conductivity of V/Ce conversion coating on magnesium alloy AZ31B. Int. J. Miner. Metall. Mater. 2023, 30, 653–659. [Google Scholar] [CrossRef]
- Feng, Z.Y.; Hurley, B.; Li, J.C.; Buchheit, R. Corrosion Inhibition Study of Aqueous Vanadate on Mg Alloy AZ31. J. Electrochem. Soc. 2018, 165, C94–C102. [Google Scholar] [CrossRef]
- Feng, Z.Y.; Li, J.C.; Yang, Z.; Buchheit, R. The Effect of Vanadate, Phosphate, Fluoride Compounds on the Aqueous Corrosion of Magnesium Alloy AZ31 in Dilute Chloride Solutions. Materials 2020, 13, 1325. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.L.; Chen, F.J.; Lin, C.S. Corrosion Resistance Studies of Cerium Conversion Coating with a Fluoride-Free Pretreatment on AZ91D Magnesium Alloy. J. Electrochem. Soc. 2013, 160, C28–C35. [Google Scholar] [CrossRef]
- Lo, W.H.; Lin, C.S. Influence of Vanadate Additive on the Properties of Cerium Conversion Coatings on AZ91 Magnesium Alloys. In Proceedings of the Symposium on Corrosion General Session held during the 223rd Meeting of the Electrochemical-Society (ECS), Toronto, ON, Canada, 12–16 May 2013; pp. 49–59. [Google Scholar]
- Huo, H.W.; Li, Y.; Wang, F.H. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corros. Sci. 2004, 46, 1467–1477. [Google Scholar] [CrossRef]
- Lee, Y.L.; Chu, Y.R.; Chen, F.J.; Lin, C.S. Mechanism of the formation of stannate and cerium conversion coatings on AZ91D magnesium alloys. Appl. Surf. Sci. 2013, 276, 578–585. [Google Scholar] [CrossRef]
- Elsentriecy, H.H.; Azumi, K.; Konno, H. Improvement in stannate chemical conversion coatings on AZ91 D magnesium alloy using the potentiostatic technique. Electrochim. Acta 2007, 53, 1006–1012. [Google Scholar] [CrossRef]
- Elsentriecy, H.H.; Azumi, K.; Konno, H. Effect of surface pretreatment by acid pickling on the density of stannate conversion coatings formed on AZ91 D magnesium alloy. Surf. Coat. Technol. 2007, 202, 532–537. [Google Scholar] [CrossRef]
- Zucchi, F.; Frignani, A.; Grassi, V.; Trabanelli, G.; Monticelli, C. Stannate and permanganate conversion coatings on AZ31 magnesium alloy. Corros. Sci. 2007, 49, 4542–4552. [Google Scholar] [CrossRef]
- Lin, C.S.; Lin, H.C.; Lin, K.M.; Lai, W.C. Formation and properties of stannate conversion coatings on AZ61 magnesium alloys. Corros. Sci. 2006, 48, 93–109. [Google Scholar] [CrossRef]
- Hamdy, A.S. The effect of surface modification and stannate concentration on the corrosion protection performance of magnesium alloys. Surf. Coat. Technol. 2008, 203, 240–249. [Google Scholar] [CrossRef]
- Li, L.; Qu, Q.; Fang, Z.W.; Wang, L.; He, Y.W.; Yuan, R.; Ding, Z.T. Enhanced Corrosion Resistance of AZ31B Magnesium Alloy by Cooperation of Rare Earth Cerium and Stannate Conversion Coating. Int. J. Electrochem. Sci. 2012, 7, 12690–12705. [Google Scholar] [CrossRef]
- Yao, Y.W.; Zhou, Y.; He, L. Corrosion behavior of molybdate conversion coatings on AZ31 magnesium alloy in NaCl solution. Anti-Corros. Methods Mater. 2013, 60, 307–311. [Google Scholar] [CrossRef]
- Wu, L.P.; Yang, Z.D. EIS Study of Molybdate Conversion Coatings Formed on AZ91D Magnesium Alloy. In Proceedings of the 2nd International Conference on Manufacturing Science and Engineering, Guilin, China, 9–11 April 2011; pp. 279–285. [Google Scholar]
- Ishizaki, T.; Masuda, Y.; Teshima, K. Composite film formed on magnesium alloy AZ31 by chemical conversion from molybdate/phosphate/fluorinate aqueous solution toward corrosion protection. Surf. Coat. Technol. 2013, 217, 76–83. [Google Scholar] [CrossRef]
- Mu, S.L.; Du, J.; Jiang, H.; Li, W.F. Composition analysis and corrosion performance of a Mo-Ce conversion coating on AZ91 magnesium alloy. Surf. Coat. Technol. 2014, 254, 364–370. [Google Scholar] [CrossRef]
- Wang, G.X.; Zhang, M.L.; Wu, R.Z. Molybdate and molybdate/permanganate conversion coatings on Mg-8.5Li alloy. Appl. Surf. Sci. 2012, 258, 2648–2654. [Google Scholar] [CrossRef]
- Yang, L.H.; Zhang, M.L.; Lin, C.G.; Wu, J.H. Effect of additives on structure and corrosion resistance of molybdate conversion coatings deposited on AZ31B Mg alloy. In Proceedings of the International Conference on Advanced Design and Manufacturing Engineering (ADME 2011), Guangzhou, China, 16–18 September 2011; pp. 2458–2462. [Google Scholar]
- Farahat, M.E.; Makhlouf, A.S.H. Corrosion resistant coatings based on synergistic effects of alkaline etching and molybdate treatment for AZ31D magnesium alloy. Trans. Inst. Met. Finish. 2018, 96, 332–337. [Google Scholar] [CrossRef]
- Zhu, H.D.; Li, X.T.; Guan, X.R.; Shao, Z.C. Effect of Molybdate Conversion Coating of Magnesium Alloy Reinforced by Micro-arc Oxidation. Met. Mater. Int. 2021, 27, 3975–3982. [Google Scholar] [CrossRef]
- Xu, R.Z.; Li, Y.; Fan, B.M.; Weng, Y.X.; Zhou, Y.; Yan, F. One-step preparation of molybdate-stannate-tungstate composite conversion coating on magnesium alloy AZ91D and its microstructure and corrosion resistance. Int. J. Electrochem. Sci. 2023, 18, 100398. [Google Scholar] [CrossRef]
- Yong, Z.Y.; Zhu, J.; Qiu, C.; Liu, Y.L. Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection. Appl. Surf. Sci. 2008, 255, 1672–1680. [Google Scholar] [CrossRef]
- Chong, K.Z.; Shih, T.S. Conversion-coating treatment for magnesium alloys by a permanganate-phosphate solution. Mater. Chem. Phys. 2003, 80, 191–200. [Google Scholar] [CrossRef]
- Umehara, H.; Takaya, M.; Kojima, Y. An investigation of the structure and corrosion resistance of permanganate conversion coatings on AZ91D magnesium alloy. Mater. Trans. 2001, 42, 1691–1699. [Google Scholar] [CrossRef]
- Umehara, H.; Takaya, M.; Terauchi, S. Chrome-free surface treatments for magnesium alloy. Surf. Coat. Technol. 2003, 169, 666–669. [Google Scholar] [CrossRef]
- Zhao, M.; Wu, S.S.; Luo, J.R.; Fukuda, Y.; Nakae, H. A chromium-free conversion coating of magnesium alloy by a phosphate-permanganate solution. Surf. Coat. Technol. 2006, 200, 5407–5412. [Google Scholar] [CrossRef]
- Lin, C.S.; Lee, C.Y.; Li, W.C.; Chen, Y.S.; Fang, G.N. Formation of phosphate/permanganate conversion coating on AZ31 magnesium alloy. J. Electrochem. Soc. 2006, 153, B90–B96. [Google Scholar] [CrossRef]
- Mosialek, M.; Mordarski, G.; Nowak, P.; Simka, W.; Nawrat, G.; Hanke, M.; Socha, R.P.; Michalska, J. Phosphate-permanganate conversion coatings on the AZ81 magnesium alloy: SEM, EIS and XPS studies. Surf. Coat. Technol. 2011, 206, 51–62. [Google Scholar] [CrossRef]
- Yang, S.A.; Lin, C.S. Effect of Fluoride Ion on the Microstructure and Properties of Permanganate Conversion Coating on AZ91D Magnesium Alloy. In Proceedings of the Magnesium Technology Symposium—Magnesium Alloy Development—An LMD held during the 147th TMS Annual Meeting & Exhibition, Phoenix, AZ, USA, 11–15 March 2018; pp. 37–42. [Google Scholar]
- Hung, S.M.; Chen, S.Y.; Lin, C.S. Effect of bath temperature on the growth kinetics and characteristics of permanganate conversion coating on LZ91 magnesium alloy. J. Mater. Res. Technol. 2024, 28, 4567–4576. [Google Scholar] [CrossRef]
- Jian, S.Y.; Chang, K.L. Effect of cerium ion on the microstructure and properties of permanganate conversion coating on LZ91 magnesium alloy. Appl. Surf. Sci. 2020, 509, 144767. [Google Scholar] [CrossRef]
Density | Tensile Strength | Yield Strength | Elongation | Stiffness | Corrosion Resistance |
---|---|---|---|---|---|
1.75–1.85 g/cm3 | 150–400 MPa | 100–300 MPa | 5–20% | 50–100 HB | alkali-resisting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wan, Z.; Wang, J.; Zou, Y.; Xu, J.; Wang, J.; Pan, F. The Research Progress of Magnesium Alloy Building Formwork. Materials 2024, 17, 3570. https://doi.org/10.3390/ma17143570
Wang J, Wan Z, Wang J, Zou Y, Xu J, Wang J, Pan F. The Research Progress of Magnesium Alloy Building Formwork. Materials. 2024; 17(14):3570. https://doi.org/10.3390/ma17143570
Chicago/Turabian StyleWang, Jinxing, Zhicheng Wan, Jiaxu Wang, Yi Zou, Junyao Xu, Jingfeng Wang, and Fusheng Pan. 2024. "The Research Progress of Magnesium Alloy Building Formwork" Materials 17, no. 14: 3570. https://doi.org/10.3390/ma17143570
APA StyleWang, J., Wan, Z., Wang, J., Zou, Y., Xu, J., Wang, J., & Pan, F. (2024). The Research Progress of Magnesium Alloy Building Formwork. Materials, 17(14), 3570. https://doi.org/10.3390/ma17143570