Corrosion Behavior of 3104 Aluminum Cans When Used as Packaging for Chinese Liquor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Reagents
2.2. Migration Test of Aluminum Cans
2.3. Characterization and Analysis
3. Results and Discussion
3.1. Aluminum Migration
3.2. Corrosion Morphology of Aluminum Cans
3.3. Change in Epoxy Coating
3.4. Change in Composition of Aluminum Cans
3.5. Electrochemical Impedance Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kacmary, P.; Rosova, A.; Sofranko, M.; Bindzar, P.; Saderova, J.; Kovac, J. Creation of Annual Order Forecast for the Production of Beverage Cans—The Case Study. Sustainability 2021, 13, 8524. [Google Scholar] [CrossRef]
- Calabrese, L.; Bruzzaniti, P.; Proverbio, E. Pitting corrosion of aluminum alloys in anhydrous ethanol. Mater. Corros. 2018, 69, 1815–1826. [Google Scholar] [CrossRef]
- Gazenbiller, E.; Arya, V.; Reitz, R.; Engler, T.; Oechsner, M.; Höche, D. Statistical analysis of AA-1050 localized corrosion in anhydrous ethanol. Corros. Sci. 2021, 179, 109137. [Google Scholar] [CrossRef]
- Brito-Franco, A.; Uruchurtu, J.; Rosales-Cadena, I.; Lopez-Sesenes, R.; Serna-Barquera, S.A.; Hernandez-Perez, J.A.; Rocabruno-Valdes, C.; Gonzalez-Rodriguez, J.G. Corrosion Behavior of Al in Ethanol–Gasoline Blends. Energies 2020, 13, 5544. [Google Scholar] [CrossRef]
- Park, I.J.; Yoo, Y.H.; Kim, J.G.; Kwak, D.H.; Ji, W.S. Corrosion characteristics of aluminum alloy in bio-ethanol blended gasoline fuel: Part 2. The effects of dissolved oxygen in the fuel. Fuel 2011, 90, 633–639. [Google Scholar] [CrossRef]
- Park, I.-J.; Nam, T.-H.; Kim, J.-H.; Kim, J.-G. Evaluation of corrosion characteristics of aluminum alloys in the bio-ethanol gasoline blended fuel by 2-electrode electrochemical impedance spectroscopy. Fuel 2014, 126, 26–31. [Google Scholar] [CrossRef]
- Song, G.-L.; Liu, M. Corrosion and electrochemical evaluation of an Al–Si–Cu aluminum alloy in ethanol solutions. Corros. Sci. 2013, 72, 73–81. [Google Scholar] [CrossRef]
- Jellesen, M.S.; Rasmussen, A.A.; Hilbert, L.R. A review of metal release in the food industry. Mater. Corros. 2006, 57, 387–393. [Google Scholar] [CrossRef]
- Kato, L.S.; Conte-Junior, C.A. Safety of Plastic Food Packaging: The Challenges about Non-Intentionally Added Substances (NIAS) Discovery, Identification and Risk Assessment. Polymers 2021, 13, 2077. [Google Scholar] [CrossRef]
- Lestido-Cardama, A.; Vazquez Loureiro, P.; Sendon, R.; Paseiro Losada, P.; Rodriguez Bernaldo de Quiros, A. Application of chromatographic analysis for detecting components from polymeric can coatings and further determination in beverage samples. J. Chromatogr. A 2021, 1638, 461886. [Google Scholar] [CrossRef]
- Blanco, I.; Cicala, G.; Costa, M.; Recca, A. Development of an epoxy system characterized by low water absorption and high thermomechanical performances. J. Appl. Polym. Sci. 2006, 100, 4880–4887. [Google Scholar] [CrossRef]
- Soares, D.S.; Bolgar, G.; Dantas, S.T.; Augusto, P.E.D.; Soares, B.M.C. Interaction between aluminium cans and beverages: Influence of catalytic ions, alloy and coating in the corrosion process. Food Packag. Shelf Life 2019, 19, 56–65. [Google Scholar] [CrossRef]
- Brylinski, L.; Kostelecka, K.; Wolinski, F.; Duda, P.; Gora, J.; Granat, M.; Flieger, J.; Teresinski, G.; Buszewicz, G.; Sitarz, R.; et al. Aluminium in the Human Brain: Routes of Penetration, Toxicity, and Resulting Complications. Int. J. Mol. Sci. 2023, 24, 7228. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-C.; Su, M.; Xia, D.-H.; Wu, Z.; Qin, Z.; Xu, L.; Fan, H.-Q.; Hu, W. Development of an electrochemical sensor and measuring the shelf life of tinplate cans. Measurement 2019, 134, 500–508. [Google Scholar] [CrossRef]
- Esteves, L.; Garcia, E.M.; Castro, M.d.M.R.; Lins, V.F.C. Electrochemical study of corrosion in aluminium cans in contact with soft drinks. Corros. Eng. Sci. Technol. 2014, 49, 665–668. [Google Scholar] [CrossRef]
- Almoiqli, M.; Alharbi, K.N.; Alnuwaiser, M.A.; Yajizi, G.; Alshoshan, S.; Baduways, W.; Albeladi, M.I.; Alsanea, R.S.; Aljohani, T.A. Corrosion Behavior of Aluminium-Coated Cans. Materials 2023, 16, 1041. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food Text with EEA Relevance. 2011. pp. 1–89. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011R0010&qid=1722908422783 (accessed on 30 April 2024).
- GB 31604.1-2015; National Standards for Food Safety General Rules for Migration Testing of Food Contact Materials and Products. National Standards of China: Beijing, China, 2015; pp. 1–13.
- Du, P.; Jiao, G.; Zhang, Z.; Wang, J.; Li, P.; Dong, J.; Wang, R. Relationship between Representative Trace Components and Health Functions of Chinese Baijiu: A Review. Fermentation 2023, 9, 658. [Google Scholar] [CrossRef]
- ATSDR. Pubilc Health Statement Aluminum CAS # 7429-90-5 Division of Toxicology and Environmental Medicine. 2008. Available online: www.atsdr.cdc.gov (accessed on 4 April 2024).
- Liu, X.; Shao, Y.; Zhang, Y.; Meng, G.; Zhang, T.; Wang, F. Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating—I. High-temperature ball milling treatment. Corros. Sci. 2015, 90, 451–462. [Google Scholar] [CrossRef]
- Nnaji, N.; Nwaji, N.; Mack, J.; Nyokong, T. Corrosion Resistance of Aluminum against Acid Activation: Impact of Benzothiazole-Substituted Gallium Phthalocyanine. Molecules 2019, 24, 207. [Google Scholar] [CrossRef] [PubMed]
- López-Juárez, R.; Razo-Perez, N.; Pérez-Juache, T.; Hernandez-Cristobal, O.; Reyes-López, S.Y. Synthesis of α-Al2O3 from aluminum cans by wet-chemical methods. Results Phys. 2018, 11, 1075–1079. [Google Scholar] [CrossRef]
- Huang, X.; Li, N. Structural characterization and properties of lanthanum film as chromate replacement for tinplate. Appl. Surf. Sci. 2007, 254, 1463–1470. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, J.; Song, S.; Xia, D.; Wang, K.; Shen, C.; Luo, B.; Shi, J. Degradation mechanism of lacquered tinplate in energy drink by in-situ EIS and EN. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2013, 28, 367–372. [Google Scholar] [CrossRef]
- Chu, Z.; Deng, W.; Zheng, X.; Zhou, Y.; Zhang, C.; Xu, J.; Gao, L. Corrosion Mechanism of Plasma-Sprayed Fe-Based Amorphous Coatings with High Corrosion Resistance. J. Therm. Spray Technol. 2020, 29, 1111–1118. [Google Scholar] [CrossRef]
- Macák, J.; Sajdl, P.; Kučera, P.; Novotný, R.; Vošta, J. In situ electrochemical impedance and noise measurements of corroding stainless steel in high temperature water. Electrochim. Acta 2006, 51, 3566–3577. [Google Scholar] [CrossRef]
- Bonora, P.L.; Deflorian, F.; Fedrizzi, L. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electrochim. Acta 1996, 41, 1073–1082. [Google Scholar] [CrossRef]
Time (d) | Aluminum Migration (μg/kg) | |||
---|---|---|---|---|
Ethanol 20% (v/v) | Ethanol 50% (v/v) | Ethanol 95% (v/v) | Chinese Liquor 52% (v/v) | |
10 | 12.16 | 17.76 | 2.56 | 387.39 |
30 | 13.89 | 24.02 | 7.07 | 4357.2 |
Time (d) | Element (At%) | |||
---|---|---|---|---|
Carbon | Oxygen | Aluminum | Total | |
10 | 81.5 | 9.6 | 9.0 | 100.0 |
30 | 19.5 | 42.4 | 38.1 | 100.0 |
Time (d) | 5 | 10 | 15 | 20 | 25 | 30 |
---|---|---|---|---|---|---|
Rc (Ω·cm2) | 5.773 × 104 | 5.568 × 104 | 5.103 × 104 | 2.217 × 104 | - | - |
Qc (F·cm−2) | 6.837 × 10−9 | 7.119 × 10−9 | 7.629 × 10−9 | 9.830 × 10−9 | - | - |
Rct (Ω·cm2) | 8.906 × 108 | 4.940 × 108 | 2.143 × 108 | 3.793 × 107 | 6.554 × 106 | 6.450 × 103 |
Qdl (F·cm−2) | 6.828 × 10−9 | 1.182 × 10−8 | 1.470 × 10−8 | 4.084 × 10−8 | 5.000 × 10−8 | 6.433 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, M.; Chen, J.; Gu, J.; Wu, Z. Corrosion Behavior of 3104 Aluminum Cans When Used as Packaging for Chinese Liquor. Materials 2024, 17, 3884. https://doi.org/10.3390/ma17163884
Fan M, Chen J, Gu J, Wu Z. Corrosion Behavior of 3104 Aluminum Cans When Used as Packaging for Chinese Liquor. Materials. 2024; 17(16):3884. https://doi.org/10.3390/ma17163884
Chicago/Turabian StyleFan, Mingjie, Jinyang Chen, Jie Gu, and Zheying Wu. 2024. "Corrosion Behavior of 3104 Aluminum Cans When Used as Packaging for Chinese Liquor" Materials 17, no. 16: 3884. https://doi.org/10.3390/ma17163884
APA StyleFan, M., Chen, J., Gu, J., & Wu, Z. (2024). Corrosion Behavior of 3104 Aluminum Cans When Used as Packaging for Chinese Liquor. Materials, 17(16), 3884. https://doi.org/10.3390/ma17163884