PCDA/ZnO Organic–Inorganic Hybrid Photoanode for Efficient Photoelectrochemical Solar Water Splitting
Abstract
:1. Introduction
2. Experimental Procedure
2.1. ZnO Nanoflower Synthesis
2.2. Hybrid Photoanode Fabrication
2.3. Characterizations
3. Results and Discussion
3.1. HRLV SEM Images and XRD of Photoanodes
3.2. Photoelectrochemical Characterization
3.3. UV-Vis Measurements and Gas Evolution Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, S.; Fujishima, A.; Honda, K. Experimental evidence for the hydrogen evolution site in photocatalytic process on Pt/TiO2. Chem. Phys. Lett. 1983, 102, 464–465. [Google Scholar] [CrossRef]
- Nozik, A.J. Photoelectrochemistry: Applications to solar energy conversion. Annu. Rev. Phys. Chem. 1978, 29, 189–222. [Google Scholar] [CrossRef]
- Walter, M.; Warren, E.; McKone, J.; Boettcher, S.; Mi, Q.; Santori, E.; Lewis, N. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Y.; Barakat, T.; Zeng, Y.; Liu, J.; Siffert, S.; Su, B. Recent advances in non-metal doped titania for solar-driven photocatalytic/photoelectrochemical water-splitting. J. Energy Chem. 2022, 66, 529–559. [Google Scholar] [CrossRef]
- Yoshida, T.; Kojima, K. Toyota MIRAI Fuel Cell Vehicle and Progress Toward a Future Hydrogen Society. Electrochem. Soc. Interface 2015, 24, 45. [Google Scholar] [CrossRef]
- Jiang, C.; Moniz, S.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting—Materials and challenges. Chem. Soc. Rev. 2017, 46, 4645–4660. [Google Scholar] [CrossRef]
- Bruno, L.; Battiato, S.; Scuderi, M.; Priolo, F.; Terrasi, A.; Mirabella, S. Physical insights into alkaline overall water splitting with NiO microflowers electrodes with ultra-low amount of Pt catalyst. Int. J. Hydrogen Energy 2022, 47, 33988–33998. [Google Scholar] [CrossRef]
- Wen, Q.; Liu, G.; Wu, W.; Liao, S. Performance evaluation of distributed energy system integrating photovoltaic, ground source heat pump, and natural gas-based CCHP. Energy Convers. Manag. 2022, 252, 115039. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Balogun, M.; Tong, Y.; Huang, Y. Oxygen vacancy–based metal oxides photoanodes in photoelectrochemical water splitting. Mater. Today Sustain. 2022, 18, 100118. [Google Scholar] [CrossRef]
- Chen, S.; Liu, T.; Zheng, Z.; Ishaq, M.; Liang, G.; Fan, P.; Chen, T.; Tang, J. Recent progress and perspectives on Sb2Se3-based photocathodes for solar hydrogen production via photoelectrochemical water splitting. J. Energy Chem. 2022, 67, 508–523. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Yongjing, L.; Guangbi, Y.; Rui, L.; Sa, Z.; Stafford, W.S.; Dunwei, W. Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review. Chem. Phys. Lett. 2011, 507, 209–215. [Google Scholar]
- Kelly, N.; Gibson, T. Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting. Int. J. Hydrogen Energy 2006, 31, 1658–1673. [Google Scholar] [CrossRef]
- Kim, M.; Joshi, B.; Samuel, E.; Seok, H.; Aldalbahi, A.; Almoiqli, M.; Swihart, M.; Yoon, S. Electrosprayed MnO2 on ZnO nanorods with atomic layer deposited TiO2 layer for photoelectrocatalytic water splitting. Appl. Catal. B Environ. 2020, 271, 118928. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, P.; Yang, H.; Chen, J.; Xiao, F.; Guo, Y.; Liu, Y.; Zhang, W.; Huo, F.; Liu, B. Metal–Organic Frameworks as Promising Photosensitizers for Photoelectrochemical Water Splitting. Adv. Sci. 2016, 3, 1500243. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, S.; Khare, N. Enhanced photosensitization of zinc oxide nanorods using polyaniline for efficient photocatalytic and photoelectrochemical water splitting. Int. J. Hydrogen Energy 2016, 41, 21088–21098. [Google Scholar] [CrossRef]
- Hou, S.; Xie, H.; Xiao, F.X. Nonconjugated Polymers Enabled Solar Water Oxidation. Inorg. Chem. 2024, 63, 8970–8976. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, G.; Sargent, E.H.; Zhuang, T.; Dinh, C.T.; He, F. Freestanding nano-photoelectrode as a highly efficient and visible-light-driven photocatalyst for water-splitting. J. Mater. Chem. A. 2017, 5, 10651–10657. [Google Scholar] [CrossRef]
- Sissembayeva, Y.; Cho, S.K.; Hwang, Y.-H. Dibenzo [b, f][1, 5] Diazocines/ZnO Organic/Inorganic Hybrid Photoanodes for Efficient Photo Electrochemical Water Splitting. Int. J. Photoenergy 2022, 2022, 7303034. [Google Scholar]
- Pankaew, A.; Traiphol, N.; and Traiphol, R. Tuning the sensitivity of polydiacetylene-based colorimetric sensors to UV light and cationic surfactant by co-assembling with various polymers. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125626. [Google Scholar] [CrossRef]
- Nicholas, N.J.; Franks, G.V.; Ducker, W.A. Selective Adsorption to Particular Crystal Faces of ZnO. Langmuir 2012, 28, 7189–7196. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, C.; Sham, C.H.; Alaboson, J.M.P.; Mullin, J.M.; Schatz, G.C.; Hersam, M.C. Self-Assembly and Photopolymerization of Sub-2 nm One-Dimensional Organic Nanostructures on Graphene. J. Am. Chem. Soc. 2012, 134, 16759–16764. [Google Scholar] [CrossRef]
- Kantha, C.; Kim, H.; Kim, Y.; Heo, J.M.; Joung, J.F.; Park, S.; Kim, J.M. Topochemical polymerization of macrocyclic diacetylene with a naphthalene moiety for a tubular-shaped polydiacetylene chromophore. Dye. Pigment. 2018, 154, 199–204. [Google Scholar] [CrossRef]
- Shishikura, A.; Takahashi, H.; Hirohama, S.; Arai, K. Citric acid purification process using compressed carbon dioxides. J. Supercrit. Fluids 1992, 5, 303–312. [Google Scholar] [CrossRef]
- Asl, H.Z.; Rozati, S.M. High-quality spray-deposited fuorine-doped tin oxide: Efect of flm thickness on structural, morphological, electrical, and optical properties. Appl. Phys. A 2019, 125, 689. [Google Scholar] [CrossRef]
- Kanmani, S.S.; Ramachandran, K.; Umapathy, S. Eosin Yellowish Dye-Sensitized ZnO Nanostructure-Based Solar Cells Employing Solid PEO Redox Couple Electrolyte. Int. J. Photoenergy 2012, 6346, 267824. [Google Scholar] [CrossRef]
- Radzi, A.; Safaei, J.; Teridi, M. Photoelectrochemical enhancement from deposition of BiVO4 photosensitizer on different thickness layer TiO2 photoanode for water splitting application. Nano-Struct. Nano-Objects 2019, 18, 100274. [Google Scholar] [CrossRef]
- Chouhan, N.; Yeh, C.L.; Hu, S.F.; Huang, J.H.; Tsai, C.W.; Liu, R.S.; Chang, W.S.; Chen, K.H. Array of CdSe QD-Sensitized ZnO Nanorods Serves as Photoanode for Water Splitting. J. Electrochem. Soc. 2010, 157, B1430–B1433. [Google Scholar] [CrossRef]
- Majumder, T.; Hmar, J.J.L.; Dhar, S.; Mondal, S.P. Superior photoelectrochemical properties of ZnO nanorods/poly(3-hexylthiophene) hybrid photoanodes. Chem. Phys. 2017, 490, 1–6. [Google Scholar] [CrossRef]
- Han, H.; Wang, W.; Yao, L.; Hao, C.; Liang, Y.; Fu, J.; Zeng, P. Photostable 3D heterojunction photoanode made of ZnO nanosheets coated onto TiO2 nanowire arrays for photoelectrochemical solar hydrogen generation. Catal. Sci. Technol. 2019, 9, 1989–1997. [Google Scholar] [CrossRef]
- Yang, W.; Moehl, T.; Service, E.; Tilley, S.D. Operando Analysis of Semiconductor Junctions in Multi-Layered Photocathodes for Solar Water Splitting by Impedance Spectroscopy. Adv. Energy Mater. 2021, 11, 2003569. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, X.; Li, Y. A ternary g-C3N4/Pt/ZnO photoanode for efficient photoelectrochemical water splitting. Int. J. Hydrogen Energy 2015, 40, 9080–9087. [Google Scholar] [CrossRef]
- Hong, D.; Cao, G.; Zhang, X.; Qu, J.; Deng, Y.; Liang, H.; Tang, J. Construction of a Pt-modified chestnut-shell-like ZnO photocatalyst for high-efficiency photochemical water splitting. Electrochim. Acta 2018, 283, 959–969. [Google Scholar] [CrossRef]
- Elim, H.I.; Cai, B.; Kurata, Y.; Sugihara, O.; Kaino, T.; Adschiri, T.; Chu, A.-L.; Kambe, N. Refractive Index Control and Rayleigh Scattering Properties of Transparent TiO2 Nanohybrid Polymer. J. Phys. Chem. B 2009, 113, 10143–10148. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chen, M.-W.; Ke, J.-J.; Lin, C.-A.; Retamal, J.R.D.; He, J.-H. Surface effects on optical and electrical properties of ZnO nanostructures. Pure Appl. Chem. 2010, 82, 2055–2073. [Google Scholar] [CrossRef]
Photoanode Type | Electrolyte | Current Density | Illumination Source | Ref. |
---|---|---|---|---|
P3HT/ZnO | 0.1 M Na2SO4 | 0.642 mA/cm2 at 0.75 V | 80 mW/cm2 | [30] |
TiO2/ZnO | 0.1 M Na2SO4 | 1.45 mA/cm2 at 0.8 V | 100 mW/cm2 | [31] |
BPEI@ZnO | 0.5 M Na2SO4 | 0.25 mA/cm2 | 100 mW/cm2 | [18] |
PEDOT:PSS/CdSs/ZnO/WO2 | 0.2 M Na2S, 0.3 M Na2SO4 | 0.5 mA/cm2 | 100 mW/cm2 | [19] |
Pt/p-PCDA@ZnO | 0.05 M Na2CO3/NaHCO3 | 0.476 mA/cm2 at 1.23 V | 100 mW/cm2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmetzhanov, N.; Zhang, M.; Lee, D.; Hwang, Y.-H. PCDA/ZnO Organic–Inorganic Hybrid Photoanode for Efficient Photoelectrochemical Solar Water Splitting. Materials 2024, 17, 4259. https://doi.org/10.3390/ma17174259
Akhmetzhanov N, Zhang M, Lee D, Hwang Y-H. PCDA/ZnO Organic–Inorganic Hybrid Photoanode for Efficient Photoelectrochemical Solar Water Splitting. Materials. 2024; 17(17):4259. https://doi.org/10.3390/ma17174259
Chicago/Turabian StyleAkhmetzhanov, Nursalim, Mao Zhang, Dongyun Lee, and Yoon-Hwae Hwang. 2024. "PCDA/ZnO Organic–Inorganic Hybrid Photoanode for Efficient Photoelectrochemical Solar Water Splitting" Materials 17, no. 17: 4259. https://doi.org/10.3390/ma17174259
APA StyleAkhmetzhanov, N., Zhang, M., Lee, D., & Hwang, Y. -H. (2024). PCDA/ZnO Organic–Inorganic Hybrid Photoanode for Efficient Photoelectrochemical Solar Water Splitting. Materials, 17(17), 4259. https://doi.org/10.3390/ma17174259