Activated Carbon for CO2 Adsorption from Avocado Seeds Activated with NaOH: The Significance of the Production Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Activated Carbon Synthesis
2.3. Sample Characterization
3. Results and Discussion
3.1. Materials Characterization
- 4 NaOH + C → 4 Na + CO2 + 2 H2O
- 6 NaOH + 2 C → 2 Na + 3 H2 + Na2CO3
- 4 NaOH + 2 CO2 → 2 Na2CO3 + 2 H2O
- Na2CO3 → Na2O + CO2
- 4 Na2O + C → 4 Na + CO2
- 4 NaOH + C → Na2CO3 + Na2O+ 2 H2
- Na2CO3 +2 C→ 2 Na + 3 CO
- C + CO2 ⇄ 2 CO
3.2. Studies on C500_NaOHdry as Potential CO2 Adsorbent
- qmRP—the maximum adsorption capacity [mmol/g];
- bRP—the Radke–Prausnitz constant [bar−1];
- nRP—Radke–Prausnitz model exponent.
- qmT—the maximum adsorption capacity [mmol/g];
- bT—the Toth constant [bar−1];
- nT—the heterogeneity factor.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Yuan, X.; Deng, S.; Zhao, L.; Lee, K.B. A Review on Biomass-Derived CO2 Adsorption Capture: Adsorbent, Adsorber, Adsorption, and Advice. Renew. Sustain. Energy Rev. 2021, 152, 111708. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Ji, N.; Deng, S.; Zhao, J.; Li, Y.; Song, Y.; Li, H. Alternative Pathways for Efficient CO2 Capture by Hybrid Processes—A Review. Renew. Sustain. Energy Rev. 2018, 82, 215–231. [Google Scholar] [CrossRef]
- Vannak, H.; Osaka, Y.; Tsujiguchi, T.; Kodama, A. The Efficacy of Carbon Molecular Sieve and Solid Amine for CO2 Separation from a Simulated Wet Flue Gas by an Internally Heated/Cooled Temperature Swing Adsorption Process. Appl. Therm. Eng. 2024, 239, 122145. [Google Scholar] [CrossRef]
- Wei, R.; Alshahrani, T.; Chen, B.; Ibragimov, A.B.; Xu, H.; Gao, J. Advances in Porous Materials for Efficient Separation and Purification of Flue Gas. Sep. Purif. Technol. 2024, 352, 128238. [Google Scholar] [CrossRef]
- Rahimi, V.; Ferreiro-Salgado, A.; Gómez-Díaz, D.; Sonia Freire, M.; González-Álvarez, J. Evaluating the Performance of Carbon-Based Adsorbents Fabricated from Renewable Biomass Precursors for Post-Combustion CO2 Capture. Sep. Purif. Technol. 2024, 344, 127110. [Google Scholar] [CrossRef]
- Tang, D.; Lyu, X.; Huang, Z.; Xu, R.; Chen, J.; Qiu, T. Nitrogen-Doped Microporous Carbons as Highly Efficient Adsorbents for CO2 and Hg(II) Capture. Powder Technol. 2023, 427, 118769. [Google Scholar] [CrossRef]
- Dindi, A.; Quang, D.V.; Vega, L.F.; Nashef, E.; Abu-Zahra, M.R.M. Applications of Fly Ash for CO2 Capture, Utilization, and Storage. J. CO2 Util. 2019, 29, 82–102. [Google Scholar] [CrossRef]
- Xie, W.; Yao, X.; Li, H.; Li, H.; He, L. Biomass-Based N-Rich Porous Carbon Materials for CO2 Capture and In-situ Conversion. ChemSusChem 2022, 15, e202201004. [Google Scholar] [CrossRef]
- Sayari, A.; Belmabkhout, Y.; Serna-Guerrero, R. Flue Gas Treatment via CO2 Adsorption. Chem. Eng. J. 2011, 171, 760–774. [Google Scholar] [CrossRef]
- Sun, N.; Tang, Z.; Wei, W.; Snape, C.E.; Sun, Y. Solid Adsorbents for Low-Temperature CO2 Capture with Low-Energy Penalties Leading to More Effective Integrated Solutions for Power Generation and Industrial Processes. Front. Energy Res. 2015, 3, 9. [Google Scholar] [CrossRef]
- Ochedi, F.O.; Liu, Y.; Adewuyi, Y.G. State-of-the-Art Review on Capture of CO2 Using Adsorbents Prepared from Waste Materials. Process Saf. Environ. Prot. 2020, 139, 1–25. [Google Scholar] [CrossRef]
- Aghel, B.; Behaein, S.; Alobaid, F. CO2 Capture from Biogas by Biomass-Based Adsorbents: A Review. Fuel 2022, 328, 125276. [Google Scholar] [CrossRef]
- Kiełbasa, K.; Bayar, Ş.; Varol, E.A.; Sreńscek-Nazzal, J.; Bosacka, M.; Miądlicki, P.; Serafin, J.; Wróbel, R.J.; Michalkiewicz, B. Carbon Dioxide Adsorption over Activated Carbons Produced from Molasses Using H2SO4, H3PO4, HCl, NaOH, and KOH as Activating Agents. Molecules 2022, 27, 7467. [Google Scholar] [CrossRef]
- Nurfarhana, M.M.; Asikin-Mijan, N.; Yusoff, S.F.M. Porous Carbon from Natural Rubber for CO2 Adsorption. Mater. Chem. Phys. 2023, 308, 128196. [Google Scholar] [CrossRef]
- Dehkordi, S.S.R.; Delavar, Q.; Ebrahim, H.A.; Partash, S.S. CO2 Adsorption by Coal-Based Activated Carbon Modified with Sodium Hydroxide. Mater. Today Commun. 2022, 33, 104776. [Google Scholar] [CrossRef]
- Ma, J.; Liu, Y.; Chen, S.; Du, Y.; Wu, H. Changes in the Pore Structure of Modified Sludge-Activated Carbon and Its Effect on the Adsorption Characteristics of CO2 under High Pressure. Microporous Mesoporous Mater. 2022, 345, 112255. [Google Scholar] [CrossRef]
- Jha, R.K.; Bhunia, H.; Basu, S. Experimental Kinetics and Thermodynamics Investigation: Chemically Activated Carbon-Enriched Monolithic Reduced Graphene Oxide for Efficient CO2 Capture. Heliyon 2024, 10, e27439. [Google Scholar] [CrossRef]
- Tahmasebpoor, M.; Iranvandi, M.; Heidari, M.; Azimi, B.; Pevida, C. Development of Novel Waste Tea-Derived Activated Carbon Promoted with SiO2 Nanoparticles as Highly Robust and Easily Fluidizable Sorbent for Low-Temperature CO2 Capture. J. Environ. Chem. Eng. 2023, 11, 110437. [Google Scholar] [CrossRef]
- Singh, S.B.; De, M. Carbon Dioxide Removal by Chemically and Thermally Reduced Graphene-Based Adsorbents. Korean J. Chem. Eng. 2024, 41, 783–796. [Google Scholar] [CrossRef]
- Avellaneda, G.L.; Denoyel, R.; Beurroies, I. CO2/H2O Adsorption and Co-Adsorption on Functionalized and Modified Mesoporous Silicas. Microporous Mesoporous Mater. 2024, 363, 112801. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Domínguez, M.P.; Araus, K.; Bonert, P.; Sánchez, F.; San Miguel, G.; Toledo, M. The Avocado and Its Waste: An Approach of Fuel Potential/Application. In Environment, Energy and Climate Change II; Springer: Cham, Switzerland, 2014; pp. 199–223. [Google Scholar]
- Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the Bet Equation Applicable to Microporous Adsorbents? Stud. Surf. Sci. Catal. 2007, 160, 49–56. [Google Scholar]
- Cullity, B.D.; Weymouth, J.W. Elements of X-ray Diffraction. Am. J. Phys. 1957, 25, 394–395. [Google Scholar] [CrossRef]
- Lu, L.; Sahajwalla, V.; Kong, C.; Harris, D. Quantitative X-ray Diffraction Analysis and Its Application to Various Coals. Carbon 2001, 39, 1821–1833. [Google Scholar] [CrossRef]
- Singh, G.; Tiburcius, S.; Ruban, S.M.; Shanbhag, D.; Sathish, C.I.; Ramadass, K.; Vinu, A. Pure and Strontium Carbonate Nanoparticles Functionalized Microporous Carbons with High Specific Surface Areas Derived from Chitosan for CO2 Adsorption. Emergent Mater. 2019, 2, 337–349. [Google Scholar] [CrossRef]
- Serafin, J.; Sreńscek-Nazzal, J.; Kamińska, A.; Paszkiewicz, O.; Michalkiewicz, B. Management of Surgical Mask Waste to Activated Carbons for CO2 Capture. J. CO2 Util. 2022, 59, 101970. [Google Scholar] [CrossRef]
- Elmorsi, T.M. Equilibrium Isotherms and Kinetic Studies of Removal of Methylene Blue Dye by Adsorption onto Miswak Leaves as a Natural Adsorbent. J. Environ. Prot. 2011, 2, 817–827. [Google Scholar] [CrossRef]
- Travis, C.C.; Etnier, E.L. A Survey of Sorption Relationships for Reactive Solutes in Soil. J. Environ. Qual. 1981, 10, 8–17. [Google Scholar] [CrossRef]
- Ayawei, N.; Angaye, S.S.; Wankasi, D.; Dikio, E.D. Synthesis, Characterization and Application of Mg/Al Layered Double Hydroxide for the Degradation of Congo Red in Aqueous Solution. Open J. Phys. Chem. 2015, 5, 56–70. [Google Scholar] [CrossRef]
- Podder, M.S.; Majumder, C.B. Studies on the Removal of As(III) and As(V) through Their Adsorption onto Granular Activated Carbon/MnFe2O4 Composite: Isotherm Studies and Error Analysis. Compos. Interfaces 2016, 23, 327–372. [Google Scholar] [CrossRef]
- Tran, H.N.; Bollinger, J.-C.; Lima, E.C.; Juang, R.-S. How to Avoid Mistakes in Treating Adsorption Isotherm Data (Liquid and Solid Phases): Some Comments about Correctly Using Radke-Prausnitz Nonlinear Model and Langmuir Equilibrium Constant. J. Environ. Manag. 2023, 325, 116475. [Google Scholar] [CrossRef]
- Kumar, K.V.; Porkodi, K.; Rocha, F. Comparison of Various Error Functions in Predicting the Optimum Isotherm by Linear and Non-Linear Regression Analysis for the Sorption of Basic Red 9 by Activated Carbon. J. Hazard. Mater. 2008, 150, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Sapchenko, S.A.; Barsukova, M.O.; Belosludov, R.V.; Kovalenko, K.A.; Samsonenko, D.G.; Poryvaev, A.S.; Sheveleva, A.M.; Fedin, M.V.; Bogomyakov, A.S.; Dybtsev, D.N.; et al. Understanding Hysteresis in Carbon Dioxide Sorption in Porous Metal–Organic Frameworks. Inorg. Chem. 2019, 58, 6811–6820. [Google Scholar] [CrossRef] [PubMed]
Sorbent | Method of Preparation | SSA (m2/g) Vtot (cm3/g) | qCO2_ (mmol/g) | t (°C) p (bar) | Ref. |
---|---|---|---|---|---|
AC from natural rubber | carbonized at 400 °C; mixed with solid NaOH at ratios ranging from 1:1 to 1:4 (natural rubber to NaOH); activation at 800 °C | 1670 m2/g 1.01 cm3/g | 2.98 | 25 1 | [14] |
AC from coal | impregnation with NaOH solutions concentrations (0.01–8 M), durations (4–7 h). | 614 m2/g | 1.68 | 25 2.12 | [15] |
AC from sludge | treating with a 5 wt % NaOH solution for 24 h; washing with water until the pH was neutral. | 101 m2/g 0.123 cm3/g | 2.90 | 30 40 | [16] |
AC from monolithic graphene oxides | mixed with NaOH at ratios ranging from 1 to 3; carbonized at 600 °C; washing with water until the pH was neutral. | 754 m2/g 1.97 cm3/g | 2.10 | 25 1 | [17] |
AC from waste tea | impregnation with solution of NaOH (mas ratio 1:1); carbonized at 600 °C; washing with water until the pH was neutral. | 270 m2/g 0.106 cm3/g | 0.96 | 25 1 | [18] |
Graphene-hydrazine | graphite oxide was treated by hydrazine hydrate at a temperature of 90 °C | 409 m2/g 0.48 cm3/g | 1.44 | 0 1 | [19] |
SBA-15 midified by BTESE | TEOS was replaced by 10% of 3-(triethoxysilyl) propylamine. | 269 m2/g 0.36 cm3/g | 1.21 | 30 1 | [20] |
C500_NaOH | avocado seeds powder → furnace 500 °C → NaOH solution → furnace 850 °C |
C500_NaOHdry | avocado seeds powder → furnace 500 °C → NaOH dry → furnace 850 °C |
C_NaOH | avocado seeds powder +NaOH solution → furnace 850 °C |
C_NaOHdry | avocado seeds powder +NaOH dry → furnace 850 °C |
C_NaOHdry+H2O | avocado seeds powder +NaOH dry + few drops of H2O → furnace 850 °C |
AC | SSA | Vtot | Vmicro | Vmicro/tot |
---|---|---|---|---|
(m2/g) | (cm3/g) | (cm3/g) | (%) | |
C_NaOH | 918 | 0.574 | 0.295 | 51.39 |
C_NaOHdry | 700 | 0.716 | 0.159 | 22.21 |
C_NaOHdry+H2O | 696 | 0.761 | 0.168 | 22.08 |
C500_NaOH | 885 | 0.440 | 0.290 | 65.91 |
C500_NaOHdry | 1217 | 0.547 | 0.418 | 76.42 |
AC | Lc | N | La |
---|---|---|---|
(nm) | (nm) | ||
C_NaOH | 1.04 | 2.71 | 2.39 |
C_NaOHdry | 1.23 | 3.27 | 4.10 |
C_NaOHdry+H2O | 1.23 | 3.30 | 3.69 |
C500_NaOH | 0.88 | 2.29 | 3.45 |
C500_NaOHdry | 1.04 | 2.71 | 2.39 |
AC | qCO2_0 °C | qCO2_10 °C | qCO2_20 °C | qCO2_30 °C | qN2_20 °C | Seq |
---|---|---|---|---|---|---|
(mmol/g) | (mmol/g) | (mmol/g) | (mmol/g) | (mmol/g) | ||
C_NaOH | 3.69 | 3.07 | 2.57 | 2.12 | 0.38 | 6.76 |
C_NaOHdry | 2.37 | 2.10 | 1.69 | 1.19 | 0.21 | 8.05 |
C_NaOHdry+H2O | 2.56 | 2.16 | 1.64 | 1.21 | 0.21 | 7.81 |
C500_NaOH | 4.20 | 3.50 | 2.96 | 2.46 | 0.37 | 8.00 |
C500_NaOHdry | 4.90 | 4.00 | 3.37 | 2.76 | 0.50 | 6.84 |
Radke–Prausnitz Model for CO2 | Toth Model for N2 | |||||
---|---|---|---|---|---|---|
Temperature [°C] | ||||||
0 | 10 | 20 | 30 | 20 | ||
qmRP | 5.76 | 5.01 | 4.39 | 3.83 | qmT | 3.01 |
bRP | 5.81 | 4.39 | 3.33 | 2.61 | bT | 0.21 |
nRP | 0.59 | 0.59 | 0.59 | 0.6 | nT | 0.90 |
HYBRID | 0.00103 | 0.00078 | 0.00028 | 0.00081 | HYBRID | 0.00011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siemak, J.; Mikołajczak, G.; Pol-Szyszko, M.; Michalkiewicz, B. Activated Carbon for CO2 Adsorption from Avocado Seeds Activated with NaOH: The Significance of the Production Method. Materials 2024, 17, 4157. https://doi.org/10.3390/ma17164157
Siemak J, Mikołajczak G, Pol-Szyszko M, Michalkiewicz B. Activated Carbon for CO2 Adsorption from Avocado Seeds Activated with NaOH: The Significance of the Production Method. Materials. 2024; 17(16):4157. https://doi.org/10.3390/ma17164157
Chicago/Turabian StyleSiemak, Joanna, Grzegorz Mikołajczak, Magdalena Pol-Szyszko, and Beata Michalkiewicz. 2024. "Activated Carbon for CO2 Adsorption from Avocado Seeds Activated with NaOH: The Significance of the Production Method" Materials 17, no. 16: 4157. https://doi.org/10.3390/ma17164157
APA StyleSiemak, J., Mikołajczak, G., Pol-Szyszko, M., & Michalkiewicz, B. (2024). Activated Carbon for CO2 Adsorption from Avocado Seeds Activated with NaOH: The Significance of the Production Method. Materials, 17(16), 4157. https://doi.org/10.3390/ma17164157